成纤维细胞生长因子-10对激光角膜烧伤的实验治疗及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题旨在研究角膜烧伤的特点及发展规律,探索其损伤的机制,重点研究激光角膜损伤的分子机理及促进修复措施,同时还应用傅里叶变换红外光谱技术(FT-IR),建立了FT-IR检测角膜蛋白分子结构改变的新方法。
     1.目的
     眼部碱烧伤是临床常见而处理棘手的眼外伤,国内外相关研究报道较多。激光角膜烧伤的研究报道甚少。随着激光技术的迅速发展,激光武器已经成为用于战争且技术最成熟的一种新概念武器,各国都在进行相关研究,但由于世界各军事强国都将激光武器的开发研制列入绝密的国家高新技术武器研究计划,因此激光生物效应的研究报道寥寥无几。随着激光武器研发的深入和实战应用,激光生物学效应、损伤机制和治疗措施的研究已成为各国军事医学的重要而紧迫的研究领域。
     眼是激光辐射最敏感的靶器官,也是激光武器重要致伤部位之一。本课题用碱和激光建立眼烧伤模型,重点研究激光对眼角膜的损伤效应、损伤机制以及成纤维细胞生长因子-10(Fibroblast growth factor-10,FGF-10)对角膜烧伤的治疗效应。激光眼角膜损伤效应与机制研究以及FGF-10治疗效应研究,将为临床角膜烧伤提供新的治疗方案,为我国激光武器的研制和防护提供生物学依据,对国家安全和保障人民身体健康均具有重大意义。
     2.方法
    
     采用日本大耳白兔分别构建碱和激光角膜烧伤模型,实验分烧伤对照组、bFGF治疗对照组、FGF-10 12.5μg/ml组、FGF-10 25μg/ml组和FGF-10 50μg/ml组。通过裂隙灯显微镜与病理组织学观察、烧伤斑图像分析、角膜光密度值测定和MTT法检测损伤后角膜的恢复情况,比较治疗后7、14天各组的差异。建立FT-IR技术用于角膜研究的方法。分析正常兔角膜的化学组成。在此基础上进一步应用FT-IR技术研究激光角膜损伤的分子机制,采用解卷积、曲线拟合等方法对FT-IR图谱酰胺I带中蛋白质二级结构各吸收峰进行定量分析,比较对照组与照射组特征峰的位移与积分值差异,得出蛋白质结构的变化特征。
     3.结果
     3.1成功构建稳定的角膜碱烧伤和激光烧伤模型,在角膜中央表面造成白色圆形烧灼斑。
     3.2物理和化学因素虽然性质不同,但引起的角膜损伤效应相似,主要表现为角膜上皮细胞和内皮细胞的坏死脱落、基质中以中性粒细胞为主的炎细胞浸润及成纤维细胞增生等。
     3.3 FGF-10有利于眼烧伤修复,表现为烧伤斑面积缩小,角膜透光度恢复,且药物浓度为25μg/ml时,即可达到最大修复率,增加药物浓度并不能相应增加药效。
     3.4 FGF-10对角膜上皮细胞没有表现促增殖作用。
     3.5对FGF-10与阳性对照药bFGF的疗效进行比较,结果表明,二者疗效相当,但在改善角膜损伤后组织结构的恢复和抑制角膜新生血管(CNV)形成方面,浓度为25μg/ml的FGF-10治疗作用更显著。
     3.6 FGF-10可能通过缓和促进角膜上皮细胞的再生和迁移、减轻角膜烧伤后的炎症反应及抑制成纤维细胞过度增生等机制,促进碱和激光烧伤后受损角膜的修复,具有一定的治疗效应。
     3.7针对兔眼角膜上皮层和基质层的FT-IR研究发现,代表蛋白质酰胺Ⅰ带的红外吸收最大,表明FT-IR是研究角膜损伤分子机制的有效手段。
     3.8角膜受激光辐射后,发生蛋白质二级结构特征峰的位移,α-螺旋减少与β-折叠结构增加,表明蛋白质结构稳定性下降,趋向无序化。
     4结论
     4.1物理和化学因素引起的角膜损伤效应相似,主要表现为急性炎症反应、角膜上皮细胞和内皮细胞坏死脱落、以中性粒细胞为主的炎细胞浸润及成纤维细胞增生等。
     4.2 FGF-10可通过缓和促进角膜上皮细胞的再生和迁移、减轻角膜烧伤后的炎症反应及抑制成纤维细胞过度增生等机制,促进碱和激光烧伤后受损角膜的修复,具有一定的治疗效应。
     4.3在改善受损后组织结构的恢复和抑制CNV方面,浓度为25μg/ml的FGF-10治疗效应优于临床常用药bFGF。
     4.4 FT-IR是研究角膜分子结构组成的有效方法。
     4.5激光辐射使蛋白质二级结构的特征峰发生位移,构象发生改变,进而引起蛋白质生物功能的紊乱或丧失。热效应可能是激光角膜烧伤的主要机制。
Features and law of development of corneal burn were investigated, and mechanisms of injury were explored, focusing on molecular mechanisms of laser induced corneal injury. During mechanism investigation of laser induced corneal injury, Fourier transform-infrared spectrum technology (FT-IR) was employed for the first time, and new protocols of detecting structural changes of corneal proteins through FT-IR were established.
