高压变频器过电压保护与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子技术向着高电压、大功率方向的发展使得中性点箝位三电平高压变频器拓扑结构的优势越来越受到人们的重视,相关研究与应用也越来越多、越来越广。然而,受半导体材料的影响,电力电子器件的耐压始终有限,这不但限制了高压变频器过电压的承受能力,还增加了过电压保护设计的难度。针对该问题,本论文围绕高压变频器过电压保护和控制展开了研究。
     过电压产生原因的不同,其在高压变频器中的作用机理和表现形式也存在一定的差异。对各种过电压情况的具体分析,可以更清楚的了解到它们对高压变频器的影响,为高压变频器过电压保护设计提供良好的理论支持。结合广泛应用于电力系统过电压保护的氧化锌压敏电阻的特点,本论文认为它能作为中性点箝位三电平高压变频器过电压保护装置。
     为了解决单个电力电子器件耐压低和氧化锌压敏电阻残压高的问题,结合各种过电压的表现形式,本论文提出对高压变频器中最重要的逆变部分进行整体过电压保护的思想,通过对整个逆变部分的过电压保护,实现对高压变频器的过电压保护。根据三电平变频器开关状态,详细分析了逆变部分耐压情况,结合实际中性点箝位三电平高压变频器系统参数,进行了氧化锌压敏电阻选型计算。实验结果证明了选取的氧化锌压敏电阻满足理论分析参数要求,仿真结果证明了氧化锌压敏电阻能对中性点箝位三电平高压变频器过电压进行有效的保护。
     变频器是理想的电动机软启动装置,为了使电动机在顺利启动的同时过电流尽可能小,本论文对变频器的启动频率进行了详细推导计算。结合实际电动机参数的仿真结果证明了变频器启动频率计算的正确性。
     多相电动机可以实现低压大功率输出,为了对多相电动机驱动系统进行改进,本论文提出了一种无输入变压器多相电动机高压变频器拓扑结构。该多相电动机高压变频器无需移相变压器,减小了系统体积和成本,同时,由于结构的特点,大幅降低了电力电子器件耐压和功率要求。此外,相对于传统多相电动机高压变频器而言,更容易实现模块化设计,增强了系统的可移植性,易于实现系统冗余。为了配合该多相变频器,本论文还提出了独立定子绕组多相电动机结构。仿真结果和低压九相电动机样机实验都证明了无输入变压器多相电动机高压变频器拓扑结构和独立定子绕组多相电动机结构的正确性和可行性。
     结合独立定子绕组九相电动机结构特点,进行了详细的谐波磁势分析,推导出谐波磁势的详细表达式。在此基础上,对考虑空间谐波磁势影响的谐波电磁转矩进行分析,推导出其详细表达式。为多相电动机设计和多相变频器控制优化提供了理论依据。
The advantages of Neutral Point Clamped (NPC) three-level high voltage motor drives are more and more outstanding for the improvement of power electronics towards high voltage and high power. There are a lot of researches and applications of NPC motor drives. But the withstand voltage of power electronic device is still finite, which not only limits the overvoltage tolerant capability, but also presents challenges on overvoltage protection. To solve the problem, this dissertation researches on overvoltage protection and control of high voltage motor drives.
     For the different causes of overvoltage, the effects and behaviors are also different in the high voltage motor drives. Detailed analysis of each causes of overvoltage can make the effects more clearly and give strong theoretical support for overvoltage protection design of high voltage motor drives. Considering the characteristics of ZnO varistor which is widely used in power system overvoltage protection, this dissertation chooses it as the overvoltage protection device for NPC three-level high voltage motor drives.
     To solve the problem of low withstand voltage of single power electronic device and high residual voltage of ZnO varistor, this paper presents a method by protecting the inverter part of high voltage motor drives based on analysis of each kind of overvoltage. If the inverter part is not overvoltage, the whole system is not overvoltage either. The withstand voltage is detailed analysis based on switch states of three-level motor drives. Calculations of how to choose the ZnO varistors is given based on practical project parameters. Experimental results show that the designed ZnO varistors meet the theoretical analysis quite well. Simulation results proved that the designed ZnO varistors can protect NPC three-level high voltage motor drives from overvoltage effectively.
     Motor drives are ideal starting device for motors. The calculation of motor drives starting frequency is given to satisfy the starting requirement of motors and reduce the starting current. Simulation results based on practical motor parameters proved that the calculation of starting frequency is correct.
