复杂运动目标ISAR成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)成像可以获得反映目标大小、形状、结构及姿态等细节信息的二维及三维高分辨雷达图像,是解决目标识别问题的一种重要技术手段。本文针对复杂运动目标ISAR成像存在的问题,深入研究了一维距离成像中运动估计、ISAR成像时间选取和横向定标方法以及目标二维和三维ISAR成像算法。
     第一章阐述了论文的研究背景及其意义,全面介绍了ISAR成像理论及系统的发展概况,然后结合传统ISAR成像技术,对复杂运动目标ISAR成像研究现状进行概述和分析,最后介绍了论文的研究工作。
     第二章讨论了ISAR成像的基本原理,提出了基于多项式相位变换和图像对比度的调频步进信号高速目标的运动参数估计方法,从而消除径向运动造成的距离-多普勒耦合对合成距离像的影响,该方法抗噪性能好且运算量小,具有相当的工程应用价值;进一步总结了传统ISAR成像基本技术流程;最后,分析了各种复杂运动对ISAR成像的影响。
     第三章研究了复杂运动目标ISAR成像时间选择和横向定标。首先,针对复杂运动目标ISAR成像时间选择问题,提出了基于时频谱能量积累的ISAR成像时间选择算法。该算法克服了信杂比或信噪比低,即特显点单元不明显的影响,且具有运算量较小的优点。通过选择最佳成像时间(包括成像时刻和相干积累时间),保证在较长的相干积累时间内复杂运动近似为匀速转动,从而利用RD或RID算法进行有效成像;其次,针对复杂运动目标ISAR成像横向定标问题,建立了近似匀加速转台目标模型,推导了决定目标横向尺寸的展缩因子及平移因子,提出了基于多特显点的匀加速旋转目标ISAR像横向定标方法。该方法利用目标上散射强度较大的多数特显点回波,具有良好的抗噪性能,同时拓展了匀速旋转目标ISAR像横向定标的应用,从而获得距离-瞬时多普勒ISAR像横向定标结果。
     第四章研究了高阶DCFT及其在三维旋转目标ISAR成像中的应用。首先,把二阶chirp的DCFT概念推广到高阶chirp的DCFT,并证明了三阶及四阶DCFT的基本性质,从而利用DCFT估计高阶chirp的信号参数,由于DCFT本质上是一种匹配变换,将不存在多分量信号的交叉项影响,且借助于快速傅立叶变换更利于其实际应用;其次,分析了三阶修正DCFT和DCFT之间的关系,提出了基于三阶修正DCFT的三维旋转目标ISAR成像算法。该算法消除了目标三维旋转在方位向回波中产生的三阶相位项对ISAR横向聚焦的影响,和已有的借助Clean技术的TC-DechirpClean和PHMT成像方法相比,不受散射点个数的影响,具有小的运算量更利于其实际应用。
     第五章研究了快速旋转及进动目标二维及三维ISAR成像技术。首先,利用快速旋转目标的旋转运动特性,提出了基于距离-慢时间匹配滤波和复值反投影的快速旋转目标三维成像算法。该算法在目标散射点存在遮挡、散射系数变化及低信噪比的复杂情况下仍然有效;其次,根据目标进动特性建立了中段目标时变散射点模型,根据中段目标姿态角变化和暗室静态测量数据获得ISAR回波动态仿真以及推导了中段目标轨道运动及进动和姿态角及有效转角的关系,进一步获得了进动目标二维ISAR成像的约束条件及相应的三个结论;最后,根据时变散射中心模型,推导了目标ISAR回波信号的解析表达式,提出基于距离-慢时间匹配滤波及Clean技术的中段进动目标三维ISAR成像算法,其中,距离-慢时间二维匹配滤波降低了多参数搜索维度,而Clean算法则避免散射点信号之间相互干扰。
     第六章针对具有旋转微动部件目标的二维ISAR成像问题,提出了基于解正弦调频RWT的旋转微动部件二维ISAR成像算法。该算法综合利用回波幅度和相位信息对旋转散射点二维ISAR成像具有较高精度;同时,对距离-慢时间域旋转微动部件回波进行频域滤波,从而滤除目标旋转微动部件回波分量。基于RWT方法,对于剩余回波进行刚体回波重建,并采用传统的RD算法进行成像。最终获得聚焦良好的旋转微动部件和刚体目标ISAR像。
     论文最后总结了本文的研究成果,并指出了下一步需要开展的工作。
Inverse synthetic aperture radar is used to produce high resolution two-dimensional(2D) and three-dimensional (3D) images of non-cooperative targets, which can providethe valuable target information of shape, size, structure and attitude. At present, ISARimaging has been an important technique for target recognition. In order to resolve theproblems of ISAR imaging for targets with complex motion, several special researchesare made in this dissertation, including the motion estimation for one-dimensional rangeprofile, ISAR imaging time selection, cross-range scaling and algorithms of2D and3DISAR imaging.
     In chapter1, the research background and significance are introduced, and thedevelopment of theory and system for ISAR imaging is reviewed. Then the currenetsignal processing technology in ISAR imaging is summerized and analyzed in detail,followed by the introduction of main content in this dissertation.
     In chapter2, the basic principle of ISAR imaging is analyzed; In order to avoid theeffect of range-Doppler couple on synthetic range profile of stepped-frequency chirpsignal, a method to estimate motion parameters of high moving targets based on thepolynomial phase transform and image contrast is proposed, and the well anti-noise,efficient and real-time performance of which can be obtained; After summarizing thebasic procedure of conventional ISAR imaging techniques, the effect of complexmotion on ISAR imaging is analyzed theoretically.
