高水压砂性土层地铁大直径盾构始发端头加固方式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着越江跨海交通隧道的不断兴建,大直径长距离盾构隧道工程越来越多。盾构隧道断面越大给盾构进出洞施工所带来的风险也就越高,特别是在高水压砂性土层中,如何选取合理的端头加固方式以确保大直径盾构进出洞施工的安全性是需要解决的新课题。本文以南京地铁十号线过江隧道盾构始发工程为依托,采用室内试验、数值模拟、理论研究及工程应用与实测相结合的综合研究方法,对该工程盾构始发端头加固方式及其安全性展开研究。首先对始发端头典型的两种土质进行了水泥改良前后土体热物理、力学特性的室内试验;接着对该工程盾构始发拟采用的三种加固方式及其关键问题进行了数值分析;对这三种加固方式进行比选,提出了宜采用的加固方式;最后结合实际采用的加固方式,对不同工况下盾构始发掘进进行了数值模拟分析,对垂直冻结施工进行了现场实测研究。本文主要研究工作及结论如下:
     (1)对始发端头典型的两种土质进行了水泥改良前后土体热物理、力学特性的室内试验,给出了数值分析时端头土体热物理、力学参数的建议取值。
     (2)对盾构隧道端头常用土体加固方式及设计方法进行了对比分析,运用解析解验算了当采用三轴深搅+高压旋喷加固方式时土体加固尺寸及其稳定性,从位移场和应力场出发在封门拆除工况下对不同加固范围的始发掘进进行了数值模拟分析,给出了该加固方式具体加固范围。
     (3)结合数值模拟,确定了当采用杯型水平冻结加固方式时的加固范围,设计了该冻结加固方案及工艺,分析了大直径杯型冻土壁的温度场发展与分布规律以及盐水温度、导热系数、容积热容量、相变潜热和原始地温等因素对杯型冻土壁温度场的影响,比较研究了不同土层下该温度场发展规律的差异性,得出温度下降速度由快到慢和形成冻土帷幕厚度从大到小为砂土水泥土>砂土>粘土水泥土>粘土,砂土水泥土与砂土比粘土水泥土与粘土的冻土壁交圈时间早4天。
     (4)确定了当采用三轴深搅+垂直冻结加固方式的设计方案,对垂直冻土墙的温度场发展与分布规律进行了分析,比较研究了不同冻结管直径和间距下该温度场发展规律的差异性,得出随着冻结管直径的增大和间距的减小,冻结壁交圈时间线性减小,最终形成的垂直冻土墙也越厚,在冻结前期影响尤其明显。
     (5)对三种加固方式进行比选,提出了宜采用的加固方式和实际工程采用的加固方式及工艺,并结合实际采用的加固方式对不同工况下盾构始发掘进进行了数值模拟分析。
     (6)结合实际采用的加固方式,对垂直冻结施工进行了现场实测研究,详细分析了始发端垂直冻土墙在积极冻结和维护冻结阶段的温度变化规律,以判断冻土墙是否达到设计要求及确定洞门凿除和盾构始发时机,得出水泥土加固后比未加固时的原始地温高出17℃~23℃且可大大拟制冻胀变形。
With the increasing accomplishments of numerous crossing-sea transportation tunnels, there aremore and more large-diameter-long-distance shield tunnel projects under construction. Inpractice, the larger the tunnel section is, the higher the risk of tunnel’s entering and exiting willface. Especially in the condition of sandy soil with high water pressure, it is a big issue how toscreen out the optimal method to enhance the tunnel end and guarantee the security when largediameter shield enter and exit during construction. Based on the shield launching project ofcrossing-river tunnel construction of Nanjing Subway Line10, my dissertation, by combiningthe execution of lab tests, numerical simulation, theory study, engineering application andpractical measurements, studied and compared reinforcement methods and evaluate theirsecurity in the project. First, two typical soils, collected on the site of shield launching project,were tested in terms of thermo-physical property and the mechanical characters before and afterthe cement improvement, respectively. Second, numerical analysis and comparison among threefrequently employed reinforcement methods were carried out. The relative data were analyzedand the optimal method was then proposed. Third, combined with the adopted method inpractice, numerical simulation to shield launching was made under different constructioncircumstances. Additionally, onsite measurement research was conducted on the vertical frozenconstruction. This paper mainly focused and drew the conclusions as follows:
     1. Lab tests were conducted to study the thermo-physical property and the mechanicalcharacters of the two typical types of soil collected at the tunnel ends, before and aftercement improving, respectively. The thermo-physical and mechanical parameters of the soilat the ends used in the numerical analysis are suggested.