     Multiphase motors have a lot of advantages include low voltage input and high power output. This paper presents a novel topology of multiphase motor drives. It is not need the phase-shifting transformer, which reduces the system volume. In addition, the withstand voltage and power requirements of power electronic device is significantly reduced. Moreover, comparing with the traditional multiphase motor drives, it is easy to implement modularization and redundancy, and enhance system transplant. Simulation results and low voltage nine-phase motor drives experimental results are both proved that the novel topology of multiphase motor drives is correct and feasibility.
     Detailed calculation of harmonic magnetomotive force based on nine-phase motor is given. Furthermore, considering space harmonic magnetomotive force effects, harmonic electromagnetic torque has been analyzed. The detailed expression of harmonic electromagnetic torque has been give. It can be the theoretical support for multiphase motor design and multiphase motor drives control strategy optimization.
引文
[1]B.K. Bose. Energy, Environment, and Advances in Power Electronics[J]. IEEE Transactions on Power Electronics,2000,15(4):688-701
    [2]B.K. Bose. Power Electronics and Motor Drives Recent Progress and Perspective [J]. IEEE Transactions on Industrial Electronics,2009,56(2):581-588
    [3]江友华,龚幼民.高压大功率变频器主电路拓扑和控制策略[J].变频器世界,2006,2: 52-58
    [4]陈阿莲.新型多电平逆变器组合拓扑结构和多电平逆变器的容错技术[博士学位论文].杭州:浙江大学,2005
    [5]P.M. Bhagwat, V.R. Stefanovic. Generalized Structure of a Multilevel PWM Inverter[J]. IEEE Transactions on Industry Applications,1983, IA-19(6):1057-1069
    [6]Jih-Sheng Lai, Fang Zheng Peng. Multilevel Converters-A New Breed of Power Converters [J]. IEEE Transactions on Industry Applications,1996,32(3):509-517
    [7]J. Rodriguez, Jih-Sheng Lai, Fang Zheng Peng. Multilevel Inverters:A Survey of Topologies, Controls, and Applications[J]. IEEE Transactions on Industrial Electronics,2002,49(4):724-738
    [8]M. Malinowski, K. Gopakumar, J. Rodriguez, M.A. Perez. A Survey on Cascaded Multilevel Inverters[J]. IEEE Transactions on Industrial Electronics,2010,57(7): 2197-2206
    [9]J. Rodriguez, S. Bernet, P.K. Steimer, I.E. Lizama. A Survey on Neutral-Point-Clamped Inverters [J]. IEEE Transactions on Industrial Electronics,2010, 57(7):2219-2230
    [10]邓波,潘登,郭灿.新型矩阵式变频器在变频电梯中的应用[J].变频器世界,2010,7:65-69
    [11]张洁,王安华.集成双向半导体功率模块矩阵式变频器及其自适应换流(英 文)[J].电工技术学报,2005,20(2):66-76
    [12]A. Nabae, I. Takahashi, H. Akagi. A New Neutral-Point-Clamped PWM Inverter[J]. IEEE Transactions on Industry Applications,1981, IA-17:518-523
    [13]张元媛,阮新波.多电平直流变换器中飞跨电容电压的一种控制策略[J].中国电机工程学报,2004,24(8):34-38
    [14]王鸿雁,王小峰,张超,邓焰,何湘宁.飞跨电容多电平逆变器的新型载波PWM方法[J].电工技术学报,2006,21(2):63-67
    [15]王鸿雁,邓焰,赵荣祥,何湘宁.飞跨电容多电平逆变器开关损耗最小PWM方法[J].中国电机工程学报,2004,24(8):51-55
    [16]严干贵,刘文华,穆钢,陈远华,陈涛.内蕴电压平衡控制的飞跨电容逆变器的PWM方法[J].中国电机工程学报,2006,26(4):119-125
    [17]王小峰,何湘宁,邓焰.载波交叠特性PWM方法在飞跨电容多电平逆变器中的应用研究[J].中国电机工程学报,2007,27(10):98-102
    [18]A. Munoz-Garcia, T.A. Lipo, D.W. Novotny. A New Induction Motor V/f Control Method Capable of High-performance Regulation at Low Speeds [J]. IEEE Transactions on Industry Applications,1998,34(4):813-821