     1. Objectives
     Alkali burn of eye is a kind of ubiquitous and refractory ocular injury which has been research focus at home and abroad. Investigations about laser induced corneal burn are rarely reported. Laser weapons is a kind of new concept weapons most likely to be used in wars with the most mature technologies, which has entered research plans in many countries. Since research and development of laser weapons has been rated as top secret national high tech weapon research plan in all military great powers, biological effects of laser are rarely reported. With the progress of research and development as well as actual combat usage of laser weapons, investigation about biological effects and injury mechanism of laser has turned into key pressing tasks of military medicine.
     Eye is one of the most sensitive target organs to laser radiation, and is one of the key damage positions of laser weapons. Injury effects of alkali and laser on corneal, mechanisms of injury, as well as therapeutic effects of fibroblast growth factor-10 (FGF-10) on corneal burn, were investigated in this project. It is expected that investigation on injury effects of laser on corneal, mechanisms of injury, as well as therapeutic effects of FGF-10 may provide new therapy for clinical corneal burn, provide biological basis for development and protection on laser weapons in our country, and be great importance to national security and public health.
     2. Methods
     Alkali and laser corneal burn models were established in Japanese white rabbits. 5 groups were set up, including burn control group, bFGF therapy control group, FGF-10 12.5μg/ml group, FGF-10 25μg/ml group, and FGF-10 50μg/ml group. Corneal recovery was evaluated through slit lamp microscope and histopathological observation, image analysis of burn spot, determination of corneal OD, and MTT method. Group difference was evaluated 7 and 14 days after therapy. FT-IR technology was applied in corneal study. Chemical composition of normal rabbit cornea was investigated. Then FT-IR technology was applied to explore the molecular mechanisms of laser induced corneal injury. Quantitative analysis was performed to absorption peaks resulting from secondary structures of amideⅠband proteins on FT-IR spectrum through deconvolution and curve fitting methods. By comparing displacement and score of marker peaks between control and irradiation groups, structural changes of protein were evaluated
     3. Results
     3.1 Stable alkali and laser burn models of cornea were successfully established. White round burn spot was generated in corneal central surface.
     3.2 Though characteristically different between physical and chemical factors, they induced similar injury effects to cornea, mostly appearing as necrosis and desquamation of corneal epithelial and endothelial cells, matrix infiltration of inflammatory cells, and hyperplasia of fibroblasts.
     3.3 FGF-10 was found to facilitate reduction of burn spot area and recovery of cornea transparence. Maximum recovery rate was reached at 25μg/ml without efficacy enhancement with further concentration increase.
     3.4 No proliferative activity on corneal epithelial cells was observed with FGF-10.
     3.5 Efficacy between FGF-10 and positive control bFGF was compared in this experimental model. The results indicated comparable efficacy, but 25μg/ml FGF-10 was more potent in improving tissue recovery after corneal injury and inhibiting corneal new vasculature (CNV) formation.
     3.6 By slowly facilitating regeneration and migration of corneal epithelial cells, alleviating various inflammatory responses after corneal burn, and inhibiting excessive hyperplasia of fibroblast, FGF-10 was found to promote recovery of injured cornea after laser burn, thus indicating some therapeutic effects.
     3.7 FT-IR examination on epithelial and matrix layers of rabbit cornea revealed maximum infrared absorption in amideⅠband proteins, indicated that FT-IR is suitable for the mechanism research of cornea injury.
     3.8 Displacement of marker peaks in secondary protein structure, decrease inα-helix and increase inβ-sheet after laser radiation indicates decreased stability in protein structure and disorder trend.
     4 Conclusions
     4.1 Physical and chemical factors induce similar corneal injury effects, mostly appearing as acute inflammatory responses, necrosis and desquamation of corneal epithelial and endothelial cells, matrix infiltration of inflammatory cells, and hyperplasia of fibroblasts.
     4.2 By slowly facilitating regeneration and migration of corneal epithelial cells, alleviating various inflammatory responses after corneal burn, and inhibiting excessive hyperplasia of fibroblast, FGF-10 can promote recovery of injured cornea after laser burn, thus indicating some therapeutic effects.
     4.3 25μg/ml FGF-10 is more potent than commonly used bFGF in improving tissue recovery after corneal injury and CNV formation.
