土石坝抗滑稳定性与砂层地基液化的可靠度理论与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在深入系统地研究了土石坝抗滑稳定的可靠度理论和地基砂层的地震液化的可靠度理论基础上,结合本人承担或参加的冶勒堆石坝抗滑稳定的可靠度研究、永乐水电站厂房地基处理及砂层液化研究、紫坪铺水库淹没区213国道改线工程石门坎滑坡稳定性研究等试验、科研和施工项目的进行而完成的。土石坝的可靠度分析因涉及坝基多种土层与坝体多种材料的岩土参数的统计特征,加上所受荷载复杂,进行可靠度稳定分析难度较高。在遭遇渗流和地震等动力荷载时,坝基砂土液化判别是很复杂的,其可靠度分析难度更高。本文旨在建立坝体和坝基抗滑稳定的可靠度、地基土液化稳定的可靠度模式,解决其可靠度计算问题。主要进行以下几方面的研究工作并取得了相应成果。
     岩土的物理性质和力学参数为随机变量,在母体分布拟合优度检验中存存一组数据同时通过多个概率分布模型的可能。为解决选择母体分布类型问题,可用似然比检验来进行分布择优。论文以冶勒水库土石坝为例分别对坝基土体与坝体填筑材料的物理性质和力学参数概率特征与概率分布模型进行的分析研究。对于大致均匀的土层或性质差别不大的土层,其土工参数应具有相同或相近的自相关特性,表现为有相同的自相关函数形式及相关范围。
     Cornell定义的结构可靠度指标β=(μ_M)/(σ_M),β的取值依赖于特定展开点的选择。Hasofer和Lind建议根据临界破坏面而不是极限状态方程定义失效模式的可靠度指标β。Rackwitz和Fiessler提出了推广的H-L算法,考虑到变量可能为正态分布,对数正态分布和极值I型分布等分布类型,R-F算法被国际结构安全性联合会(JCSS)所推荐,又叫JC法。Monte-Carlo模拟方法的基本思想是:若已知随机变量X_1,X_2,…,X_k的概率分布,根据随机变量X_1,X_2,…,X_k的分布利用Monte-Carlo方法产生相应分布的一组随机数X_1,X_2,…,X_k,代替试验值。将这组随机数代入极限状态方程Z=(X_1,X_2,…,X_k),便可得到随机变量Z的一个样本Z_1.Z_2,…,Z_n,其中Z_j=g(X_(1i),X_(2i),…,X_(ki)),若Z_1,Z_2,…,Z_n中有M个z<0,则破坏概率的
    
    第V页
    西南交通大学博士学位研究生论文
    估计量、随机变量z的均值和均方差的估计量分别为弃一M‘N,户:=
    土丫Z‘
    N廿‘
    在估计失效概率的标准差时,可用其估计量弃来代替Pr。用Jacob‘数学变换方
    法将互为相关的岩土参数r、。、f转换为相互独立的随机变量,使问题简化为按
    独立空间计算失效概率Pf和可靠度指标p。
     从材料的细观力学特性入手,到宏观的统计尺寸效应,讨论了岩土工程试
    验中存在不同尺寸的试样,其试验成果有明显的差异。在岩土参数取值中引入
    了纤维束理论解决试验的尺寸效应,用纤维束理论讨论了小尺寸、中尺寸、大
    尺寸试样的尺寸效应关系,通过Monte一Carlo随机抽样的模拟验证,土体强度存
    在尺寸效应,集团抽样方式反证了小尺寸试样强度的平均值不能代表中尺寸、
    大尺寸试样的强度,中尺寸和大尺寸试样的强度代表性更好。并与工程中边坡
    稳定性分析结合,岩土参数取值考虑尺寸效应,则土坡有一致的抗滑稳定安全
    系数水平。文中用一实例示范了尺寸效应如何影响边坡稳定性计算结果。
     推导了简化毕肖普法的极限状态方程,对边坡稳定的可靠度以1个工程实
    例进行了示范,即冶勒土石坝的稳定性计算与稳定可靠性分析,以大尺寸的现
    场原位试验数据为基础,在合理划分样本总体的情况下,岩土体物理性质指标
    和力学参数作为随机变量的概率特征与概率分布模型合理,并可以得到变异系
    数较小的土性参数统计值。考虑随机变量间的相关性,采用Jacobi正交变换法
    将相关的随机变量转变为相互独立的随机变量。实例比较了常规稳定性分析与
    可靠度稳定分析的差异性;在抗滑稳定分析中,考虑渗透压力的计算结果更精
    确;对同一工况下安全系数k=1 .0时存在多个滑面,但各滑面稳定的可靠性指标
     (p)不相同。
     砂层地震液化的判别分为初判和复判两步,初步判别按土层的地质条件或
    土层剪切波速度Vs与土层的上限剪切波速度Vs:的比值进行判别。当该砂层初判
    为可能液化,则应进行复判。复判方法有两类:一类是依据现场试验的静力触
    探强度和标准贯入试验的击数方法;二类是依据室内实验的三轴动强度的动剪
    
    西南交通大学博士学位研究生论文
    第Vl页
    应力比法。对砂土液化评判的方法进行了系统总结,并以永乐水电站为例,用
    砂土液化的综合判别指导了永乐水电站厂房地基处理。提出了旋喷桩施工过程
    中高压水气产生的上体液化与基坑内的渗透液化的祸合问题,分析了液化的祸
    合的机理,提出了防止液化的祸合的条件为:保持基坑内的水力坡降今义(浮
    容重厂,水容重入,)。推导了基于动力三轴试验的动剪应力比的液化极限状态
    方程。指出无量纲动强度:刹对液化判别的机理,编制了液化可靠度计算程序,
    在Monte一Carlo随机模拟方法中,当抽样量MM达到1火1 04一1又l护次时,计算结
    果收敛。以民治水电站闸坝地基液化为例进行了液化的可靠水准I与水准H的分
    析:利用标准贯入试验液化判别,考虑到了土体的随机性,引进了具有概率意
    义的液化指数,计算的场地液化指数和?
The paper is based on researching reliability theory both the stability of earth and rock-filled dam and the liquefaction of sand foundation. The paper is finished combining with research projects and building projects, including reliability stability of Yele Earth and Rock-filled Dam, improvement research of sand foundation of Yongle Hydroelectric Power Station and stability investigation of Shimenkan slope on the National Road 213 in flood area in Zipingpu Reservoir. The reliability research of