    [19]Wei Chen, Rongfeng Yang, Yong Yu, et al. A Novel Stability Improvement Method for V/f Controlled Induction Motor Drive Systems[C]. Proceeding of 11th ICEMS, 2008, Wuhan:1073-1076
    [20]L. Ben-Brahim. Improvement of the Stability of the V/f Controlled Induction Motor Drive Systems[C].IECON'98,1998,2:859-864
    [21]Wei Chen, Dianguo Xu, Rongfeng Yang, et al. A Novel Stator Voltage Oriented V/f Control Method Capable of High Output Torque at Low Speed[C]. PEDS2009, 2009:228-233
    [22]K.Suzuki, S. Saito, T. Kudor, et al. Stability Improvement of V/f Controlled Large Capacity Voltage-Source Inverter Fed Induction Motor[C].41st IAS Annual Meeting,2006,1:90-95
    [23]Yifan Zhao, T.A. Lipo. Space Vector PWM Control of Dual Three-Phase Induction Machine Using Vector Space Decomposition[J]. IEEE Transactions on Industry Applications,1995,31(5):1100-1109
    [24]M.A.S. Aneesh, A. Gopinath, M.R. Baiju. A Simple Space Vector PWM Generation Scheme for Any General n-Level Inverter[J]. IEEE Transactions on Industrial Electronics,2009,56(5):1649-1656
    [25]B.P. McGrath, D.G. Holmes, T.A. Lipo. Optimized Space Vector Switching Sequences for Multilevel Inverters[J]. IEEE Transactions on Power Electronics, 2003,18(6):1293-1301
    [26]V. Ambrozic, M. Bertoluzzo, G.S. Buja, R. Menis. An Assessment of the Inverter Switching Characteristics in DTC Induction Motor Drives[J]. IEEE Transactions on Power Electronics,2005,20(2):457-465
    [27]Joon Hyoung Ryu, Kwang Won Lee, Ja Sung Lee. A Unified Flux and Torque Control Method for DTC-Based Induction-Motor Drives[J]. IEEE Transactions on Power Electronics,2006,21(1):234-242
    [28]M.F. Escalante, J.-C. Vannier, A. Arzande. Flying Capacitor Multilevel Inverters and DTC Motor Drive Applications[J]. IEEE Transactions on Industrial Electronics, 2002,49(4):809-815
    [29]Kyo-Beum Lee, Joong-Ho Song, Ick Choy, Ji-Yoon Yoo. Torque Ripple Reduction in DTC of Induction Motor Driven by Three-Level Inverter With Low Switching Frequency[J]. IEEE Transactions on Power Electronics,2002,17(2):255-264
    [30]F. Khoucha, M.S. Lagoun, A. Kheloui, M.E.H. Benbouzid. A Comparison of Symmetrical and Asymmetrical Three-Phase H-Bridge Multilevel Inverter for DTC Induction Motor Drives[J]. IEEE Transactions on Energy Conversion,2011,26(1): 64-72
    [31]张智元.大型及超大型电动机起动方法之比较与优选[J].大电机技术,2007,(3): 27-30
    [32]L. Parsa. On Advantages of Multi-Phase Machines[C].31st IECON,2005: 1574-1579
    [33]B. Mwinyiwiwa, O. Ojo, Zhiqiao Wu. A Five Phase Three-Level Neutral Point Clamped Converter Using DSP and FPGA Based Control Scheme[C].37th PESC, 2006:1-7
    [34]A.M. Abbas, R. Christen, M.T. Jahns. Six-Phase Voltage Source Inverter Driven Induction Motor[J]. IEEE Transactions on Industry Applications,1984, IA-20(5): 1251-1259
    [35]薛山,闻旭辉,王又珑.多相变频调速技术的现状及发展方向[J].变频器世界,2007,12:5-9
    [36]解广润.电力系统过电压[M].北京:水利电力出版社,1985
    [37]陈维贤.内部过电压基础[M].北京:电力工业出版社,1981
    [38]张伟钹,高玉明.电力系统过电压与绝缘配合[M].北京:清华大学出版社,1988
    [39]刘继著.电气装置的过电压保护[M].北京:水利电力出版社,1986
    [40]A. N. Arvindan, A. Guha. Novel Topologies of 24-Pulse Rectifier with Conventional Transformers for Phaseshifting[C]. ICEES,2011:108-114
    [41]A. Joseph, J. Wang, Z. Pan, et al. A 24-Pulse Rectifier Cascaded Multilevel Inverter With Minimum Number of Transformer Windings[C]. Conference Record of the Fortieth IAS Annual Meeting,2005,1:115-120