     2. The common used methods of soil reinforcement at the ends of shield tunnel and theirdesign procedures are compared and analyzed. The reinforcement sizes of the soil under themethods of triaxisal deep mixing and high-pressure rotary spray and its stability is checkedby analytical solution algorithm; the initial excavation of different reinforcement areas isnumerically analyzed in terms of displacement and stress field with the door demolished,and the specific reinforcement scope of these methods and related reinforcement techniquesare given.
     3. Combined with the numerical simulation, the scope for cup-shaped horizontal freezingreinforcement was determined. The design and operational technologies of the freezingreinforcement were explored, consisting of the analysis for the temperature fielddevelopment and distribution pattern of the big-diameter-cup-shaped frozen soil wall, andthe impact from the surrounding factors, including the temperature of saline water,coefficient of heat conductivity, the thermal capacity of the volume, the latent heat of phasechange and the original earth temperature. Research is carried out to compare thedevelopment and distribution of this temperature fields in different circumstances such ascement sandy soil, sandy soil, cement clay and clay.
     4. The design scheme is determined, in which the reinforcement methods of triaxial deep mixing and vertical freeze are adopted. The development and distribution of the temperaturefields of the vertical frozen soil wall is studied. Research is conducted to compare thedevelopment and distribution of this temperature field in different diameters of freezingpipe and spacings between freezing pipes.
     5. Comparisons are made among the three reinforcement methods studied above, andadoptable reinforcement methods are put forward; the reinforcement method applied in realproject as well as its operational techniques were introduced; and combined with adoptedreinforcement methods, numerical analysis is conducted upon the initial shield excavationunder different construction circumstances.
     6. Combined with reinforcement methods adopted in practice, onsite measurement research iscarried out on vertical freezing construction; the rules of the temperature change of verticalfrozen soil wall in the launching project during the phases of positive freezing andmaintained freezing are analyzed in detail to judge whether the vertical frozen soil wall hasmet the demand of design and determine the timing of hole excavation and shieldlaunching.
引文
[1]殷宗泽等编著.土工原理[M].北京:中国水利水电出版社,2007.
    [2]龚晓南主编.地基处理手册(第三版)[M].北京:中国建筑工业出版社,2008.
    [3]王梦恕等著.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010,5.
    [4]张凤祥,傅德明,杨国祥等编著.盾构隧道施工手册[M].北京:人民交通出版社,2005,5.
    [5]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004,8.
    [6]地盘工学会著,牛清山等译.盾构法的调查·设计·施工[M].北京:中国建筑工业出版社,2007.
    [7]上海市土木工程学会,上海隧道工程股份有限公司主编.大直径隧道与城市轨道交通工程技术:2005上海国际隧道工程研讨会文集[M].上海:同济大学出版社,2005.
    [8] W.D.Wang et al. General Report on Technical Session4B: Deep Excavation, Tunneling andGroundwater controlling[C].17th International Conference on Soil Mechanics and GeotechnicalEngineering, Alexandria, Egypt,2009.
    [9] Benz, T. Small-strain Stiffness of Soils and its Numerical Consequences [D].Ph.D. thesis, UniversityStuttgart, Stuttgart, Germany,2007.
    [10] Li, Y., Zhang, Z.X., Emeriault, F., and Kastner, R..Stability analysis of large slurry shield-driven tunnel insoft clay[C]. Proceedings of the6th International Symposium(IS-Shanghai2008), Shanghai, China,10-12April2008, CRC Press/Balkema, pp:689-696.
    [11] Powrie, W. and Preen, M..Time-drawdown behaviour of construction dewatering systems in fine soils[J].Geotechnique,44(1):83-100.
    [12] Ou, C.Y., Hsieh, P.G., and Chiou, D.C.. Characteristics of ground surface settlement during excavation[J].Canadian Geotechnical Journal,30(5):758–767.
    [13] Ge, S., Liao, S., Chen, L., and Chen, D.. Influence of construction and operation of metro tunnel onsettlement of ground buildings and countermeasures[J]. Chinese Journal of Rock Mechanics andEngineering,27(3):550-556.