tall earth and rock-filled dam is tough task, because the analysis needs statistical data from many kinds of soil of the dam foundation and natural building materials. Especially when the dam encounter earthquake, the reliability analysis is more difficult. The liquefaction judge of sand foundation of dams is difficult problem. The reliability analysis of the problem is more difficult when the dam encounter earthquake plus seepage. The paper aims at building a series of model of reliability analysis, solving the computing of reliability both the stability of slope and the liquefaction of sand foundation. The following aspects of research work are done, and the research achievements are gained.Data of both the physical feature and the strength in soil and rock mass, which are used as foundation of the dam and natural building materials of dam, is random variable. The paper taken YeLe earth and rock-filled dam as an example, and the probability distribution models of the data is checked, and the statistical character of the data is analyzed.The paper have introduced three methods of reliability analysis: 1) Using First Order Second Moment (JC method) recommended by JCSS organization and national codes computes both failure probability and reliability index for independent variable; 2) Using Monte-Carlo random simulation calculates both failure probability and reliability index for independent variable; 3) Using Jacobi transfer method changes dependent variable into independent variable.Three scale type of soil strength tests; small, middle and big size is extensively existed in engineering practice. The data from different project have indicated the statistical scale effect of soil strength. In order to solve the dimension size effect in
    
    xperiment, the facsimile theory is adopted in determination the rock parameters. It is also used in discussing the size effect relationship of small, medium and large size samples. The results of research express that the strength of medium and large size samples have more suitable representative. The calculation results of an example explain how the size effect to influence the slope stability.The limit function of Bishop's Simplified method is deduced. The paper has taken stability analyses of practice engineering as an example. The example is Yele Earth and Rock-filled Dam. The coefficient of variation of soil strength is less, when the data from in-site tests with big size is reasonably divided into statistical groups. The model of probability distribution was checked. Jacobi transfer method is used to change dependant variable into independent. The results computed by the engineering example show that the deterministic stability method is consistent with reliability stability method. The seepage must be calculated in both the deterministic stability method and reliability stability method. The critical circles, factor of safety equate