    [42]Wenhua Liu, Qiang Song, Qingguang Yu, Yuanhua Chen. Analysis of High di/dt Current Pulses in Three-Level NPC Inverters Using Series Connected IGCTs and RC Snubbers[C].IECON,2003,3:2771-2776
    [43]Wenhua Liu, Qiang Song, Xiaorong Xie, Yuanhua Chen, Gangui Yan.6kV/1800kVA Medium Voltage Drive with Three-Level NPC Inverter Using IGCTs[C]. APEC, 2003,1:223-227
    [44]Jian Liu, Xianggen Yin, Zhe Zhang, Qing Xiong. A New Three-level NPC Inverter Based on Phase Individual DC-Link Circuit and High Quality Digital SPWM Control Technology[C]. ICCCAS,2009:732-736
    [45]M. Hinkkanen, J. Luomi. Induction Motor Drives Equipped With Diode Rectifier and Small DC-Link Capacitance[J]. IEEE Transactions on Industrial Electronics,2008, 55:312-320
    [46]M. Kojima, K. Hirabayashi, Y. Kawabata, et al. Novel Vector Control System Using Deadbeat-Controlled PWM Inverter with Output LC Filter[J]. IEEE Transactions on Industry Applications,2004,40:162-169
    [47]Kim Kwang-Seob, Kwon Byung-Ki, Choi Chang-Ho. A Novel Control Algorithm of a Three-phase PWM Inverter with Output LC Filter[C]. IEMDC,2007,1:77-81
    [48]Fang Z. Peng, Guijia Su, G. Farquharson. A Series LC Filter for Harmonic Compensation of AC Drives[C]. PESC,1999,1:213-218
    [49]T. G. Habetler, R. Naik, T. A. Nondahl. Design and Implementation of an Inverter Output LC Filter Used for du/dt Reduction[J]. IEEE Transactions on Power Electronics,2002,17:327-331
    [50]Jiming Lu, Dan Wang, Chengxiong Mao, Shu Fan. Study of RC-snubber for Series IGCTs[C].ICPST,2002,1:595-599
    [51]马钢.二极管钳位三电平变频器中点电压平衡相关问题研究[硕士学位论文].武汉:华中科技大学,2008
    [52]刘健,尹项根,张哲,熊卿.高压大功率三电平逆变器的SPWM数字化技术研究[J].中国电机工程学报,2008,28(27):35-41
    [53]熊卿,张哲,刘健,尹项根.基于DSP, FPGA, CPLD三电平高压变频器控制系统[J].电力电子技术,2007,41(6):48-50
    [54]李国栋.基于IGCT的6kV高压变频器[博士学位论文].武汉:华中科技大学,2007
    [55]宋继军,菅雅弘,潘仰光.金属氧化物避雷器现状及发展趋势[J].电力设备,2005,6(8):1-3
    [56]S. Shirakawa, I. Ejiri, S. Watahiki, et al. Application of High Voltage Gradient Zinc Oxide Elements to SF6 Gas Insulated Surge Arresters for 22kV-765kV Power Systems[J]. IEEE Transactions on Power Delivery,1999,14(2):419-424
    [57]T. Imai, T. Udagawa, H. Ando, et al. Development of High Gradient Zinc Oxide Nonlinear Resistors and Their Application to Surge Arresters [J]. IEEE Transactions on Power Delivery,1998,13(4):1182-1187
    [58]Jinliang He, Rong Zeng, Yuming Gao, et al. Development and Application Effect of Polymeric Surge ZnO Arresters for 500kV Compact Transmission Line[C]. International Conference on Power System Technology,2000,3:1449-1454
    [59]K. Munukutla, V. Vittal, G.T. Heydt, et al. A Practical Evaluation of Surge Arrester Placement for Transmission Line Lightning Protection[J]. IEEE Transactions on Power Delivery,2010,25:1742-1748
    [60]N. Fujiwara, T. Yoneyama, Y. Hamada, et al. Development of a Pin-Post Insulator with Built-in Metal Oxide Varistors for Distribution Lines[J]. IEEE Transactions on Power Delivery,1996,11(2):824-833
    [61]P. Manohar, H.S. Chandrasekharaiah. Application of ZnO Varistor Protection to Capacitors of Artificially Commutated Inverter in MTDC System [J]. IEEE Transactions on Power Systems,1991,6(1):356-363