     4.4 FT-IR is an effective method for molecular structure exploration of cornea.
     4.5 Laser radiation can result in displacement of marker peaks in secondary protein structure, modify protein conformation, and thus result in disorder or loss of biological function of protein. Thermal effect may be the main mechanism of corneal injury after CO2 laser radiation.
引文
[1]王德文.现代军事病理学.北京:军事医学科学出版社, 2002, 1:587-597.
    [2] Seet B, Wong TY. Military laser weapons: current controversies. Ophthalmic Epidemiol. 2001, 8(4):215-226.
    [3]朱海波,杨帆,杨海波.激光武器浅析.红外与激光工程. 2006, 35(suppl): 56-61.
    [4] Schomacker KT, Walsh JT Jr, Flotte TJ, Deutsch TF. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue. Lasers Surg Med. 1990, 10(1):74-84.
    [5]高光煌.激光辐射伤医学防护.北京:军事医学科学出版社. 1998, 1:76-78
    [6]李海涛,杨继庆.激光生物效应与医学应用研究.第四军医大学学报. 2007, 28(14):1341-1342.
    [7] Olesin AI, Maksimov VA, Mazhara IuP, Pavlova RN, Lobanov NA, D'iachuk GI. Biological effect of laser radiation on the functional state of cardiomyocytes. Patol Fiziol Eksp Ter. 1992, (5-6):17-20.
    [8] Geschwind H, Fabre M, Chaitman BR, Lefebvre-Villardebo M, Ladouch A, Boussignac G, Blair JD, Kennedy HL. Histopathology after Nd-YAG laser percutaneous transluminal angioplasty of peripheral arteries. J Am Coll Cardiol. 1986, 8(5):1089-1095.
    [9]康立丽,黄耀熊,罗曼.红细胞显微激光共焦拉曼散射光谱扫描技术研究.光谱学与光谱分析. 2008, 28(10):2343-2347.
    [10] Karu TI, Pyatibrat LV, Ryabykh TP. Nonmonotonic behavior of the dose dependence of the radiation effect on cells in vitro exposed to pulsed laser radiation at lambda = 820 nm. Lasers Surg Med. 1997, 21(5):485-492.
    [11] Lin'kova GN, Eliseenko VI. Morphological characteristics of testicular tissue in animals subjected to unilateral laser castration. Radiobiologiia. 1985, 25(5): 695- 698.
    [12] Butman AB, Lotarev AN. Effect of low-intensity impulse diffuse laser radiation on the functional state of the visual analyzer. Gig Tr Prof Zabol. 1991, (2):23-25.
    [13] Zuclich JA. Ultraviolet-induced photochemical damage in ocular tissues. Health Phys. 1989, 56(5):671-682.
    [14] Thach AB. Laser injuries of the eye. Int Ophthalmol Clin. 1999, 39(2):13-27.
    [15]冯苏英,张永艳,李波,黄维建.激光对人眼的危害和防护.激光杂志. 1999, 20(2): 8-10.
    [16]王康孙,王玲,张明珩,施香荷,陈刚强,石海云,卓瑞鹏,胡庆沈,江兰英,王跃进,盖宝康. CO2激光对兔眼角膜损伤阈值的研究.中国激光. 1985, 12(10):606-608.
    [17]高卫.激光对人眼干扰损伤效果评估准则初探.激光杂志. 2007, 28(2):78-79.
    [18] Rozenbaum D, Baruchin AM, Dafna Z. Chemical burns of the eye with special reference to alkali burns. Burns. 1991,17(2):136-140.
    [19]刘家琦,李凤鸣.实用眼科学.北京:人民卫生出版社. 1999, 2: 589-590.
    [20]徐锦堂,陈剑,刘春民.碱性化学伤.北京:人民卫生出版社. 2003: 493-509.
    [21]杨世琳.角膜碱烧伤相关研究进展.中国中药眼科杂志. 2006, 16(1):60-62.
    [22] Macdonald EC, Cauchi PA, Azuara-Blanco A, Foot B. Surveillance of severe chemical corneal injuries in the UK. Br J Ophthalmol. 2009, 93(9):1177-178
    [23]邱红,黄桂珍.眼碱烧伤51例临床观察.哈尔滨医科大学学报. 2009, 43(2):157, 161.
    [24]李厚刚,赵霞,肖风芝.眼部碱烧伤的早期治疗.眼外伤职业眼病杂志. 2010, 32(5):369-370.
    [25]朱文卿,徐建江,孙兴怀,邱婷,洪佳旭,王艳,王文韬.严重碱烧伤患者眼表形态的共焦显微镜观察.中华眼科杂志. 2010, 46(1):18-24.
    [26] Zoega GM, Kristinsson JK. Chemical injuries of the eye management of alkali burns. Laeknabladid. 2004, 90(6):491-493.