     In chapter3, the imaging time selection and cross-range scaling for targets withcomplex motion are inverstigated. Firstly, such an algorithm of ISAR imaging timeselection based on energy accumulation of time-frequency spectrum is presented. Thisalgorithm avoids the effect of low signal noise ratio (SNR) or signal clutter ratio (SCR)and have low computation cost. By choosing the optimal imaging time (i.e. the initialand coherent processing time), the complex motion can be approximated to the uniformrotation, and ISAR image of targets will be obtained by range-Doppler (RD) orrange-instanteous-Doppler (RID) algorithms; Secondly, for cross-range scaling oftargets with complex motion, the model of non-uniformly rotating platform targets withconstant acceleration is established, the exentsional and translational factors associatedwith the azimuth size of target are deduced, and then the cross-range scaling for ISARimage of non-uniformly rotation targets with constant acceleration based on prominentscatters is proposed, which uses echoes of most of prominent scatters with highback-scattering coefficients to obtain well anti-noise performance and develops thecross-range scaling for uniform rotation targets to obtain the rescaled RID images.
     In chapter4, the research of discrete chirp Fourier transform (DCFT) forhigh-order chirps and its application to ISAR imaging for targets with3D rotating motion is carried out. Firstly, DCFT for high-order chirps is generalized from that forquadratic chirps and its properties are verified theoretically, then DCFT for cubic andquartic chirps can be used for high-order chirp rate estimation, which is free from thecross-term effects between different components of multi-component signals and can beimplemented via the fast Fourier transform (FFT). After analyzing the relation betweenthe original and modified DCFT for cubic chirps, ISAR imaging algorithm of targetswith3D rotating motion based on modified DCFT for cubic chirps is proposed, which isable to avoid the effect of the azimuth echo cubic chirps caused by3D rotation on ISARcross-range imaging, and does not associate with the number of scatters so as to haslower comutation cost than ISAR imaging methods of time-chirp distribution andDechirpClean (TC-DechirpClean) and product high-order matched-phase transform(PHMT).
     In chapter5,2D and3D ISAR imaging for targets with rapadily spinning motionand precession are inverstigated. By using the spinning characteristics of targets,3DISAR imaging algorithm for rapidly spinning targets based on range–slow-timematched-filter and complex-valued back projention is proposed firstily, which is stillavalid in the case of shadowing, varying backscattering coefficients and low SNR;According to the precession characteristics of mid-course targets, the time-varyingscattering center model (SCM) is established, and the static data measured in darkroomis combined with the dynamic attitude angle to synthesize the dynamic ISARrange-slow-time echoes, and then three constraints on the the radar and targetparameters and three corresponding conclusions for ISAR imaging are deduced, basedon the derivaration of the analytical expression of the attitude angle and effectiverotating angle associated with the trajectory motion and precession. In the end, fromtime-varying SCM, the analytical expression of ISAR echo signals is derived and3DISAR imaging algorithm for mid-course precession targets based on therange–slow-time matched-filter and Clean technique is presented, which reduces thenumber of parameter searching dimensions and avoid the interfere between twodifferent signal components via2D matched-filter and Clean technique, repectively.
     In chapter6, to resolve the problem of2D ISAR imaging of moving targets withrotating parts, the sine-frequency demodulation Radon Wigner-Vill transfom (RWT)based imaging algorithm for rotating parts is proposed, which can obtain high accuracyof ISAR imaging for rotating scatters by synthesizing the amplitude and phaseinformation of echoes; meanwhile, the echoes of rotating part scatters are removed bythe filtering in frequency domain, then based on RWT, the echo signals of rigid parts areconstructed from the remained echoes and used to produce2D ISAR image by RDalgorithm.
     Charpter7summerizes this dissertation and discusses the future work.
引文
[1].刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [2].保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [3]. Wehner D. R., High-Resolution Radar-Second Edition[M]. Norwood, MA: ArtechHouse,1995.
    [4].张澄波.综合孔径雷达[M].北京:科学出版社,1989.
    [5].张直中.微波成像技术[M].北京:科学出版社,1990.
    [6]. Wiley C A. Synthetic aperture radar [J]. IEEE Transcations on Aerospace andElectronic Systems.1985,21(3):440-443.
    [7]. Brown W M, Fredericks R J. Synthetic aperture radar imaging of rotating objects[J].Proc. Of the13th annual radar symposium.1967.
    [8]. Dale A A, Adam K, Jack L W. Development in radar imaging[J]. IEEETransactions on Aerospace and Electronic Systems.1984,20(4):363-398.
    [9]. Axelbank M, Camp W W, Lynn V L, et al.. ALCOR—A High-Sensitivity Radarwith One-Half-Meter Range Resolution[C]. IEEE71International Conv. Dig., NewYork,22–25Mar.1971, pp.112–113.
    [10]. Camp W W, Mayhan J T and O’Donnell R M. Wideband radar for ballistic missiledefense and Range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal,2000,12(2):267-280.
    [11]. Cuomo K M, Piou J E, Mayhan J T. Ultrawide-Band Coherent Processing[J].IEEE Transactions on Antennas and Propagation.1999,47(6):1094-1107.