    [62]S.R. Lambert. Effectiveness of Zinc Oxide Surge Arresters on Substation Equipment Probabilities of Flashover[J]. IEEE Transactions on Power Delivery,1988,3(4): 1928-1934
    [63]Xi Jin, Wei Lu, Shouju Chen. New Type Lightning Protection Schemes of Substation Incoming Lines and Their Simulations[C]. International Conference on Power System Technology,2004,1:481-485
    [64]Z. Abdul Malek. Surge Arrester Requirements Study for Transformer Protection in 132kV GIS Substation[C].IPEC,2007:494-499
    [65]G.L. Goedde, L.A. Kojovic, J.J. Woodworth. Surge Arrester Characteristics that Provide Reliable Overvoltage Protection in Distribution and Low-Voltage Systems[C]. Power Engineering Society Summer Meeting,2000,4:2375-2380
    [66]A. Rocks, V. Hinrichsen. Application of Varistors for Overvoltage Protection of Machine Windings in Inverter-fed Drives[C]. Diagnostics for Electric Machines, Power Electronics and Drives,2007:335-340
    [67]Jinliang He, Se-Won Han, Han-Goo Cho. Lightning Overvoltage Protection of AC Railroad Vehicles by Polymeric Arresters[J]. IEEE Transactions on Power Delivery, 1999,14(4):1304-1310
    [68]Shu-min Sun, Yuan Ma, Liang Zou, et al. MOA-based FCL and Its Application in Power System[C]. ICHVE,2008:539-543
    [69]禹争光.氧化锌压敏电阻电输运特性及大通流器件设计研究[博士学位论文].成都:电子科技大学,2005
    [70]Jing Fang, Chengxiong Mao, Jiming Lu, Dan Wang, Qinghua Zhang. The Research on Protection of Over-voltage about NPC Three-level Medium Voltage Motor Drives[C]. Proceeding of 11th ICEMS,2008, Wuhan:1595-1599
    [71]袁立强.基于IGCT的多电平变换器若干关键问题研究[博士学位论文].北京:清华大学,2004
    [72]姜艳姝,刘宇,徐殿国等.PWM变频器输出共模电压及其抑制技术的研究[J].中国电机工程学报,2005,25(9):47-53
    [73]A. Bayadi, N. Harid, and K. Zehar. Dynamic Surge Arrester Protection Performance on High Voltage Systems Using EMTP[C].39th UPEC,2004,1:118-122
    [74]M. C. Magro, M. Giannettoni, and P. Pinceti. Validation of ZnO Surge Arresters Model for Overvoltage Studies[J]. IEEE Transactions on Power Delivery,2004,19: 1692-1695
    [75]M. K. Zadeh, H. Abniki, and A. A. S. Akmal. The Modeling of Metal-oxide Surge Arrester Applied to Improve Surge Protection[C].2nd PEITS,2009:238-243
    [76]辜承林,陈乔夫,熊永前.电机学[M].武汉:华中科技大学出版社,2001
    [77]李维波MATLAB在电气工程中的应用[M].北京:中国电力出版社,2007
    [78]徐甫荣.风机水泵压缩机变频调速节能技术讲座[J].变频器世界,2011,1:119-122
    [79]曹立威,吴胜华,张承胜,吴保芳SPWM谐波分析的一般方法[J].电力电子 技术,2002,36(4):62-65
    [80]陈其工.变频调速异步电机模型研究[J].微特电机,1996,2:2-4
    [81]陈世坤.电机设计[M].北京:机械工业出版社,1990
    [82]杨顺昌,廖勇,余渝.考虑谐波影响后交流励磁电动机电磁转矩的分析与计算[J].电工技术学报,2003,18(1):5-9
    [83]张晟,余海涛,陈小林.SPWM型逆变器驱动感应电机电压谐波分析和脉动转矩仿真[J].自动化与仪器仪表,2008,4:83-84
    [84]陈其工,曹文田.变频调速谐波电流与谐波转矩初步分析[J].山东师大学报(自然科学版),1996,11(3):30-33
    [85]陈其工.变频运行感应电动机谐波电流计算与转矩、损耗分析[J].微特电机,1996,3:33-35
    [86]王新路,王东,吴新振,沈建清.多相电机中谐波电流与谐波磁势间的关系[J].电机与控制应用,2007,34(8):10-14
    [87]陈其工.计算与抑制变频调速异步电动机稳态谐波电流与转矩的方法[J].电子科技大学学报,1999,28(2):148-151
    [88]苏少平,王正茂,励鹤鸣.逆变器驱动的六相感应电动机性能分析(Ⅱ)——谐波分析[J].微特电机,1999,6:16-19
    [89]Y. Kats. Adjustable-Speed Drives With Multiphase Motors[C]. IEMDC, IEEE International Electric Machines and Drives Conference Record,1997:TC2/4.1 TC2/4.3
    [90]J. Song-Manguelle, J.-M. Nyobe-Yome, G Ekemb. Pulsating Torques in PWM Multi-Megawatt Drives for Torsional Analysis of Large Shafts[J]. IEEE Transactions on Industry Applications,2010,46(1):130-138