    [27]单清,张杰,任华,王登龙,姜严明,钱焕文.白细胞介素-1受体拮抗剂(IL-1ra)治疗角膜烧伤实验研究.工业卫生与职业病. 2001, 27(2):71-74.
    [28]陈建苏,唐祝华,吴静,徐锦堂,赵松滨. bFGF滴眼液治疗角膜碱烧伤的实验研究.眼外伤职业眼病杂志. 2003, 25(9):581-583.
    [29]李永平,林建贤,唐祝华,梁丹,方海洲,周守山,冯官光,易玉珍.碱性成纤维细胞生长因子促进角膜碱烧伤上皮修复的实验研究.眼外伤职业眼病杂志.1998, 20(5):403-404.
    [30] Kitano A, Okada Y, Yamanka O, Shirai K, Mohan RR, Saika S. Therapeutic potential of trichostatin A to control inflammatory and fibrogenic disorders of the ocular surface. Mol Vis. 2010, 16:2964-2973.
    [31] Herretes S, Suwan-Apichon O, Pirouzmanesh A, Reyes JM, Broman AT, Cano M, Gehlbach PL, Gurewitsch ED, Duh EJ, Behrens A. Use of topical human amniotic fluid in the treatment of acute ocular alkali injuries in mice. Am J Ophthalmol. 2006, 142(2):271-278.
    [32] Shahriari HA, Tokhmehchi F, Reza M, Hashemi NF. Comparison of the effect of amniotic membrane suspension and autologous serum on alkaline corneal epithelial wound healing in the rabbit model. Cornea. 2008, 27(10):1148-1150.
    [33] Dupps WJ,Wilson SE. Biomechanics and wound healing in the cornea. Experimental Eye Research. 2006, 83(4):709-720.
    [34] Jiang A, Li C, Gao Y, Zhang M, Hu J, Kuang W, Hao S, Yang W, Xu C, Gao G, Wang Z, Liu Z. In vivo and in vitro inhibitory effect of amniotic extraction on neovascularization. Cornea. 2006, 25(10 Suppl 1):S36-40.
    [35] Hosseini H, Nejabat M, Mehryar M, Yazdchi T, Sedaghat A, Noori F. Bevacizumab inhibits corneal neovascularization in an alkali burn induced model of corneal angiogenesis. Clin Experiment Ophthalmol. 2007, 35(8):745-748.
    [36] Lee SH, Leem HS, Jeong SM, Lee K. Bevacizumab accelerates corneal wound healing by inhibiting TGF-beta2 expression in alkali-burned mouse cornea. BMB Rep. 2009, 42(12):800-805.
    [37] Yang L, Wang Y, Zhou Q, Chen P, Wang Y, Wang Y, Liu T, Xie L. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization. Mol Vis. 2009, 15:1951-1961.
    [38] Jiang TS, Cai L, Ji WY, Hui YN, Wang YS, Hu D, Zhu J. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis. 2010, 16:1304-1316.
    [39] López-García JS, Rivas Jara L, García-Lozano I, Murube J. Histopathologic limbus evolution after alkaline burns. Cornea. 2007, 26(9):1043-1048.
    [40] Kuznetsov SL, Nikolaeva LR, Spivak IA, Chentsova EV, Poltavtseva RA, Marei MV, Sukhikh GT. Effect of transplantation of cultured human neural stem and progenitor cells on regeneration of the cornea after chemical burn. Bull Exp Biol Med. 2006, 141(1):129-132.
    [41] Sridhar MS, Bansal AK, Sangwan VS, Rao GN. Amniotic membrane transplantation in acute chemical and thermal injury.Am J Ophthalmol. 2000, 130(1):134-137.
    [42] Pancholi S, Tullo A, Khaliq A, Foreman D, Boulton M. The effects of growthfactors and conditioned media on the proliferation of human corneal epithelial cells and keratocytes. Graefes Arch Clin Exp Ophthalmol. 1998, 236(1):1-8.
    [43] Thalmann-Goetsch A, Engelmann K, Bednarz J. Comparative study on the effects of different growth factors on migration of bovine corneal endothelial cells during wound healing. Acta Ophthalmol Scand. 1997, 75(5):490-495.
    [44] Yamasaki M, Miyake A, Tagashira S, Itoh N. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J Biol Chem. 1996, 271(27):15918-15921.
    [45] YokoyamaH, Ide H, Tamura K. FGF-10 stimulates limb regeneration ability in Xenopus laevis. Dev Biol. 2001, 233(1):72-79.
    [46] Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE. FGF-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 1998, 12(20):3156–3161.
    [47] Abler LL, Mansour SL, Sun X. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn. 2009, 238(8):1999-2013.
    [48] Hyatt BA, Shangguan X, Shannon JM. FGF-10 induces SP-C and Bmp4 and regulates proximal-distal patterning in embryonic tracheal epithelium. Am J Physiol Lung Cell Mol Physiol. 2004, 287(6):L1116-1126.