    [14] Hu, Z.F., Yue, Z.Q., Zhou, J., and Tham, L.G.. Design and construction of a deep excavation in soft soilsadjacent to the Shanghai Metro tunnels[J]. Canadian Geotechnical Journal,40(5):933-948.
    [15] Leung E.H.Y., and Ng C.W.W.. Wall and ground movements associated with deep excavations supportedby cast in situ wall in mixed ground conditions[J]. Journal of Geotechnical and GeoenvironmentalEngineering, ASCE,133(2):129-143.
    [16] Huang, H.W., and Chen, L.. Risk analysis of building structure due to shield tunneling in urban area[C].Proceedings of Geoshanghai, ASCE, Geotechnical Special Publication, No.155, pp:150-157.
    [17] Shen, S.L., Horpibulsuk, S., Liao, S.M., and Peng, F.L.. Analysis of the behavior of DOT tunnel liningcaused by rolling correction operation[J]. Tunneling and Underground Space Technology.2009(24):84-90.
    [18] Hu, X.D.. Laboratory research on properties of frost heave and thaw settlement of cement-improvedShanghai’s grey-yellow silty sand[J]. Journal of China Coal Society,34(3):334-339.
    [19] YANG Ping, ZHU Fengbin.Application of Freezing Method to Recover Tunnel Accident in ComplexStratum of Nanjing Subway[C].Singapore:International Conference on Geotechnical Engineering forDisaster Mitigation&Rehabilitation2005.World Scientific Publishing Company,ISBN981-256-469-1.2005.
    [20] YANG Ping, KE Jieming, WANG J G, et al. Numerical simulation of frost heave with coupled waterfreezing, temperature and stress fields in tunnel excavation[J].Computers and Geotechnics,2006,33(6-7):330-340.
    [21] HU Jun, YANG Ping, Dong Chaowen,et al. Study on Numerical Simulation of Cup-shaped HorizontalFreezing Reinforcement Project near Shield Launching[C]. China:2011International Conference onElectric Technology and Civil Engineering (ICETCE), IEEE. ISBN978-1-4577-0288-4.2011.
    [22]王效宾.人工冻土融沉特性及其对周围环境影响研究[D].南京:南京林业大学,2009,6.
    [23]王效宾,杨平,王海波等.冻融作用对黏土力学性能影响的试验研究[J].岩土工程学报,2009,31(11):1768-1772.
    [24]胡俊.苏州地铁盾构隧道端头加固方式及其关键问题研究[D].南京:南京林业大学,2009,6.
    [25]夏江涛.盾构出洞水平冻结加固杯型冻土壁温度场研究[D].南京:南京林业大学,2009,6.
    [26]张婷.人工冻土冻胀、融沉特性试验研究[D].南京:南京林业大学,2004,6.
    [27]袁云辉.盾构进出洞水平冻结冻土帷幕解冻方式及解冻规律研究[D].南京:南京林业大学,2010,6.
    [28]袁云辉,杨平,江天堑.复杂环境下浅埋暗挖隧道穿越薄富含水层冻结温度场研究[J].岩土力学,2010,31(增刊):388-393.
    [29]陈成.承压含水层盾尾密封加固长距离液氮冻结研究[D].南京:南京林业大学,2011,6.
    [30]陈成,杨平,张婷等.高承压含水层中更换盾尾刷长距离液氮冻结技术[J].施工技术,2011,40(4):74-77.
    [31]陈成,杨平,张婷等.长距离液氮冻结加固高承压富含水层温度实测研究[J].岩土工程学报,2012,34(1):145-150.
    [32]王海波,杨平,何忠意.孔隙率与饱和度对粉土导热特性的影响[J].南京林业大学学报(自然科学版),2012,36(2):42-46.
    [33] Zhang, D.M., Bao, H.L., and Huang, H.W.. Prediction for long-termsettlement of Shanghai Yangtze RiverTunnel[C]. Proceedings of the6th International Symposium (IS-Shanghai2008), Shanghai, China,10-12April2008, CRC Press/Balkema, pp:253-258.
    [34] Ministry of Housing and Urban-Rural Development of the People's Republic of China (MHURD)..Guidelines of Risk Management for Metro Tunneling and Underground Engineering Works. ChinaArchitecture&Building Press, Beijing.