    [12].文树梁,袁起,秦忠宇.宽带相控阵雷达的设计准则与发展方向[J].系统工程与电子技术.2005,27(6):1007-1011.
    [13]. Lemnios W Z, Grometstein A A. Overview of the Lincoln Laboratory BallisticMissile Defense Program[J]. Lincoln Laboratory Journal.2002,9(32):9-32.
    [14]. Walker J L. Range Doppler imaging of rotating objects[J]. IEEE Transactions onAerospace and Electronic Systems.1980,16(1):23-52.
    [15]. Chen C C. Multi-frequency imaging of radar turntable data[J]. IEEE Transactionson Aerospace and Electronic Systems.1980,16(1):15-22.
    [16].李洲,尹照平,美国弹道导弹目标特性测量雷达的发展[J],飞行器测控学报,2001,20(1):42-49.
    [17]. Chen C C, Andrews H C. Target motioninduced Radar Imaging[J]. IEEETransactions on Aerospace and Electronic Systems.1980,16(1):2-14.
    [18]. Soumekh M, Nugroho S. ISAR imaging of an airborne DC-9[C]. Proc ICASSP.1993.465-468.
    [19]. Goodman R, Nagy W, Wilelm J, Crippen S. A high fidelity ground to air imagingradar system[C]. IEEE National Radar Conference Record. Atlanta, GA, USA1994.29-34.
    [20].陈晓栋.美国海基X波段雷达发展现状[J],现代雷达,2011,33(6):29-31.
    [21]. Voles R. Resolving revolutions: imaging and mapping by modern radar[C]. ProcIEE-F,1993,140(1).1-11.
    [22]. Chen V C. Adaptive Time-Frequency ISAR Processing[C]. SPIE1996, VOL.2845.133-140.
    [23]. Chen V C, Qian S. Joint Time-Frequency Transform for Radar Range-DopplerImaging[J]. IEEE Trans. AES.1998,Vol.34(2).486-499.
    [24]. Kim H T, Ling H. Wavelet analysis of radar echo from finite-size targets[J]. IEEETrans. Antennas Propagat.1993,Vol.41(2).373-382.
    [25]. Kim K T, Choi I S, Kim H T. Efficient radar target classification using adaptivejoint time-frequency processing[J]. IEEE Trans. Antennas Propagat.2000,Vol.48(12).1789-1801.
    [26]. Li J, Ling H. Application of adaptive chirplet representation for ISAR featureextraction from targets with rotating parts[J]. IEE Proc.-Radar Sonar Navig.August2003, Vol.150(4).284-291.
    [27]. Chen V C, Li F, Ho S, et al.. Micro-doppler effect in radar-phenomenon, modeland simulation study[J]. IEEE Trans on AES.2006, Vol.42(1).2-21.
    [28]. Stankovic L, Djurovi I, Thayathan T. Seperation of target rigid body andmicro-Doppler effects in ISAR imaging[J]. IEEE Trans. AES.2006,Vol.42(4).1496-1506.
    [29]. Martorella M, Berizzi F. Time windowing for highly focused ISAR imagereconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems.2005,41(3):992-1007.
    [30]. Cooke T, Martorella M, Haywood B, Gibbins D. Use of3D ship scatterer modelsfrom ISAR image sequences for target recognition[J]. Digital Signal Processing.2006,16(2006):523-532.
    [31]. Mehrholz D, Leushacke L, etc. Detecting, tracking and imaging space debris. ESA,Bulletin109,2002,2.
    [32].黄培康等.雷达目标特征信号[M],北京:宇航出版社,2003.
    [33].龙腾.频率步进雷达信号的多普勒性能分析[J].现代雷达,1996,18(2):31-37.
    [34].毛二可,龙腾,韩月秋.频率步进雷达数字信号处理[J].航空学报.2001,22(6):16-25.
    [35]. Ma Yu-Bin, Velocity compensation in stepped frequency[D], The B.S.E.E. ofNaval Postgraduate School, December1995
    [36].郑学合,高分辨力雷达导引头多维信息提取技术[D],博士学位论文,北京:航天部二院,1998
    [37].蒋楠稚,王毛路,李少洪等,频率步进脉冲距离高分辨一维成像速度补偿分析[J],电子科学学刊,1999,21(5):665-670
    [38].刘峥,张守宏,步进频率雷达目标的运动参数估计[J],电子学报,2000,28(3):1243-1245
    [39]. Berizzi F, Martorella M and Capria A. A contrast-Based algo-rithm for syntheticrange-profile motion compensation[J]. IEEE Transactions on Geoscience andRemote Sensing,2008,46(10):3053-3061
    [40]. Chen H Y, Liu Y X, Jiang W D, Guo G R. Phase cancellation for synthesizingrange profile of target with micro-motion[J].2006CIE International Conferenceon Radar. Oct.16-19,2006:817-820.
    [41].陈行勇,姜卫东,刘永祥,黎湘,郭桂蓉.相位匹配处理微动目标ISAR成像[J].电子学报.2007,35(3):435-440.
    [42]. Saha S, Kay S M. Maximum likelihood parameter estimation of superimposedchirp using Monte Carlo importance sampling[J]. IEEE Transactions on SignalProcessing.1998,46(3):691-708.
    [43].许人灿,黄小红,陈曾平.空间目标一维距离像高速运动补偿方法研究[J].信号处理.2007,23(4):607-610.