    [49] Kim N, Yamamoto H, Pauling MH, Lorizio W, Vu TH. Ablation of lung epithelial cells deregulates FGF-10 expression and impairs lung branching morphogenesis.Anat Rec (Hoboken). 2009 , 292(1):123-130.
    [50] Donjacour AA, Thomson AA, Cunha GR. FGF-10 plays an essential role in the growth of the fetal prostate. Dev Biol, 2003, 261(1): 39-54.
    [51] Eastman R Jr, Leaf EM, Zhang D, True LD, Sweet RM, Seidel K, Siebert JR, Grady R, Mitchell ME, Bassuk JA. Fibroblast growth factor-10 signals development of von Brunn's nests in the exstrophic bladder. Am J Physiol Renal Physiol. 2010, 299(5):F1094-110
    [52] Han DS. Keratinocyte growth factor-2(FGF-10)promotes healing of experimental small intestinal ulceration in rats.American Journal of Physiology-Gastrointestinal and Liver Physiology. 2000, 279(5):1011-1022.
    [53] Beer HD, Bittner M, Niklaus G, Munding C, Max N, Goppelt A, Werner S. The fibroblast growth factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair.Oncogene. 2005, 24(34):5269-5277.
    [54] Braun S, auf dem Keller U, Steiling H, Werner S. Fibroblast growth factors in epithelial repair and cytoprotection. Philos Trans R Soc Lond B Biol Sci. 2004, 359(1445):753-757.
    [55] Lin Y, Cheng YS, Qin C, Lin C, D'Souza R, Wang F. FGFR2 in the dental epithelium is essential for development and maintenance of the maxillary cervical loop, a stem cell niche in mouse incisors. Dev Dyn., 2009, 38(2):324-330.
    [56] Sahara S, O'Leary DD. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron. 2009, 63(1):48-62.
    [57] Phoenix TN, Temple S. Baby got brain: Fgf10 sets rostral cortical size. Neuron. 2009,63(1): 1-3.
    [58] Pirvola U, Bradley SD, Liang XQ, Kettunen P, Thesleff I, Fritzsch B, Dickson C, Ylikoski J. FGF/FGFR-2(Ⅲb) signaling is essential for inner ear morphogenesis. J Neurosci. 2000, 20(16):6125-6134.
    [59] Beer HD, Vindevoghel L, Gait MJ, Revest JM, Duan DR, Mason I, Dickson C, Werner S. Fibroblast growth factor(FGF) recepor1-Ⅲb is a naturally occurring functional receptor for FGFs that is preferentially expression in the skin and brain. J Biol Chem,2000. 275(21):16091-16097.
    [60]聂昌君.重组人角质细胞生长因子-2(hKGF-2)融合蛋白的高效表达、纯化及其活性检测. 2007: 9-10.
    [61] Upadhyay D, Bundesmann M, Panduri V, Correa-Meyer E, Kamp DW. Fibroblast growth factor-10 attenuates H2O2-induced alveolar epithelial cell DNA damage: role of MAPK activation and DNA repair.Am J Respir Cell Mol Biol. 2004, 31(1):107-113.
    [1]王晓杰.重组人角质细胞生长因子-2克隆表达及其对角膜损伤修复机制研究. 2010:67.
    [2] Rozenbaum D, Baruchin AM, Dafna Z. Chemical burns of the eye with special reference to alkali burns. Burns. 1991,17(2):136-140.
    [3]刘家琦,李凤鸣.实用眼科学.北京:人民卫生出版社.第2版. 1999: 589-590.
    [4]徐锦堂,陈剑,刘春民.碱性化学伤.北京:人民卫生出版社. 2003: 493-509.
    [5]杨世琳.角膜碱烧伤相关研究进展.中国中药眼科杂志. 2006,16(1):60-62
    [6] Kao WW, Ebert J, Kao CW, Covington H, Cintron C. Development of monoclonal antibodies recognizing collagenase from rabbit PMN; the presence of this enzyme in ulcerating corneas. Curr Eye Res. 1986, 5(11):801-815.
    [7] Berman M, Manseau E, Law M, Aiken D. Ulceration is correlated with degradation of fibrin and fibronectin at the corneal surface. Invest Ophthalmol Vis Sci. 1983, 24(10):1358-1366.
    [8] Foster CS, Zelt RP, Mai-Phan T, Kenyon KR. Immunosuppression and selective inflammatory cell depletion. Studies on a guinea pig model of corneal ulceration after ocular alkali burning. Arch Ophthalmol. 1982,100(11):1820-1824.
    [9] Pfister RR, Haddox JL, Sommers CI. Effect of synthetic metalloproteinase inhibitor or citrate on neutrophil chemotaxis and the respiratory burst. Invest Ophthalmol Vis Sci. 1997, 38(7):1340-1349.