to 1.00, is more than one, but index of reliability ( ) in the critical circles is not equal.The liquefaction evaluating process of sand foundation for earthquake includes preliminary judge and precis judge. The methods of liquefaction evaluation are systematically summarized. The paper has taken Yongle Hydroelectric Power Station as an example, the results of liquefaction analysis aid to improve foundation of the powerhouse. Liquefaction couple from the seepage liquefaction of groundwater in the foundation pit and the liquefaction for jetting grounded pile with high-pressure gasified water was discovered during foundation pit excavated. The mechanism of liq
引文
[1] Freudenthal A M, Safety and The Probability of Structural Failure. ASCE Trans., 1956, 121: 1337—1397
    [2] 赵国藩、曹居易、张宽权,工程结构可靠度,水利水电出版社,1984
    [3] 王光远,工程软设计理论,科学出版社,1992
    [4] 高大钊.土力学可靠性原理.中国建筑出版社.1994
    [5] Ang A H-S, Tang W H, Probability Concepts in Engineering Planning and Design, Vol. 1, John Wiley & Sons New York,1975
    [6] Cornell C A, Structural Safety Specification Based on Second-Moment Reliability, Sym. Int. Assoc. of Bridge and Struct. Engr., London, 1969
    [7] Hasofer A M, Lind N C, Exact and lnvariant Second-Moment Code Format, J. Eng. Mech. Div., ASCE, 1974, 100(1): 111—121
    [8] Rackwitz R, Fiessler B, Structural Reliability under Combined Random Load Sequences, Computers and Structurers, 1978, 9, 489—494
    [9] Rosenblatt M, Remarks on Multivariate Transformation, Annals of Math. Statistics, 1952, 23, 470—472
    [10] Cornell C A, Bounds on The Reliability of Structural Systems, J. Struct. Div., ASCE, 1967, 93(ST1):
    [11] Ang A H-S, Amin M, Reliability of Structures and Structural Systems, J. Eng. Mech. Div., ASCE, 1968, 94(EM2): 671—691
    [12] Ang A H-S, Abdelnour J, Chaker A A, Analysis of Active Networks under Uncertianty, J. Eng. Mech. Div., ASCE, 1975, 101 (EM4): 373—387
    [13] Ang A H-S, Tang W H, Probability Concepts in Engineering Planning and Design, Vol. 2, John Wiley & Sons, New York, 1984
    [14] Ditlevsen O, Narrow Reliability Bounds for Structural Systems, J. Struct. Mech., 1979, 7(4): 453—472
    [15] 董聪,现代结构系统可靠性理论,博士学位论文,西北工业大学,1993
    [16] 董聪、夏人伟,现代结构系统可靠性评估理论研究进展,力学进展,1995,25(4),537—548
    [17] Baecher G B. Simplified geotechnical data analysis. Notes for NATO Advanced Study Institute on Structural and geotechnical Reliability, Demark, Aug. 1982
    [18] Soulie M et al. Modeling spatial variability of soil parameters. Canadian Geotechnical Journal. 1990. Vo27, 617—630
    [19] Mcphail G I, Fourie A B. A practical application of probabilistic slope stability analysis method. Proc. South African Geotech. Conf., 1986: 65—77
    [20] Meyerhof G G, Safety Factor in Soil Mechanics, Canadian Geotechnical Journal. 1970. Vo7(4), 349—355
    [21] Lumb P. The variability of natural soils. Canadian Geotechnical Journal. 1966. Vol 3, NO. 2: 74—97[12]