    [44]. Du Liping, Su Guangchuan. Adaptive Inverse Synthetic Aperture Radar Imagingfor Nonuniformly Moving Targets[J]. IEEE Geoscience and Remote Sensingletters.2005,2(3):247-249.
    [45].尹治平,张冬晨,王东进,陈卫东.基于FRFT距离压缩的高速目标ISAR成像[J].中国科学技术大学学报.2009,39(9):944-948.
    [46].曹敏,付耀文,黄雅静,黎湘,庄钊文.弹道目标高分辨一维距离像运动补偿研究[J].电子与信息学报.2009,31(3):601-605.
    [47].龙腾,毛二可,何佩琨.调频步进雷达信号分析与处理[J].电子学报,1998,26(12):84-88.
    [48].袁昊天,文树梁,程臻.调频步进信号高速运动目标径向速度精确测量技术研究[J].电子学报,2009,37(3):649-653.
    [49].罗迎,张群,柏又青,朱丰.线性调频步进信号雷达微多普勒效应分析及目标特征提取.[J].电子学报,2009,37(12):2741-2746.
    [50].宋美丽,周亮,罗迎,张群.线性调频步进信号雷达目标微多普勒效应分析[J].空军工程大学学报(自然科学版),2009,10(6):41-45.
    [51].龙腾,李眈,吴琼之.频率步进雷达参数设计及目标抽取算法[J].系统工程与电子技术.2001,23(6):26-31.
    [52].李眈,龙腾.步进频率雷达目标去冗余算法[J].电子学报,2000,28(6):60-63.
    [53]. Lord R T, Inngs M R. High resolution SAR processing usingstepped-frequencies[A]. IEEE Geoscience Remote Sensing Symposium[C]. Ulm,Germany:IEEE,1997,490-492.
    [54].雷文,龙腾,韩月秋.调频步进雷达运动目标信号处理的新方法[J].电子学报.2000,28(12):34-37.
    [55].张焕颖,张守宏,李强.调频步进雷达目标抽取算法及系统参数设计[J].电子学报.2007,35(6):1153-1158.
    [56]. Wang J, Kasilingam D. Global Range Alignment for ISAR[J]. IEEE Transactionson Aerospace and Electronic Systems.2003,39(1):351-357.
    [57]. Wang G, Bao Z. The minimum entropy criterion of range alignment in ISARmotion compensation[J]. Proceeding Conference Radar’97. Edinburgh UK,1997,Oct.:14-16.
    [58]. Zhu D, Wang L, Tao Q N, Zhu Z D. ISAR range alignment by minimizing theentropy of the average range profile[J].2006, IEEE Conference on Radar:24-27.
    [59].邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法[J].西安电子科技大学学报.2000,27(1):93-96.
    [60].卢光跃,保铮. ISAR成像中具有游动部件目标的包络对齐[J].系统工程与电子技术.2000,22(6):12-14.
    [61].黄小红,邱兆坤,陈曾平.逆合成孔径雷达运动补偿中一种包络对齐新方法[J].信号处理.2006,22(2):230-232.
    [62]. Delise G Y, Wu H. Moving target imaging and trajectory computation usingISAR[J]. IEEE Transactions on Aerospace and Electronic Systems.1994,30(3):887-889.
    [63].王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法[J].电子学报.1998,26(6):5-8.
    [64].邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐[J].电子学报.2001,29(12):1807-1811.
    [65]. Zhu D, Wang L, Tao Q N, Zhu Z D. ISAR range alignment by minimizing theentropy of the average range profile[J].2006, IEEE Conference on Radar:24-27.
    [66]. Sauer T, SchrothA. Robust range alignment algorithm via Hough transform in anISAR imaging system[J]. Transactions on Aerospace and Electronic Systems,31,7(1995),1173-1177.
    [67]. Philippe S, LeonK, G. Sjoerd. Radon transform and Time-Dequencyrepresentations for ISAR motion compensation and imaging[J]. Pro. SPIE,Orlando, FL, USA,2002, vo1.4738,252-263.
    [68]. Steinberg B D. Radar imaging from a distorted array: the radio camera algorithmand experiments[J]. IEEE Trans on AP.1981, Vol.29(5).740-748.
    [69]. Steinberg B D. Microwave imaging of aircraft[C]. Proc. IEEE.1988, Vol.76(12).1578-1592.
    [70]. Steinberg B D. Experimental localized radar cross section of aircraft[C]. Proc.IEEE.1989, Vol.77(5).663-669.
    [71].保铮、叶炜. ISAR运动补偿聚焦方法的改进[J].电子学报.1996, Vol.24(9).83-88.
    [72].朱兆达、邱晓晖、佘志顺.用改进的多普勒中心跟踪法进行ISAR运动补偿.电子学报.1997, Vol.25(3).65-69.
    [73].叶春茂,许稼,彭应宁,王秀坛.基于图像域均衡的逆合成孔径雷达多普勒质心跟踪法.电子学报.2008, Vol.36(9).1667-1681.
    [74].毛引芳,吴一戎.以散射质心为基准的ISAR成像的运动补偿.电子科学学刊.Vol.14(5).1992.532-536.
    [75].保铮、邓文彪、杨军. ISAR成像处理中的一种运动补偿方法.电子学报.1992,Vol.20(6).1-6.
    [76]. Xu R, Cao Z, Liu Y. A new method of motion compensation for ISAR. Proc. IEEEInt. Radar Conf., Paris,1990.234-237.