    [91]J. Song-Manguelle, S. Schroder, T. Geyer, G Ekemb. Prediction of Mechanical Shaft Failures Due to Pulsating Torques of Variable-Frequency Drives[J]. IEEE Transactions on Industry Applications,2010,46(5):1979-1988
    [92]D. Kastha, B.K. Bose. Fault Mode Single-phase Operation of a Variable Frequency Induction Motor Drive and Improvement of Pulsating Torque Characteristics [J]. IEEE Transactions on Industrial Electronics,1994,41(4):426-433
    [93]S. Williamson, S. Smith. Pulsating Torque and Losses in Multiphase Induction Machines[J]. IEEE Transactions on Industry Applications,2003,39(4):986-993
    [94]S. Salon, D. Burow, C. Slavik, R. Bushman, M. DeBortoli. Comparison of Pulsating Torques in Induction Motors by Analytical and Finite Element Methods[J]. IEEE Transactions on Magnetics,1995,31(3):2056-2059
    [95]T.V. Avadhanlu, R.B. Saxena. Torque Pulsation Minimization in a Variable Speed Inverter-Fed Induction Motor Drive System[J]. IEEE Transactions on Power Apparatus and Systems,1979, PAS-98(1):13-18
    [96]S.M. Abdulrahman, J.G. Kettleborough, and I.R. Smith. Fast Calculation of Harmonic Torque Pulsations in a VSI Induction Motor Drives[J]. IEEE Transactions on Industrial Electronics,1993,40(6):561-569
    [97]T.A. Lipo, P.C. Krause, and H.E. Jordan. Harmonic Torque and Speed Pulsations in a Rectifier-Inverter Induction Motor Drive[J]. IEEE Transactions on Power Apparatus and Systems,1969, PAS-88(5):579-587
    [98]Kuo-Kai Shyu, Juu-Kuh Lin, Van-Truong Pham, Ming-Ji Yang, Te-Wei Wang. Global Minimum Torque Ripple Design for Direct Torque Control of Induction Motor Drives[J]. IEEE Transactions on Industrial Electronics,2010,57(9): 3148-3156
    [99]Jun-Koo Kang, Seung-Ki Sul. New Direct Torque Control of Induction Motor for Minimum Torque Ripple and Constant Switching Frequency[J]. IEEE Transactions on Industry Applications,1999,35(5):1076-1082
    [100]A. Tripathi, A.M. Khambadkone, S.K. Panda. Torque Ripple Analysis and Dynamic Performance of a Space Vector Modulation Based Control Method for AC-Drives[J]. IEEE Transactions on Power Electronics,2005,20(2):485-492
    [101]Kyo-Beum Lee, Joong-Ho Song, Ick Choy, Ji-Yoon Yoo. Torque Ripple Reduction in DTC of Induction Motor Driven by Three-Level Inverter With Low Switching Frequency[J]. IEEE Transactions on Power Electronics,2002,17(2):255-264
    [102]K. Basu, J.S.S. Prasad, G. Narayanan, H.K. Krishnamurthy, R. Ayyanar. Reduction of Torque Ripple in Induction Motor Drives Using an Advanced Hybrid PWM Technique[J]. IEEE Transactions on Industrial Electronics,2010,57(6):2085-2091
    [103]M. Janssen, A. Steimel. Direct Self Control With Minimum Torque Ripple and High Dynamics for a Double Three-Level GTO Inverter Drive[J]. IEEE Transactions on Industrial Electronics,2002,49(5):1065-1071
    [104]H. Nagase, T. Okuyama, J. Takahashi, K. Saitoh. A Method for Suppressing Torque Ripple of an AC Motor by Current Amplitude Control[J]. IEEE Transactions on Industrial Electronics,1989,36(4):504-510
    [105]N.R.N. Idris, A.H.M. Yatim. Direct Torque Control of Induction Machines with Constant Switching Frequency and Reduced Torque Ripple[J]. IEEE Transactions on Industrial Electronics,2004,51(4):758-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700