    [22] Lumb P. Precision and accuracy of soil test. Statistics and Probability in Civil Engineering, Hong Kong, 1971: 329—346
    [23] Lumb P. Statistics methods in soil investigations. Proc. 5th Australia—New Zealand and Conf. on Soil Mech. And Found. Engrg., 1967: 26—33
    [24] Lumb P. Spatial variability of soil properties. Proc. 2nd Int. Conf. on Application of Statistics and Probability, 1975; 2: 397—421
    [25] Corell C A. First—order uncertainty analysis of soils deformation and stabilitv., Proc. 1st Int. Conf. on Application of Statistics and Probability, 1971; 129—144
    [2
    
    [26] 周江平,彭雄志,赵善锐.复杂地基上高土石坝坝体稳定可靠度分析.两南交通大学学报,V0l.33, No.5,1998
    [27] 周江平,彭雄志,赵善锐.西南交通大学地下及岩土工程系冶勒水电站坝基土层及现体材料的统计特征.1996.7
    [28] 孙万乔,黄传忠,港口工程地基稳定可靠性分析.港口工程,1989;(4):31—39
    [29] 翟亚军.土性指标统汁分析.港口工程,1989;(4):46—51
    [30] 翟亚军.土性指标统计分析(续).港口工程,1989;(4):46—51
    [31] 冯铭璋.沿海土层土性指标的统计分析.岩土工程学报.May, 1989.Vol 11、No.2
    [32] 张广文,刘令瑶.土石坝筑坝材料基本参数概率统汁与相关分析.水利水电技术,1994:(9)
    [33] E. H. Vanmarcke. Probabilistic Modeling of soil profiles. Journal of Geotechnical Engineering Division, ASCE. 1977. Vol. 103(11): 1227—1246
    [34] Ronold K O. et al. Model uncertainty representation in geotechnical reliability analysis. Journal of Geotechnical Engineering Division, ASCE. 1992. Vol. 118(3): 363—376
    [35] Alonson E E, Krizek R J. Stochastic formulation of soil properties. Proc. 2nd Int. Conf. on Application of Statistics and Probability to Soil and Structural Engineering, 1975; 2: 9—23
    [36] Castillo E, Alionson E E, Probabilistic versus deterministic modeling: Filling a gap. Proc. llth Int. Conf. on Soil Mech. and Found. Engrg., 1985: 2: 813—818
    [37] Tang W H. Principles of Probabilistic characterization of soil properties. Bridge between Theory and Practice. New York: 74—89
    [38] White W. Soil variability, characterization and modeling. Probabilistic Method in Geotechnical EngineeringCastillo E, Alionson E E, Probabilistic versus deterministic modeling: Filling a gap. Proc. 11th Int. Conf. on Soil Mech. and Found. Engrg., 1985: 2: 813—818
    [39] Jaksa M B, et al. Geostatistical modeling of the spatial variation of the shear strength of a stiff overconsolidated clay. Probabilistic Method in Geotechnical Engineering, Australia, Feb. 1993: 185—186
    [40] Chiasson P. et al. Characterizing spatial variability of a clay by geostatistcs. Can. geotech. J., 1995; 32: 1—10
    [41] Ravi V. Statistical modeling of spatial variability of undrained strength. Can. geotech. J., 1992; 29: 721—729
    [42] Degroot D J, Baecher G B. Estimating autocovariance of in-situ soil properties. Journal of Geotechnical Engineering, ASCE, 1993: (1): 147—165
    [43] Cherubini C, Giasi C I. The coeffients of variation of some geotchnical parameters. Probabilistic Method in Geotechnical Engineering, Australia, Feb. 1993: 84—93
    [44] Briud J L, Tucker L. Coeffieient of variation of in-situ tests in sand. Probabilistic Characterization of Soil Properties-Bridge between Theory and Practice, May 1984: 119—193