    [77]. Martorella M, Berizzi F, Haywood B. Contrast maximization based technique for2-D ISAR autofocusing[J]. IEE Proceedings on Radar, Sonar and Navigation.August2005,Vol.152(4).253-262.
    [78]. Wahl D E, Eichel P H, Ghiglia D C, et al.. Phase gradient autofocus-A robust toolfor high resolution SAR phase correction[J]. IEEE trans on AES. July1994,Vol.30(3).827-835.
    [79]. Xi L, Li Guosui, Ni J. Autofocusing of ISAR Imaging based on EntropyMinimization[J]. IEEE Trans On AES. Oct1999, Vol.35(4).1240-1252.
    [80].邱晓晖. Heng Wang Cheng Alice, Yeo Siew Yam. ISAR成像快速最小熵相位补偿方法[J].电子与信息学报. Oct2004,Vol.26(10).1656-1660.
    [81].邬小青、朱兆达.同时运动补偿和雷达成像[J].电子学报.1991, Vol.19(1).123-125.
    [82]. Eerland K K. Application of ISAR on aircraft[C]. IEEE Int. Radar Conf., Paris,May1984.618-623.
    [83]. Brown W M, Fredericks R J. Range-Doppler Imaging with Motion ThroughResolution Cells[J]. IEEE Trans on AES. Jan.1969, Vol.5(1).98-102.
    [84]. Xing M, Bao Z. Imaging algorithm for steadily flying and maneuvering bigtargets[C]. Proc.SPIE. Vol.4382.182-190.
    [85].陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像[J].西电学报.2003,30(2).155-159.
    [86].曹敏.空间目标高分辨雷达成像技术研究[D].长沙:国防科技大学,2008.
    [87].郭汉伟.合成孔径雷达地面运动目标检测与成像技术研究[D].长沙:国防科技大学博士学位论文.2003.
    [88].霍凯.基于OFDM新体制雷达信号的微动目标特征提取研究[D].长沙:国防科技大学博士学位论文.2011.
    [89]. Jain A and Patel I. SAR/ISAR imaging of a non-uniformly rotating target[J]. IEEETransaction on Aerospace Electronic System.1992,28(1):317-320.
    [90]. Wang Y, Ling H, Chen V C. ISAR motion compensation via adaptive jointtime-frequency technique[J]. IEEE Trans. AES.1998,Vol.34(4).670-677.
    [91]. Chen V C, Qian S. Joint time-frequency analysis for radar imaging ofmaneouvering targets[J]. IEEE Trans. AES.1998,Vol.42(4).486-499.
    [92]. Bao Z, Wang G, Luo L. Inverse Synthetic Aperture Radar Imaging ofManeuvering Targets[J]. Optical Engineering.1998,37(5).1582-1588.
    [93].金添,常文革.基于Radon-ambiguity变换的ISAR成像算法[J].现代雷达.2004,26(11).18-21.
    [94]. Berizzi F, Mese E D, Diani M, and Martorella M. High-resolution ISAR imagingof maneuvering targets by means of the range instantaneous Doppler technique:Modeling and performance analysis[J]. IEEE Trans. Image Process.,2001.10(12).1880–1890.
    [95]. Lu G, Bao Z. Compensation of scatterers migration through resolut ion cell ininverse synthetic aperture radar imaging[J]. IEE Proceeding, Radar Sonar Navigate.2000, Vol.147(2).80-85.
    [96]. Wang G, Bao Z. Inverse synthetic aperture radar imaging ofmaneuvering targetsbased on chirplet decomposition[J]. Optical Engineering.1999,38(9).1534-1541.
    [97].邹虹,保铮.一种有效的基于Chirplet自适应信号分解算法[J].电子学报.2001,29(4).515-517.
    [98]. Du L, Su G. Adaptive Inverse Synthetic Aperture Radar Imaging forNonuniformly Moving Targets[J]. IEEE GRS letter. July2005, Vol.2(3).247-249.
    [99]. Xing M D, Bao Z. Translational motion compensation and instantaneous imagingof ISAR maneuvering target[C]. In Proc. SPIE,2001, pp.68-73.
    [100]. Thayaparan T, Stankovic L j, Wernik C, Dakovic M. Real-time motioncompensation, image formation and image enhancement of moving targets inISAR and SAR using S-method-based approach[J]. IET Radar Sonar Navig., Feb.2008. Vol2(3).247–264.
    [101]. Lv X L, Xing M D, Wan C R, Zhang S H. ISAR imaging of maneouveringtargets based on the range centroid Doppler technique[J]. IEEE Trans. ImageProcessing. Vol19(1).141–153.
    [102]. Wang G. Adaptive filtering approach to chirp estimation and Inverse syntheticaperture radar Imaging of maneuvering targets[J]. Society of Photo-OpticalInstrumentation Engineers.2003, Vol.42(1).190-199.
    [103].孙长印,保铮.雷达成像的近似二维模型及其超分辨算法[J].电子学报.1999,27(12).84-87.
    [104]. Li Y C, Wu R, Xing M, Bao Z. Inverse synthetic aperture radar imaging of shiptarget with complex motion[J]. IET Radar Sonar Navig., Feb.2008, Vol.2(6).395–403.
    [105]. Gao Z Z, Li Y C, Xing M D, Wang G Y, Zhang S H, Bao Z. ISAR imaging ofmaneuvering targets with the range instantaneous chirp rate technique[J]. IETRadar Sonar Navig., Jan.2008,3(5).449–460,.