    [35] Broms,B.B.,Benermark,H.(1967).Stability of clay at vertical openings. ASCE Journal of SoilMechanical and Foundation Engineering Division SMI.Vol.93.pp:71-94.
    [36] Peck,R.B.(1969). Deep excavations and tunneling in soft ground. Proc.7th Int. Conf. Soil Mechanical andFoundation Engineering. Mexico City. State of theArt. Vol. pp:225-290.
    [37] Peck,R.B., Hendron,A.J. et al.(1972). State of the art of soft ground tunneling. Proc.1972RETC.(Chicago).1.pp:259-280.
    [38] Kimura, T. and Mair, J.R.(1981). Centrifugal testing of model tunnels in soft clay. Proc.10th lnt. Conf. SoilMechanical and Foundation Engineering.(Stocklom).2.pp:.319-322.
    [39] Cornejo, L.(1989). Instability at the face:its repercussions for tunneling technology. Tunnels andTunnelling.21.pp:69-74.
    [40] Ellstein,A.R.(1986). Heading failure of lined tunnels in soft soils. Tunnels and Tunnelling. l8.pp:5l-54.
    [41] Egger, P.(1980).Deformation at the face of the heading and determination of the cohesion of the rockmass. Underground Space Technology.4.pp:313-318.
    [42] Davis, E.H., Gunn, M.J. et al.(1980).The stability of shallow tunnels and underground opening in cohesivematerial, Geotechnique.Vol.30.(4).pp:397-419.
    [43] Leca,E.(1990). Analysis of NATM and shield tunneling in soft ground. PhD Thesis, Virginia PolytechnicInstitute and State University.
    [44] Sloan, S. W. and Assaddi. A.(1993). Stability of shallow tunnels in soft ground. Predictive Soil Mechanics.Proc. Wroth memorial symposium. Oxford.1992, Thomas Telford. pp:644-663.
    [45] Atkinson,J.H., Potts, D.M.(1977). Subsidence above shallow tunnels in soft ground. Proc. ASCEGeotechanical Eng. Div.Vol.103.(4).pp:307-325.
    [46] Atkinson, J.H., Potts, D.M. et al.(1977). Centrifugal model tests on shallow tunnels in sand. Tunnels andTunnelling.Vol.9(l).pp:59-64.
    [47] Chambon, P. Corte, J.F.(1994). Shallow tunnels in cohesionless soil: stability of tunnel face. Journal ofGeotechnical Engineering. ASCE,Vol.120.(7).pp:1150-1163.
    [48] Leca, E. and Dormieux, L.(1990). Upper and lower bound solutions for the face stability of shallowcircular tunnels in frictional material. Geotechnique. Vol.40.(4).pp:581-605.
    [49] Anagnostou,G., Kovari,K.(1996). Face stability in slurry and EPB shield tunneling. Proc. GeotechnicalAspects of Underground Construction in Soft Ground.(eds Mair, R.J.&Taylor,R.N).Balkema,pp:35-42.
    [50] Hong, Sung Wan.(1984). Ground movements around model tunnels in sand. PhD Thesis, University ofIllinois at urban-champain.
    [51] Domon,T., Kondon,T., et al.(1998). Model tests on face stability of tunnels in granular material. Proc.Tunnels and Metropolises.(eds Negro Jr&Ferreira).pp:201-214.
    [52] Mair, R.J.(1996). Settlement effects of bored tunnels. Session Report, Proc. Geotechnical Aspects ofUnderground Construction in Soft Groud.(eds Mair, R.J.&Taylor, R.N). Balkema, pp:43-53.
    [53] Komiya, K., Shimizu, E., et al.(2000). Earth pressure exerted on tunnels due to the subsidence of sandyground. Proc. Geotechnical Aspect of Underground Construction in Soft Ground.(eds Kusakabe, Fujita&Miyazaki). Balkema.pp:397-402.
    [54]王云峰,柴春明,王兵.浅埋隧道荷载破裂角的统计特征[J].兰州铁道学院学报,1998,17(3):16-20.
    [55]騫大锋,王兵,谢世昌.土砂互层中浅埋隧道的破裂角及破坏试验研究[J].兰州铁道学院学报,1999,18(3):25-29.
    [56]徐东,周顺华等.上海粘土的成拱能力探讨[J].上海铁道大学学报,1999,20(6):49-54.