    [45] 付旭东.钻孔灌注桩可靠度理论和工程应用.[博士学位论文].成都:西南交通大学桥粱与隧道工程.1997.6
    [46] 付旭东,赵善锐.用蒙特卡洛(Monte-Carlo)方法计算岩土工程的可靠度指标.西南交通大学学报,1996,No.2
    [47] 高大钊.岩土工程的可靠性分析.岩土工程学报,1983:(3):124—134
    [48] 高大钊.土的抗剪强度指标的统计方法.工程勘察,1986;(4)
    [49] 高大钊等.地基土力学性质指标的可靠性分析与取值,同济大学学报,1995:(4):59—67
    [50] 高大钊.土工参数的自相关特性.第五届全国岩土力学数值分析与解析方法讨论会论文集,重庆,1994:
    
    [52] 包承纲.谈岩土工程概率分析法中的若干基本问题.岩土工程学报,1989;(4):94—98
    [53] 松尾稔,地基工程学—可靠性设计的理论和实际.北京:人民交通出版社,1990:39—84
    [54] 吴媚玲.水工建筑物.北京:清华大学出版社,1991,10
    [55] 陈明致,金来均.土石坝设计.水利电力出版社,1982
    [56] 河海大学土力学教研室.土工原理与计算.水利电力出版社
    [57] 郭诚谦,陈慧远编著.土石坝.水利电力出版社,1992.3
    [58] D. G. Frend &. F. Krahn. Comparison of slope stability methods of analysis. Canadian Geotechmical Journal, 1977. Vol. 14: 429—439
    [59] E. Spencer. A methods of analysis of the stability of embankments assuming parallel interslice force Geotechnoque. 1967. Vol. 17: 11—26
    [60] N. R. Morgenstern & V. Eprice. The Analysis of the stabilty of general slip surfance. Geotechnique. 1965. V105 NO. 1: 79—93
    [61] Zu-Yw Chen, N. R. Morgenstern. Extensions to the generalized method of slices for Stability analysis. Canadian Geotechnical Journal. 1982. Vol. 20: 104—119
    [62] 潘家铮.建筑物的抗滑稳定和滑坡分析.水利出版社,1980
    [63] K. S. Li, P. Lumb. Probabilistic design of slopes. Can. Geotech. J. 1987. 24: 520—535
    [64] 陈愈炯.从卡幸顿土坝滑坡中得到的启示.水利水电技术.1994. 第五期
    [65] E.H.Vanmark. Reliability of earth slopes, Journal of Geo. Eng. Div, ASCE. 1977. Vol. 103: 1247—1265
    [66] W.H.Tang. Recent developments in geotechnical reliability Proceedings of the conference on probabilistic methods in geotechnical Engineering. Canberra, Australia. 10—12, Feb. 1993: 3—27
    [67] C. P. Tan, I. B. Donald & R. E. Melchers. Probabilistic slip circle analysis of earth and rockfill dams. Proceedings of the confence on probabilistic methods in getechnical engineering. Canberra, Australia. 11—12, Feb. 1993: 281—288
    [68] Alonso E E. Risk analysis of slopes and its spplication to slopes in Canadian Sensitive clays. Geotechnique, 1976; 26: 453—472
    [69] 包承刚,于丽.土坡在非常条件下稳定分析的概率方法.岩土工程学报.May, 1989. V0l. 9, No. 3
    [70] 周维垣,杨若琼.坝坝肩岩体渐近破坏及可靠度分析.岩土工程学报.1987.V0l.6,No.4
    [71] 张兴,廖国华.多滑动面边坡的破坏概率.岩土工程学报.Nov,1990.V0l.12,No.6
    [72] 姚耀武,陈东伟.土坡稳定可靠度分析.岩土工程学报.May,1994.V0l.16,No.2
    [73] 郭诚谦.关于采用非线性抗剪强度分析堆石坝稳定性的商榷.水利水电技术.1993.2
    [74] 陈祖煜.边坡稳定分析—极限平衡法的改进和应用.[博士学位论文].北京:清华大学水利系.1993
    [75] 陈祖煜.土坡稳定分析通用条分法及其改进.岩土工程学报.Nov,1983.V0l.5,N0.4
    [76] 陈祖煜,邵长明.最优化方法在边坡最小安全系数方面的应用.岩土工程学报.Juty,1989.V0l.10,No.4
    [77] 华东水利学院主编.水工设计手册:第四卷土石坝.水利电力出版社,1984
    [78] 黄兴棣.工程结构可靠性设计.人民交通出版社,1989.1
    [79] G N.Smith著.曹炽康等译.土木工程实用概率和统计.同济大学出版社,1989.7
    [80] 颐淦臣.土石坝地震工程.河海大学出版社.1989,10
    [81] Seed H, B, and Idriss I. M, Simplified procedure for evaluating soil liquefaction potential[J]. Joural of Geotechnical Engineering, ASCE, 1971, 97(9): 1249—1273.