    [106]. Wang Y, Jiang Y. ISAR imaging of a ship target using product high-ordermatched-phase transform[J]. IEEE Geoscience and Remote Sensing Letters, Oct.2009. Vol.6(4).658-661.
    [107].刘进,王雪松,李文臣,王涛.基于进动的旋转对称弹头雷达成像方法[J].信号处理,2009,25(9):1333-1337.
    [108]. Wang T, Wang X S, Chang Y L, Liu J, Xiao S P. Estimation of precessionparameters and generation of ISAR images of ballistic missile targets[J]. IEEETrans. Aerosp. Electron. Syst.,, Oct.2010.46(4).1983–1995.
    [109]. Mayhan J. T., Burrows M. L., Cuomo K. M., et al., High resolution3D“Snapshot” ISAR imaging and feature extraction[J]. IEEE Transactions onAerospace and Electronic System,2001,37(2):630-642
    [110]. Zhang Q., Yeo T. S., Du G., and Zhang S. H., Estimation of three dimensionalmotion parameters in interferometric ISAR imaging[J]. IEEE Transactions onGeoscience and Remote Sensing,2004,42(2):292-300
    [111]. Xing M D, Wang Q, W ang G Y, Bao Z. A matched-filter-bank-based3-Dimaging algorithm for rapidly spinning targets[J]. IEEE Trans. On Geoscienceand Remote Sensing,200947(7):2106~2113.
    [112]. Zhang L, Xing M D, Qiu C W, Bao Z. Two-dimensional spectrum matched filterbanks for high-speed spinning-target three-dimensional ISAR imaging[J]. IEEEGeoscience and Remote Sensing Letters,20096(3):368~372.
    [113]. Wang Q, Xing M, Liu G and Bao Z. High resolution three-dimensional radarimaging for rapidly spinning targets[J]. IEEE Trans. Geosci. Remote Sens.,200846(1):22~31
    [114]. Bai X R, Xing M D, Zhou F, Bao Z. High-resolution three-dimensional imagingof spinning space debris[J]. IEEE Trans. On Geoscience and Remote Sensing,200947(7):2352~2362
    [115].徐成发,高梅国,原浩娟.基于搜索的步进频雷达信号速度补偿算法[J].北京理工大学学报,2008,28(4):360-363.
    [116].刘铮,刘宏伟,张守宏.正负步进频率编码信号及其处理[J].信号处理,1999,15(sup):21-25.
    [117].张群,张涛,张守宏.运动目标环境下的调频步进信号分析[J].西安电子科技大学学报(自然科学版),2001,28(2):220-224
    [118]. Wilkinson A J, Lord R T, Inggs M R. Stepped-frequency processing byreconstruction of target reflectivity spectrum[A]. IEEE Communications andSignal Processing Symposium[C]. African: IEEE,1998.101-104.
    [119].张焕颖.高速运动目标ISAR成像方法研究[D].西安:西安电子科技大学,2007
    [120]. Peleg S, Friedlander B. Multicomponent signal analysis using the polynomialphase transform[J]. IEEE Trans on Aerospace and Electronic systems,1996,32(1):378-387.
    [121]. Barbarossa S, Scaglione A, Giannakis G B. Product high-order ambiguityfunction for multicomponent polynomial signal modeling[J]. IEEE Trans onSignal Processing (S1053-587X),1998,46(3):691-708.
    [122]. Pastina D, Montanari A and Aprile A. Motion estimation and optimum timeselection for ship ISAR imaging[C]. IEEE Radar Conference, Huntsville, AL,USA,2003:7-14.
    [123]. Sato T. Shape estimation of space debris using single-range Dopplerinterferometry[J]. IEEE Trans. Geosci. Remote Sens.,1999,37(2):1000–1005.
    [124]. Hajduch D, Lecalillec J M and Garello R. Airborne high-resolution ISARimaging of ship targets at sea[J]. IEEE Trans on AES,2004,40(1)::378-384.
    [125]. Li J F and Ling H. An algorithm to detect the presence of3D target motion fromISAR data[J]. Multidimensional systems and signal processing,2003,14(1-3):223-240.
    [126].韩兴斌,胡卫东,郁文贤.基于散射点信号特性的ISAR成像时间选择算法[J].信号处理,2007,23(5):705-709.
    [127]. Martorella M and Berizzi F. Time windowing for highly focused ISAR imagereconstruction[J]. IEEE Trans on AES,2005,40(3):992-1007.
    [128]. Sun H P, Xing M D and Zhou L J. Division of imaging intervals and selection ofoptimum imaging time for ship ISAR imaging based on measured data[C]. IEEERadar Conference, China,2006:2790-2794.
    [129]. Pastina D and Spina C. Slope-based frame selection and scaling technique forship ISAR imaging[J]. IET Radar Sonar Navig.,2008,2(3):265–276.
    [130].王玲,朱兆达,朱岱寅.机载ISAR舰船侧视和俯视成像时间段选择[J].电子与信息学报,2008,30(12):2835-2839.
    [131]. Rihaczek A W and Hershkowitz S J. Choosing imaging intervals for smallships[C]. SPIE Conference on Radar Processing,1999,3810:139-148.
    [132].彭石宝,许稼,向家彬,彭应宁.基于相位线性度的ISAR非平稳目标成像时间选择新算法[J].电子与信息学报,2010,30(12):2795-2801.