    [10] Zhao B, Ma A, Martin FL, Fullwood NJ. An investigation into corneal alkali burns using an organ culture model. Cornea. 2009, 28(5):541-546.
    [11] Najjar DM, Rapuano CJ, Cohen EJ. Descemet membrane detachment with hemorrhage after alkali burn to the cornea. Am J Ophthalmol. 2004,137(1):185- 187.
    [12] Teicher BA, AIvarez E, Menon K, Esterman MA, Considine E, Shih C, Faul MM. Antiangiogenie effects of a protein kinase C beta-selective small molecule. CancerChemother Pharmacol. 2002, 49(1):69-77.
    [13] Pancholi S, Tullo A, Khaliq A, Foreman D, Boulton M. The effects of growth factors and conditioned media on the proliferation of human corneal epithelial cells and keratocytes. Graefes Arch Clin Exp Ophthalmol. 1998, 236(1):1-8.
    [14] Ohuchi H, Nakagawa T, Itoh N, Noji S. FGF10 can induce Fgf8 expression concomitantly with En1 and R-fng expression in chick limb ectoderm, independent of its dorsoventral specification. Dev Growth Differ. 1999, 41(6):665-673.
    [15] Steiling H,Werner S. Fibroblast growth factors key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol. 2003, 14(5): 533- 537.
    [16] Rajan MS, Shofieis, Mohrenfels CV, Patmore A, Lohmann C, Marshall J, Hamberg-Nystrom H. Effect of exogenous keratinocyte growth factor on corneal epithelial migration after photorefractive keratectomy. J Cataract Refract Surg. 2004, 30(10):2200-2206.
    [17] Gupte VV, Ramasamy SK, Reddy R, Lee J, Weinreb PH, Violette SM, Guenther A, Warburton D, Driscoll B, Minoo P, Bellusci S. Overexpression of Fibroblast Growth Factor 10 (FGF10) Both During The Inflammatory and The Fibrotic Phases Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Am J Respir Crit Care Med. 2009, 180(5): 424-436.
    [18] Emoto H, Tagashira S, Mattei M G, Yamasaki M, Hashimoto G, Katsumata T, Negoro T, Nakatsuka M, Birnbaum D, Coulier F, Itoh N.Structure and expression of human fibroblastgrowth factor 10. J Bid Chem.1997, 272(37):23191-23194.
    [1] Radek KA, Taylor KR, Gallo RL. FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation. Wound Repair Regen. 2009, 17(1): 118-126.
    [2] Dieckgraefe BK, Korzenik JR, Anant S. Growth factors as treatment options for intestinal inflammation. Ann N Y Acad Sci. 2006, 1072: 300-306.
    [3] Zhang X, Wu M, Zhang W, Shen J, Liu H. Differentiation of human adipose- derived stem cells induced by recombinantly expressed fibroblast growth factor 10 in vitro and in vivo. In Vitro Cell Dev Biol Anim. 2010, 46(1):60-71.
    [4] Asano-Kato N, Toda I, Shimmura S, Noda-Tsuruya T, Fukagawa K, Yoshinaga M, Matsukawa A, Tsubota K. Detection of neutrophils and possible involvement of interleukin-8 in diffuse lamellar keratitis after laser in situ keratomileusis. J Cataract Refract Surg. 2003, 29(10):1996-2000.
    [5] Campos M, Abed HM, McDonnell PJ. Topical fluorometholone reduces stromal inflammation after photorefractive keratectomy. Ophthalmic Surg. 1993, 24(10): 654-657.
    [6] Hayashi S, Ishimoto S, Wu GS, Wee WR, Rao NA, McDonnell PJ. Oxygen free radical damage in the cornea after excimer laser therapy. Br J Ophthalmol. 1997, 81(2):141-144.
    [7] Steiling H, Werner S. Fibroblast growth factors key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol, 2003, 14(5): 533-537.
    [8]齐虹,朱秀安.准分子激光屈光性角膜切削术后角膜雾状混浊发生机制的研究.解剖学报. 2002,33(1):78-83.
    [9] Rajan MS, Shofieis, Mohrenfels CV, Patmore A, Lohmann C, Marshall J, Hamberg-Nystrom H. Effect of exogenous keratinocyte growth factor on corneal epithelial migration after photorefractive keratectomy. J Cataract Refract Surg,2004, 30(10):2200-2206.
    [1] http://chem.xmu.edu.cn/teach/chemistry-net-teaching/yifen/chapt15/15-1-1.html
    [2]宋占军,周游,于水,钱焕文,丹青,郑永红,刘丽萍,马萍.应用显微傅里叶变换红外光谱技术研究大鼠视网膜HPM损伤的分子机制.光谱仪器与分析.2006, Z1: 137-141.