    [82] Seed H. B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Joural of Geotechnical Engineering, ASCE, 1979, 105(2): 201—255.
    [8
    
    [83] Youd T. L., Idriss I. M. et al. Liquefaction resistance of soil; Summary report from the 1996 NCEER and 1998NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J], Joural of Geotechical and Geoenvironmental Engineering. ASCE, 2001,127(8): 817—833.
    [84] [印度]S.普拉卡什编著,土动力学.水力电力出版社,1984.12
    [85] 汪闻韶编著,土的动力强度和液化特性.中国电力出版社,1997.03
    [86] 张克绪、谢君斐编著,土动力学.地震出版社,1989.12
    [87] 刘惠珊、张在明编著,地震区的场地与地基基础.中国建筑工业出版社,1994.05
    [88] 谢君裴.关于修改抗震规范砂土液化判别式的几点意见[J],地震工程与工程振动,1984,4(2);95—126
    [89] 陈国兴,张克绪,谢君裴.液化判别的可靠性研究[J],地震工程与工程振动,1991,11(2);85—96
    [90] 门福录.波在饱和流体的孔隙介质中的传播问题[J],地球物理学报,1981,24(1).
    [91] 苗天德,对饱和多孔介质波动问题中本构关系的探讨[J],力学学报,1995,27(5):536.
    [92] 王志良等,粘弹塑性十层地震反应的波动分析法[J],地震工程与工程振动,1981,1(1).
    [93] 门福录,地震波在含水地层中的弥散与耗散[J],地球物理学报,1984,27(1).
    [94] 汪闻韶,剪切波速在评估地基饱和砂层地震液化可能性中的应用.岩士工程学报.Nov., 2001.Vol 23,NO.6
    [95] 石兆吉,郁寿松,丰万玲.土壤液化势的剪切波速判别法[J],岩土工程学报,1993,15(1);74—80
    [96] 黄博,粉土和粉砂的动力特性及地震液化研究,[博士学位论文][D].浙江;浙江大学,2000
    [97] 催杰等,以剪切波速为宗量的一种沙土地震液化的不确定判别方法[J],地震工程与工程振动,1997,17(3).
    [98] 谢君裴.地震液化综述[A],魏琏,谢君装主编.中国工程抗震研究四十年[C],北京:地震出版社,1989,32—36
    [99] 陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[J],地震工程与工程振动,2002,22(1);145—151
    [100] 刘小生,饱和原状砂土的动力性质研究,[博士学位论文][D].北京;水利水电科学院,1990
    [101] 石兆吉,王兰民.土壤动力特性-液化势及危害性评价[ ],北京:地震出版社,1999,1—22
    [102] 陈文化等.建筑物非均质地基的地震液化有效应力判别法[J],水利学报,2000,10.
    [103] 陈文化,建筑物地基的地震液化问题[J],工程力学研究所,1999,6.
    [104] 张荣祥,石兆吉.利用qc,D50评价砂土地震液化势研究[J],地震工程与工程振动,1995,15(1);100—109
    [105] 汪明武,罗国煜.最优化法在砂土液化势评价中的应用[J],岩土工程学报,1999,21(6);704—706
    [106] 翁焕学.砂土地震液化模糊评判实用方法[J],岩土工程学报,1993,15(2);75—79
    [107] 蔡煜动,宫家文,姚林声.砂土液化预测的人工神经网络模型[J],岩土工程学报,1993,15(6);53—58
    [108] 汪明武,罗国煜.可靠性分析在砂土液化势评价中的应用[J],岩土工程学报,2000,22(5);542—544
    [109] C. Hsein Juang, David V. Rosowsky, and Wilson H. Tang Reliability-Based Method for assessing Liquefaction Poential of Soil[J], Joural of Geotechical and Geoenvironmental Engineering. ASCE, 1999, 125(8), 684—689.