    [57]张庆贺,唐益群,杨林德.盾构进出洞注浆加固设计与施工技术研究[J].地下工程与隧道,1993,4:93-100.
    [58]韦良文,吴韬,张庆贺.大直径盾构隧道出洞段土体稳定性分析[J].低温建筑技术,2006,110(2):85-86.
    [59]吴韬,韦良文,张庆贺.大型盾构出洞区加固土体稳定性研究[J].地下空间与工程学报,2008,4(3):477-484.
    [60]朱学银,岳丰田,张勇.盾构出洞冻结加固拱棚结构的力学模型分析[J].现代隧道技术,2008,45(1):35-38.
    [61]胡俊,杨平,董朝文等.盾构始发端头化学加固范围及加固工艺研究[J].铁道建筑,2010,2:47-51.
    [62]江玉生,王春河,江华等编著.盾构始发与到达——端头加固理论研究与工程实践[M].北京:人民交通出版社,2011,5.
    [63]郝振宇,江玉生,江华.考虑尺寸效应的盾构始发与到达端头加固研究[J].市政技术,2011,29(6):79-83.
    [64]杨永浩,沈东.大直径涵洞施工中盾构进出洞口的土体加固试验研究[J].地下工程与隧道,1993,4:12-15.
    [65]肖忠华.上海软土二次冻融土工程性质试验研究[D].上海:同济大学,2007.
    [66]谭丽华.水泥改良土冻胀融沉特性研究[D].上海:同济大学,2008,3.
    [67]黄峰.含盐土层人工冻土帷幕计算方法研究[D].上海:同济大学,2008,3.
    [68]肖朝昀.人工地层冻结冻土帷幕形成与解冻规律研究[D].上海:同济大学,2007,7.
    [69]肖朝昀,胡向东.上海人工冻结土层热物理参数[J].福建工程学院学报,2009,7(6):638-641.
    [70]杨平.原状土与冻融土物理力学性能差异性研究[J].南京林业大学学报,2001,25(2):68-70.
    [71]王效宾,杨平,张婷.人工冻土融沉特性试验研究[J].南京林业大学学报(自然科学版),2008,32(4):108-112.
    [72]张婷,杨平.不同因素对浅表土冻结温度的影响[J].南京林业大学学报(自然科学版),2009,33(4):132-134.
    [73]张婷,杨平,王效宾.浅表土人工冻土冻胀特性的研究[J].南京林业大学学报(自然科学版),2010,34(4):65-68.
    [74]贺俊.苏州地铁典型土层冻土物理力学特性研究[D].南京:南京林业大学,2010,6.
    [75]贺俊,杨平,何文龙.苏州地铁典型土层冻土力学特性研究[J].水文地质工程地质,2010,37(5):72-76.
    [76]鲍俊安,杨平,陈成.基于灰色关联优势分析冻胀融沉影响因素研究[J].路基工程,2012,160(1):21-23.
    [77]张庆贺,唐益群,杨林德.隧道建设盾构进出洞施工技术研究[J].地下空间,1994,(2):110-119.
    [78]吴韬.大型盾构进出洞施工技术及加固土体受力机理分析[D].上海:同济大学,2006,3.
    [79]韦良文.泥水盾构隧道施工土体稳定性分析与试验研究[D].上海:同济大学,2007,11.
    [80]张朝彪,金福强等.不同地质条件下盾构进出洞施工技术研究[J].江苏建筑,2010,4:62-65.
    [81]高成梁,梁小强.旋喷桩在盾构法隧道端头井洞口土体加固工程中的应用[J].探矿工程(岩土钻掘工程),2009,12:69-72.
    [82]樊姝芳,朱苦竹,樊有俊.某盾构隧道三重管高压旋喷桩施工技术[J].工程质量,2010,7:25-28.
    [83]武有根.软土地层SMW工法盾构出洞施工技术[J].地下空间与工程学报,2005,1(7):997-1000.
    [84]王平化.SMW工法在川气东送管道工程安庆长江穿越盾构隧道始发竖井的应用[J].建设机械技术与管理,2009,1:85-93.
    [85]秦爱芳,李永和.人工土层冻结法加固在盾构出洞施工中的应用[J].岩土力学,2004,25(增刊):449-452.