    [3]孙东翀. CO2激光膀胱粘膜剥脱术实验研究. 2007:58.
    [4] Byler D M, Brouillette JN, Susi H. Quantitative studies of protein structure by FT-IR spectra deconvolution and curve-fitting. Spectroscopy. 1986,1(3): 29-32.
    [5]吴瑾光.近代傅里叶变换红外光谱技术及应用(下卷).北京:科学技术文献出版社. 1994. 18-46,172-228.
    [6] Kalasinsky VF, Johnson FB, Ferwerda R. Fourier transform infrared and Raman microspectroscopy of materials in tissue. Cell Mol Biol (Noisy -le-grand), 1998, 44: 141-144.
    [7] Levine SM, Wetzel DL. In situ chemical analyses from frozen tissue sections by Fourier transform infrared microspectroscopy. Examination of white matter exposed to extravasated blood in the rat brain. Am J Pathol, 1994, 145: 1041-1047.
    [8]何建川.癌症的傅里叶变换红外光谱分析研究进展. 2007,22(2):170-172.
    [9] Nakamura T, Kelly JG, Trevisan J, Cooper LJ, Bentley AJ, Carmichael PL, Scott AD, Cotte M, Susini J, Martin-Hirsch PL, Kinoshita S, Fullwood NJ, Martin FL. Microspectroscopy of spectral biomarkers associated with human corneal stem cells. Mol Vis. 2010,16:359-368.
    [10] Chen KH, Cheng WT, Li MJ, Lin SY. Corneal calcification: chemical composition of calcified deposit. Graefes Arch Clin Exp Ophthalmol. 2006,244(3):407-410.
    [11] Haris PI, Chapman D. The conformational analysis of peptides using Fourier transform IR spectroscopy. Biopolymers, 1995, 37: 251-263.
    [12] Karring H, Th?gersen IB, Klintworth GK, M?ller-Pedersen T, Enghild JJ. A dataset of human cornea proteins identified by Peptide mass fingerprinting and andem mass spectrometry. Mol Cell Proteomics. 2005, 4(9):1406-1408.
    [1]宋占军,周游,于水,钱焕文,丹青,郑永红,刘丽萍,马萍.应用显微傅里叶变换红外光谱技术研究大鼠视网膜HPM损伤的分子机制.光谱仪器与分析.2006, Z1: 137-141.
    [2] Cooper EA, Knutson K. Fourier transform infrared spectroscopy investigations of protein structure. Pharm Biotechnol, 1995, 7: 101-143.
    [3] Anderle G, Mendelsohn R. Thermal denaturation of globular proteins. Fourier transform-infrared studies of the amide III spectral region. Biophys J. 1987, 52(1):69-74.
    [4]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究.高等学校化学学报. 2003, 24(2):226-231.
    [5] Byler D M, Brouillette JN, Susi H. Quantitative studies of protein structure by FT-IR spectra deconvolution and curve-fitting. Spectroscopy, 1986, 1(3):29-32.
    [6] Zhang L, Aksan A. Fourier transform infrared analysis of the thermal modification of human cornea tissue during conductive keratoplasty. Appl Spectrosc. 2010,64(1):23-29.
    [7] Mizuno A, Tsuji M, Fujii K, Kawauchi K, Ozaki Y. Near-infrared Fourier transform Raman spectroscopic study of cornea and sclera. Jpn J Ophthalmol. 1994, 38(1):44-48.
    [8] Chen KH, Cheng WT, Li MJ, Lin SY. Corneal calcification: chemical composition of calcified deposit. Graefes Arch Clin Exp Ophthalmol. 2006, 244(3):407-410.
    [9] Carrier D, Mantsch HH, Wong PT. Protective effect of lipidic surfaces against pressure-induced conformational changes of poly(L-lysine). Biochemistry. 1990,29(1):254-258.
    [10] Chu HL, Liu TY, Lin SY. Effect of cyanide concentrations on the secondary structures of protein in the crude homogenates of the fish gill tissue. Aquat Toxicol, 2001, 55: 171-176.
    [11] Gross M. Proteins that convert from alpha helix to beta sheet: implications for folding and disease. Curr Protein Pept Sci, 2000, 1: 339-347.
    [12] DeMager PP, Penke B, Walter R, et al. Pathological peptide folding in Alzheimer's disease and other conformational disorders. Curr Med Chem, 2002, 9: 1763-1780.
    [13]周游. S波段高功率微波对眼损伤效应及机制的研究. 2005, 78-86.
    [14] Hajiioannou JK, Nikolidakis A, Naumidi I, Helidonis E, Tzanakakis G, Velegrakis GA. In vitro enzymatic treatment and carbon dioxide laser beam irradiation of morphologic cartilage specimens. Arch Otolaryngol Head Neck Surg. 2006,132(12):1363-1370.