    [133].彭石宝,许稼,夏斌,冷毅,向家彬. ISAR非平稳目标成像时间和转速联合估计方法[J].航空学报,2011,32(4):702-709.
    [134].王国林.逆合成孔径雷达运动补偿和系统补偿研究.哈尔滨:哈尔滨工业大学博士学位论文,1996.
    [135].姜正林,保铮.低分辨雷达目标成像的横向距离定标[J].电子与信息学报,2001,23(4):365-372.
    [136].李丽亚,刘宏伟,纠博,吴顺君.基于多特显点的干涉ISAR横向定标技术[J].系统工程与电子技术,2008,30(9):1653-1656.
    [137]. Wu H Q, Delisle G Y, Grenier D and Turner R M. Cross-range velocitycomputation for ISAR imaging[C]. Antennas and Propagation SocietyInternational Symposium,1992.1102-1105.
    [138]. Ling M, Yuan W M and Xing W G. Cross-range calibration of interferometricISAR under a condition of phase ambiguity[C]. In2ndAsian-pacific Conferenceon Synthetic Aperture Radar, Xian China,2009,903-906.
    [139]. Pastina D and Spina C. Slope-based frame selection and scaling technique forship ISAR imaging[J]. IET Radar Sonar Navig.,2008,2(3):265–276.
    [140]. Wang L, Zhu D Y and Zhu Z D. Image-based scaling for ship top view ISARimages[J]. Journal of Electronics (china).2008,25(1):76–83
    [141]. Wang L, Zhu D Y and Zhu Z D. Cross-range scaling for aircraft ISAR imagesbased on axis slope measurements[C]. IEEE Radar Conference,2008:1668-1673.
    [142].李文臣,王雪松,单梅,王国玉.对称目标的ISAR成像横向距离定标方法与性能分析[J].电子与信息学报,2009,31(10):2504-2508.
    [143].李玺,顾红,刘国岁. ISAR成像中转角估计的新方法[J].电子学报,2000,28(6):44-47.
    [144].刘宗政,何峰,叶钒,董臻.基于乘积型三次相位函数的ISAR转角估计方法[J].信号处理,2009,25(8):535—537.
    [145].彭石宝,徐稼,夏斌,冷毅,向家彬. ISAR非平稳目标成像时间和转速联合估计方法[J].航空学报,2011,32(4):702-709
    [146]. Gao J J and Su F L. A new cross-range scaling algorithm based on FrFT[C].IEEE10thInternational Conference on SP proceedings, Beijing, China,2010.2043-2046
    [147].王勇,姜义成.一种估计ISAR成像转角的新方法[J].电子与信息学报,2007,29(3):521—523.
    [148]. Ye C M, X J, Peng Y N and Wang X T. Cross-range scaling for ISAR based onimage rotation correlation[J]. IEEE GRSL,2009,6(3):597-601.
    [149]. She Z S and Zhu Z Z. Cross-range scaling of inverse synthetic aperture radar[C].Proceedings of IEEE NAECON,1994,175-180.
    [150].金光虎,高勋章,黎湘,陈永光.基于图像配准的弹道目标ISAR图像横向定标[J].系统工程与电子技术,2010,32(12):2565-2569.
    [151]. Martorella M. Novel approach for ISAR image cross-range scaling[J]. IEEETrans on AES,2008,44(1)::281-294.
    [152]. Prodi F. ISAR cross-range scaling using a correlation based functional[C]. IEEERadar Conference, China,2006:2790-2794.
    [153].贺思三,赵会宁,周剑雄,付强.基于相关距离像序列的ISAR图像横向定标[J].信号处理,2009,25(8A):603—606.
    [154]. Yang J S and Yu J. ISAR image reconstruction of accelerated motion usingmatching pursuits[C]. International Congerence on Information Technology andComputer Science, Kiev, Ukraine,2009,369-372.
    [155]. Li W C, Wang X S and Wang G Y. Scaled Radon-Wigner transform imaging andscaling of maneuvering target[J]. IEEE Trans on AES,2010,46(4)::2043-2051.
    [156]. Wang G Y, Bao Z and Sun X B. ISAR imaging of non-uniformly rotatingtargets[C]. CIE International conference of radar proceedings,1996,369-372.
    [157]. Munoz-Ferreras J M and Perez-Martinez F. Non-uniform rotation rate estimationfor ISAR in case of slant range migration induced by angular motion[J]. IETRadar Sonar Navig.,2007,1(4):251–260.
    [158].张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.46~69.
    [159]. Xia, X-G. Quantitative SNR analysis for ISAR imaging using jointtime-frequency analysis—short time Fourier transform[J]. IEEE Transactions onAES,2002,38(2):649~652.
    [160]. Xing M D, Wu R and Bao Z. Migration through resolution cell compensation inISAR imaging[J]. IEEE GRSL,2004,1(2):141-144.
    [161]. Wang Y, Jiang Y C. ISAR imaging of maneuvering target based on the L-class offourth-order complex-lag PWVD[J]. IEEE Trans GRS,2010,48(3):1518-1527.
    [162]. Peleg S, Friedlander B. The discrete polynomial-phase transform. IEEE TransSignal Processing[J].1995,43(8):1901-1914.
    [163]. Shea P O. A fast algorithm for estimation the parameters of a quadratic FMsignal[J]. IEEE Trans Signal Processing.2004,52(2):385-393.