    [110] Y. P. Vaid, J. D. Stedman, and Sivathayalan, Confining Stress and static shear effects in cyclic liquefaction[J], Can. Geotech, 2001, 38(), 580—591.
    [111] R. N. Chowdhury. Simulation of disk of progressive slope failure. Can. Geotech. J. 1992. 29: 94—102
    [112] R. N. Chowdhury & D. W. Xu. Geotechnical system reliability of slopes. Reliability [22]Engineering and System Safety. 1994. 47: 141—151
    [113] 周小谦.中国电力工业发展的前景(Development Prospects of China Power Industry)国家电力公司.国家 System Safety. 1994. 47: 141—151
    [1
    
    [113] 周小谦.中国电力工业发展的前景(Development Prospects of China Power Industry)国家电力公司.国电力信息网,2002.10
    [114] Bickel P J, Doksum K A. 数理统计—基本概念及专题,同济大学出版社,1987 1
    [115] 涂汉生,和平,赵联文.应用统计.西南交通大学出版社,1994.7
    [116] 黄克中,毛善培编著.随机方法与模糊数学应用.人民交通出版社,1989.1
    [117] 懂聪著,现代结构系统可靠性理论及其应用,科学出版社,2001
    [118] 张博庭,用有限比较法进行拟合优度检验.岩土工程学报.Nov,1991 Vol.13,No.6
    [119] 能源部,水利部.水利水电工程结构可靠度设计统一标准.中国计划出版社.1994
    [120] 付旭东.土工参数相关范围及相关距离的计算方法.西南交通大学学报,Vol.31,No.5,1996
    [121] 桑国光.结构可靠性原理及其应用.上海交通大学出版社,1986.12
    [122] 方再根.蒙特卡洛方法与计算机模拟.北京:北京工业学院出版社,1988
    [123] 徐钟济编著.蒙特卡罗方法.上海科学技术出版社,1985.6
    [124] Freudenthal A M, Statistical approach to brittle fracture. Ch 6 in Fracture 2, Liebowitz H ed. Acad Press, 591—619
    [125] Zdenek Bazant, Er-Ping Chen. Scaling of Structural Failure. Appl Mech Rev, 1997, 50(10): 593—627
    [126] Zdenek Bazant, Er-Ping Chen.(王文标,黄晨光,赵红平,张榕京,段祝平等译)结构破坏的尺度律。力学进展.,Vol29, No. 3, Agu. 1999
    [127] 尹双增.断裂.损伤理论及应用.清华大学出版社,1992.12
    [128] B. B. Mandelbort. The Fractal Geometry of Nature, Freeeman, San Francisco 1982
    [129] 蔡德所.复杂坝基与滑坡研究中的新方法.中国电力出版社,1998;9—26
    [130] 李后强,程光钺.分形与分维.四川教育出版礼,1990;
    [131] Gajanan M S. Harry G H, Richard N W. M Saeed Mirza(朱世杰,何保康,钱国芳,傅恒菁等译),结构模型和试验技术,中固铁道出版社(北京),1989
    [132] Daniels HE. The statistical theory of the strength of bundles of threads. ProuR. sov. A 1945, 183: 405—435
    [133] 陈运能,唐昕.化纤复丝强度与纤维根数的关系.江南大学学报(自然科学版).Vol. 2, No. 2, Jun. 2003: 176—178
    [134] 李炜疆.纤维束断裂过程中的临界现象.内蒙古大学学报(自然科学版).Vol.25,No.5,Sep.1994:497—503