    [86]杨太华,陈细华.越江隧道大型泥水盾构进出洞冻结加固施工技术[J].浙江交通职业技术学院学报,2005,6(1):1-4.
    [87]英旭,蒋岳成,李曦.杯型水平冻结工法在盾构进洞施工中的应用[J].中国市政工程,2006,4:52-55.
    [88]高宗正,林聿羣,陈敬贤.冷冻工法之风险管理暨施工案例探讨[J].地下空间与工程学报,2008,4(4):720-727.
    [89]杨平,佘才高,董朝文,柯洁铭,张婷.人工冻结法在南京地铁张府园车站的应用[J].岩土力学,2003,24(增刊):388-391.
    [90]杨平,袁云辉,佘才高等.南京地铁集庆门盾构隧道进洞端头人工冻结加固温度实测[J].解放军理工大学学报(自然科学版),2009,10(6):591-596.
    [91]袁云辉,杨平.冻结加固盾构端头土体温度场数值分析[J].地下空间与工程学报,2010,6(5):1053-1059.
    [92]王效宾,杨平,张婷,王海波.盾构出洞水平冻结解冻温度场三维有限元分析[J].解放军理工大学学报(自然科学版),2009,10(6):586-590.
    [93]王效宾,杨平,胡俊.人工冻土融沉对地层位移场影响的三维有限元分析[J].煤田地质与勘探,2011,39(6):54-57.
    [94]夏江涛,杨平.盾构出洞水平冻结加固杯型冻土壁温度场数值分析[J].河南科技大学学报(自然科学版),2010,31(3):58-62.
    [95]王杰,杨平,王许诺等.盾构始发水泥土加固后水平冻结温度实测研究[J].现代隧道技术,2011,48(6):99-104.
    [96]段志宏.水平深孔注浆在地铁盾构端头加固中的应用[J].铁道标准设计,2010,10:119-121.
    [97]曹思诚,谢雪,王海.软土地层盾构过河端头加固水平注浆的应用[J].建筑科技,2010,2:37-40.
    [98]喻涛峰.前进式水平注浆加固在天津软土中的应用[J].隧道建设,2011,31(增刊):157-161.
    [99]柯武德.控制性低强度材料在潜盾到达工作井应用案例之探讨[J].岩石力学与工程学报2004,23(增2):4865-4869.
    [100]孙慧.纤维筋混凝土在盾构隧道进发口的应用研究[D].武汉:华中科技大学,2007,6.
    [101]杨红军.玻璃纤维筋在盾构井围护结构中的应用[J].隧道建设,2008,28(6):711-715.
    [102]朱大宇.GFRP筋地下连续墙的施工应用研究[D].上海:同济大学,2008,1.
    [103]王礼贵.人工挖孔桩在泥水盾构始发端头中的应用[J].广东土木与建筑,2006,11:6-8.
    [104]黄震江,林尚连.盾构始发段管井降水土体加固技术[J].施工技术,2009,38(增刊):273-275.
    [105]曾晖,杨平,胡俊.特殊地层下盾构始发端头加固技术实例研究[J].铁道建筑,2011,2:79-81.
    [106]孙振川.城市地铁盾构法隧道软土地段端头地层加固技术[J].西部探矿工程,2003,10:81-83.
    [107]胡新朋,孙谋,王俊兰.软土地区地铁盾构施工端头土体加固要求探讨[J].隧道建设,2006,26(5):11-13.
    [108]辛振省,王金安,马海涛,彭加强.盾构始发端预加固合理范围研究[J].地下空间与工程学报,2007,3(3):513-518.
    [109]侯永峰,曹瑞琅,汪宏伟.不同预注浆加固范围时盾构机始发稳定分析[J].探矿工程(岩土钻掘工程),2010,37(1):70-73.
    [110] Zeng Hui, Hu Jun, Yang Ping. A Numerical Simulation Study on the Chemical Reinforcement Area atShield Start Shaft[C].China:2011International Conference on Electric Technology and CivilEngineering(ICETCE), IEEE. ISBN978-1-4577-0288-4.2011.
    [111]何小玲,张帆.上海翔殷路隧道盾构进洞口地基处理技术[J].地下工程与隧道,2006,3:30-32.
    [112]王灵敏,王文升.局部冻结法加固土体在大直径盾构出洞中应用[J].地下工程与隧道,2006,1:39-41.