    [15] Abergel RP, Zaragoza EJ, Dwyer RM, Uitto J. Differential effects of Nd-YAG laser on collagen and elastin production by chick embryo aortae in vitro. Relevance to laser angioplasty for removal of atherosclerotic plaques. Biochem Biophys Res Commun. 1985 Aug 30;131(1):462-8.
    [16] Jaworsky M, Brauner JW, Mandelsohn R. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle. Spectrochimica Acta .1986, 42A:191–198.
    [17]周凌云.激光对蛋白质分子的激发作用.昆明工学院学报. 1994, 19(4):112- 118.
    [1] Zuclich JA. Ultraviolet-induced photochemical damage in ocular tissues[J]. Health Phys. 1989, 56(5):671-682.
    [2]王德文.现代军事病理学[M].北京:军事医学科学出版社, 2002, 1:587-597.
    [3] Thach AB. Laser injuries of the eye[J]. Int Ophthalmol Clin. 1999, 39(2):13-27.
    [4]冯苏英,张永艳,李波等.激光对人眼的危害和防护[J].激光杂志. 1999, 20(2): 8-10.
    [5]王康孙,王玲,张明珩,等. CO2激光对兔眼角膜损伤阈值的研究[J].中国激光. 1985, 12(10):606-608.
    [6] Liu Haifeng, Gao Guanghuang,Wu Dechang, et al. Ocular injuries from accidental laser exposure[J]. Health Physics. 1989, 56 (5) :711-716.
    [7]高光煌.激光辐射伤医学防护[M].北京:军事医学科学出版社.1998 ,76-88.
    [8] Cheryl SB ,Alan MD ,MatthewJG,et al .Laser hazards in research laboratories[J].J 0ccup Med. 1993,35(4) :369-374.
    [9] Hauke.德国发生的激光事故.激光集锦. 1993 ,3(5):6,8.
    [10] Ciulla TA, Topping TM. Surgical treyment of a macular hole secondary to accidental laser burn[J]. Arch Opthalmol. 1997,115(7) :929-930.
    [11] Widder RA, Severin M, Kirchhof B, et al. Corneal injury after carbon dioxide laser skin resurfacing[J]. Am J Ophthalmol. 1998,125(3):392-394.
    [12]高荣莲,马萍,陈鹏,等.角质细胞生长因子-2对角膜激光烧伤的治疗作用及机制研究[J].中国激光医学杂志. 2010,19(4):205-209.
    [13] McPherson NA, Eurell TE, Johnson TE. Comparison of 1540-nm laser-induced injuries in ex vivo and in vitro rabbit corneal models[J]. J Biomed Opt. 2007,12(6):064033.
    [14]张杰,单清,任华,等.白细胞介素-1受体拮抗剂治疗激光角膜灼伤的图像分析[J].中国激光医学杂志. 2001,10(4):230-233.
    [15] Olesin AI, Maksimov VA, Mazhara IuP, Pavlova RN, Lobanov NA, D'iachuk GI. Biological effect of laser radiation on the functional state of cardiomyocytes[J]. Patol Fiziol Eksp Ter. 1992, (5-6):17-20.
    [16] Geschwind H, Fabre M, Chaitman BR, Lefebvre-Villardebo M, Ladouch A, Boussignac G, Blair JD, Kennedy HL. Histopathology after Nd-YAG laser percutaneous transluminal angioplasty of peripheral arteries[J]. J Am Coll Cardiol. 1986,8(5):1089-1095.
    [17]康立丽,黄耀熊,罗曼.红细胞显微激光共焦拉曼散射光谱扫描技术研究[J].光谱学与光谱分析. 2008, 28(10):2343-2347.
    [18] Karu TI, Pyatibrat LV, Ryabykh TP. Nonmonotonic behavior of the dose dependence of the radiation effect on cells in vitro exposed to pulsed laser radiation at lambda = 820 nm[J]. Lasers Surg Med. 1997, 21(5):485-492.
    [19] Lin'kova GN, Eliseenko VI. Morphological characteristics of testicular tissue in animals subjected to unilateral laser castration. Radiobiologiia[J]. 1985, 25(5): 695- 698.
    [20] Butman AB, Lotarev AN. Effect of low-intensity impulse diffuse laser radiation on the functional state of the visual analyzer[J]. Gig Tr Prof Zabol. 1991, (2):23-25.
    [21]朱海波,杨帆,杨海波.激光武器浅析[J].红外与激光工程. 2006,35(suppl): 56-61.
    [22] Schomacker KT, Walsh JT Jr, Flotte TJ, Deutsch TF. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue[J]. Lasers Surg Med. 1990,10(1):74-84.
    [23]李海涛,杨继庆.激光生物效应与医学应用研究.第四军医大学学报. 2007,28(14):1341-1342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700