    [135] 伍法权,徐嘉谟,王思敬.尺度相似变换中边坡工程行为变化的定性分析.工程地质学报.Vol6,No.2,Jun 1998
    [136] 能源部、水利部水利水电规划总院《水利水电工程结构可靠度设计统一标准》编制组.水利水电工程结构可靠度设计统一标准专题文集.四川科学技术出版社,1944.8
    [137] 水利电力部.碾压式士石坝设计规范(SDJ218-84).水利水电出版社.1981.4
    [138] 倪汉根,金崇磐.大坝抗震特性与抗震计算.大连理工大学出版社,1994,12
    [139] 周江平.复杂地基上高士石坝坝体稳定可靠度分析.[硕士学位论文].成都:西南交通大学岩土工程1997.7
    [140] 大连理工大学士木系地震研究室.冶勒水电站沥青混凝土心墙堆石坝散粒体模型动力试验研究.大连理工大学.1994.1
    [141] 中华人民共和国建设部.岩土工程勘察规范(GB50021-94).中华人民共和国建设部.中国建筑出版社.1995.3
    
    [142] 国家电力公司成都勘测设计研究院工程物探测试研究中心.213国道紫坪铺库区淹没段改建工程石门坎采空区专项工程地质勘察报告.国家电力公司成都勘测设计研究院.2003.10
    [143] 中华人民共和国水利部水利水电工程地质勘察规范(GB50287-99).中华人民共和圈建设部.中国计划出版社.1999
    [144] 汪闻韶,关于饱和砂土液化机理和判别方法的某些探讨[A].水利水电科学研究院论文集[C]:第16集.北京:水利电力出版社,1984.1~8
    [145] 汪闻韶,剪切波速在评估地基饱和砂层地震液化可能性中的应用.岩土工程学报,Nov., 2001. Vol. 23.NO. 6
    [146] Hust, R. E. Geotechnical Engineering Investigation Manual. McGraw-Hill Book Co., New York, 1984.
    [147] Liao. S. S. and Whteman. R. V. Overburden Correction Factors for Sand [J]. Joural of Geotechnical Engineering, ASCE, 1986, 112(3):
    [148] 王宏力,巩天真,和建刚.某变电站三重管高压旋喷桩试桩分析[J].电力学报.Vol.11,No.2,1996
    [149] 田永清,张致仁.大梁水库坝基的高压旋喷防渗墙[J].海河水利.Vol., No. 5.1998.
    [150] 张海珍.段向泽.采用南压旋喷桩对坝基进行处理的方法[J].建筑技术.Vol.30.No.3.1999
    [151] 朱美花.高压旋喷桩在止水帷幕中的应用[J].太原理工大学学报.Vol.30,No.6,1999.
    [152] 刘海刚.注浆技术在某深厚砂坝防渗堵漏水库工程中的应用[J].勘察科学技术.Vol.No.5.1999
    [153] 周江平,彭雄志,赵善锐.高水力坡降下高压旋喷桩适宜性讨论[J].勘察科学技术.Vol.19.No.4.2003
    [154] 叶观宝,叶书麟.地基加固新技术.机械工业出版社[M].1999.181~206
    [155] 朱庆林,王吉望.地基处理手册.中国建筑工业出版社[M] 1988 Ch8
    [156] 综合土木研究所,1977
    [157] 余跃心,刘汉龙,高玉峰.关于场地液化评价的几点认识[J].地质与勘探,Vol 39,N04,2003.
    [158] 中华人民共和国建设部.建筑抗震设计规范(GB50011-2001)中华人民共和国建设部中国建筑工业出版社.2001
    [159] 国家电力公司成都勘测设计研究院.四川省华能宝兴河民治水电站可行性研究报告:3工程地质.国家电力公司成都勘测设计研究院.2003.6
    [160] 国家电力公司成都勘测设计研究院四川省华能宝兴河民治水电站可行性研究报告:5工程布置及建筑物.国家电力公司成都勘测设计研究院.2003.6
    [161] 周江平,彭雄志,赵善锐基于标准贯入试验击数与简化西特法的砂层地基地震液化势研究[J].铁道建筑.Total.360,No.3,2004.
    [162] 彭雄志,赵善锐,周江平软土中高速铁路桥梁基桩动力模型试验研究.桩基工程技术发展与应用.中国建筑工业出版社,2003.7
    [163] 周江平,彭雄志,赵善锐.两种液化耦合影响砂层地基高压旋喷桩效果的探讨[J].水利水电技术.Vol.35.No 5.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700