    [113]高军,赵运臣.武汉长江盾构隧道洞口浅埋段施工地层稳定性数值分析[J].隧道建设,2007,27(1):8-12.
    [114]盛延仲.上海越江隧道盾构机出洞地层冻结加固技术[J].现代交通技术,2008,5(2):56-59.
    [115]郝继锋,李明新.冷冻封水技术在南水北调中线穿黄隧洞盾构始发中的应用[J].南水北调与水利科技,2008,6(6):13-15.
    [116]于澎涛.南水北调中线穿黄隧洞盾构始发技术[J].南水北调与水利科技,2008,6(4):54-57.
    [117]韩吉平.穿黄工程泥水加压平衡盾构机始发技术[J].水利水电施工,2008,2:38-40.
    [118]陈健.超大直径泥水盾构始发建舱技术[J].现代交通技术,2009,6(3):77-79.
    [119]杨纪彦.超大直径泥水盾构到达施工技术[J].隧道建设,2009,29(5):548-551.
    [120]杨纪彦.超大直径泥水盾构冷冻始发施工技术[J].现代隧道技术,2010,47(3):60-66.
    [121]康杰.11.58m大直径泥水盾构出洞止水工艺研究[J].地下空间与工程学报,2011,7(5):957-976.
    [122]张兆逵.新型双圆盾构机的进出洞施工技术[J].建筑施工,2006,28(10):759-764.
    [123]李罡,黄宏伟.超大直径盾构水中进洞风险分析[J].地下空间与工程学报,2009,5(增刊):1422-1426.
    [124]刘凌云,杨德磊,郭海柱.隧道盾构进出洞施工风险分析[J].低温建筑技术,2010,8:51-53.
    [125]刘兵科,石萌.盾构250m半径曲线始发段管片姿态控制技术[J].建筑技术,2009,40(11):970-972.
    [126]马龙,邓永红.盾构机小曲线半径始发技术[J].施工技术,2009,38(增刊):65-68.
    [127]郑坚.双圆盾构机转弯进出洞与过站施工技术的研究[J].建筑施工,2010,32(5):371-372.
    [128]李飞,凌波.盾构到达接收辅助装置的设计[J].建筑机械化,2009,9:66-68.
    [129]汤泳,刘玮.广州地铁盾构到达密闭接收装置技术应用[J].施工技术,2010,39(5):6-8.
    [130]李奕,钟志全.泥水盾构到达施工新技术[J].建筑机械化,2010,1:70-72.
    [131]赵峻,戴海蛟.盾构法隧道软土地层盾构进出洞施工技术[J].岩石力学与工程学报,2004,23(增2):5147-5152.
    [132]康宝生,陈馈,李荣智.南京地区盾构始发与到达施工技木[J].建筑机械化,2004,2:25-29.
    [133]倪至宽,郑文杰,赖旭明.潜盾机在到达井外侧地盘中安全弃壳之案例研讨[J].隧道建设,2007,增刊:387-396.
    [134]戴志仁,张心旷.上海某地铁盾构隧道进出洞地基加固处理[J].施工技术,2008,37(11):103-105.
    [135]徐成家,王俊东.盾构法隧道始发段引起的地表沉降分析[J].铁道勘察,2009,6:91-93.
    [136]武艳霞.盾构机反力架结构的设计及应用[J].筑路机械与施工机械化,2009,2:64-66.
    [137]马汉春,王旭由,伟车平.某地铁隧道盾构机始发阶段地面塌陷原因分析[J].现代隧道技术,2010,47(3):76-80.
    [138]鲍永亮,郑七振,唐建忠.上海软土地层盾构始发施工技术[J].铁道工程学报,2010,3:118-122.
    [139]吕岗.富水砂层盾构始发井防涌水检测与加固[J].铁道建筑技术,2010,1:21-24.
    [140]南京地铁十号线(西延线)DW-XK01-0000-1006标勘察部.江心洲~中间风井区间岩土工程初步勘察报告[R].南京:江苏省水文地质工程地质勘察院,2011.
    [141]岳戈,陈权等编著.ADINA应用基础与实例详解[M].北京:人民交通出版社,2008,7.
    [142]马野,袁志丹,曹金凤编著.ADINA有限元经典实例分析[M].北京:机械工业出版社,2011,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700