    [164]. Pham D S, Zoubir A M. Analysis of multi-component polynomial phasesignals[J]. IEEE Trans Signal Processing,2007,55(1):56-65
    [165]. He S S, Zhao H N, Liu Z, Zhou J X. Parameters estimation for cubic phasesignal[J]. Signal Processing,2010,26(9):1366-1370
    [166]. Xia X G. Discrete chirp-Fourier transform and its application to chirp rateestimation[J]. IEEE Trans. Signal Processing,2000, vol.48(11):3122–3133.
    [167]. Bian Y, Zhou Y Q, Li C S. Research on the three-order discrete chirp-Fouriertransform[J]. Systems Engineering and Electronics,2005,27(6):995-1002
    [168]. Guo X, Sun H B, Wang S L. Comments on discrete chirp-Fourier transform andits application to chirp rate estimation[J]. IEEE Trans. Signal Processing,2002,vol.50(12):3115–3115.
    [169]. Xia X G. Response to comments on discrete chirp-Fourier transform and itsapplication to chirp rate estimation[J]. IEEE Trans Signal Processing,2002,vol.50(12):3116-3116.
    [170]. Aceros-Moreno C A, Rodrigurez D. Fast discrete chirp Fourier transform forradar signal detection systems using cluster computer implementations[C]. inProc.48th Midwest symposium on circuits and systems,2005, pp.1047-1050.
    [171]. Zhang Q, Yeo T S. Three-dimensional SAR imaging of a ground moving targetusing the InISAR technique[J]. IEEE Trans. Geosci. Remote Sens.,200442(9):1818~1928.
    [172]. Ma C Z, Yeo T S, Tan H S et al. Three-dimensional ISAR imaging using atwo-dimensional sparse antenna array[J]. IEEE Geoscience and Remote SensingLetters,20095(3):378~382.
    [173]. Ma C Z, Yeo T S, Zhang Q, Tan H S, Wang J. Three-dimensional ISAR imagingbased on antenna array[J]. IEEE Transactions on Geoscience and RemoteSensing,200846(2):504~515.
    [174]. Bhalla R and Ling H. Three-dimensional scattering center extraction using theshooting and bouncing ray technique[J]. IEEE Trans. Antennas. Propag.199644(11):1445~1453.
    [175].马骏声。目标识别与GBR地基成像雷达[J].航天电子对抗,1996,4:1-5.
    [176].刑孟道,蓝金巧,保铮.高速导弹目标ISAR回波相干化预处理[C].第九届全国雷达学术年会论文集,2004,674-679
    [177]. Xing M D, Wu R, and Bao Z. High resolution ISAR imaging of high speedmoving targets[J]. IEE Proc.-Radar Sonar Navig.,2005,152(2):58–67.
    [178].冯德军,王雪松,肖顺平,王国玉.高速目标解调频处理的相位特性及其补偿[J].电子与信息学报,2008,30(4):916-920.
    [179].王洋,陈建文,刘中.导弹目标ISAR成像仿真分析[J].现代雷达,2003,10:18-21.
    [180].田野,高建军,宿富林.导弹目标逆合成孔径雷达成像的仿真[J].计算机仿真,2006,23(6):49-51
    [181].冯德军,王雪松,肖顺平,王国玉.导弹目标中段雷达成像仿真研究[J].系统仿真学报,2004,16(11):2511-2516.
    [182].魏建功.导弹中段目标ISAR成像与特征提取研究[D].长沙:国防科学技术大学,2006.
    [183].金光虎,朱玉鹏,高勋章,黎湘.基于一维像序列的中段雷达目标进动特征提取[J].信号处理,2009,25(5):771-776
    [184].金光虎,高勋章,黎湘,陈永光.中段目标微动运动建模方法与宽带雷达回波仿真[J].系统仿真学报,2010,22(4):867-871
    [185]. Ding X F, Fan M M and Wei X Z,“Narrowband imaging method for spatialprecession cone-shaped targets[J]. Sci. China Tech. Sci., April2010.53(4).942–949.
    [186].张毅.弹道导弹弹道学[M].长沙:国防科技大学出版社,1999.
    [187].贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社,2009.
    [188]. Oppenheim A V and Schafer R W, Discrete-Time Signal Processing[M]. UpperSaddle River, NJ: Prentice-Hall,1999, pp.629–669.
    [189]. Chen Victor C, Li F, Ho S-S, Wechsler H. Analysis of Micro-Dopplersignatures[J]. IEEE Proc-Radar Sonar Navig,2003,150(4):271-276.
    [190].庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报,2007,35(3):520-525.
    [191]. Zhang Q, Yeo T S, Tan H S, et al. Imaging of a moving target with rotating partsbased on the hough transform[J]. IEEE Trans on GRS,2008,46(1):291-299.
    [192].白雪茹,周峰,刑孟道,保铮.空中微动旋转目标的二维ISAR成像算法[J].电子学报,2009,37(9):1937-1943.
    [193].吴亮,魏玺章,杨德贵,黎湘.调频步进信号高速目标精确运动估计[J].电子学报,2010,38(12):2832~2838.
    [194].吴亮,魏玺章,黎湘,凌永顺.基于距离-慢时间匹配滤波和复值反投影的快速旋转目标三维成像算法[J].信号处理,2010,26(12):1761~1767.
    [195].吴亮,黎湘,魏玺章,张旭峰,凌永顺.基于RWT的旋转微动目标二维ISAR成像算法[J].电子学报,2011,39(6):1302~1308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700