自保护快速启闭式超高压海产品加工容器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压技术广泛应用于石油化工、等静压、液体射流等多种现代工业领域。利用超高压技术加工海产品,可以有效进行保鲜灭菌,最大限度地保持其营养成分和原有的色泽、质地、风味,延长海产品货架寿命,为海产品的深加工提供新途径,其发展前景非常广阔。
     海产品超高压加工的核心设备是超高压容器。海产品超高压加工容器具有端盖启闭频繁、工作压力特别大、疲劳强度要求高等特点,其安全性至关重要。本文在浙江省科技厅科技兴海重大攻关项目“超高压海产品加工技术研究与设备研制”、“教育部新世纪优秀人才支持计划”和教育部高等学校博士学科点专项科研基金“承压设备强度数值模拟关键技术研究”(资助号:20010335032)的资助下,根据超高压海产品加工工艺和容器的特点,从提高超高压容器的本质安全性出发,对超高压海产品加工容器的一系列关键技术进行了较为深入的研究,主要包括如下内容:
     (1)自保护快速启闭超高压容器结构。提出了一种新型结构的钢带错绕自保护齿啮快速启闭式超高压容器,它既有很好的防爆抑爆自保护功能,又有高效的快速启闭特性;提出了一种分体式齿啮快速启闭密封装置,详细分析了其结构特点和快速启闭功能的实现方式。
     (2)错绕钢带层对容器的失效保护能力。在研究超高压容器中储存能量的基础上,从钢带层的轴向极限承载能力和钢带层断裂前吸收的最大能量两个方面入手,定量预测了错绕钢带层对超高压容器的失效保护能力,并提出了相应的钢带层设计准则。
     (3)预应力套环的设计准则。在分析预应力套环受力特性的基础上,对其进行了详细力学分析,提出了其关键参数的确定方法,建立了预应力套环设计准则。
     (4)三角垫密封过程的力学分析。建立了组合自紧密封结构中三角垫的两种简化力学分析模型:等效矩形环模型和线环模型。阐述了三角垫密封过程的的原理和特点,对其密封过程进行了详细力学分析,导出了三角垫和简体内壁之间的接触压力与内压载荷、三角垫材料特性、几何参数等的关系式,提出了在卸载后两者间脱离接触的判据准则,可为三角垫的结构参数设计和选材提供参考。
     (5)超高压容器强度数值模拟与关键部件结构优化。分别建立了齿啮快速启闭结构和锯齿螺纹承载结构的整体有限元分析模型,提出了相应的非线性有限元分析方法,并给出了模拟结果的评定方法;对超高压海产品加工容器及端部结构强度进行了数值模拟,并对顶部齿啮结构和底部锯齿螺纹结构进行优化设计,改善啮合齿根应力分布及螺纹载荷分布,提高这两种结构的承载能力和疲劳寿命。
     (6)自保护快速启闭式超高压容器的试验研究。进行了超高压海产品加工容器强度试验研究,揭示了超高压齿啮快速启闭结构的受力特性和应力分布规律,验证了三角垫分析模型的合理性以及容器的强度、密封性能、快速启闭效率、有限元分析的精度;通过6台模拟试验容器的爆破试验结果,验证了错绕钢带层对容器筒体的防爆抑爆保护作用,证实了本文所提出的钢带层轴向极限承载能力和钢带失效前极限吸能的计算公式的正确性,按本文提出的能量准则或极限承载能力准则来确定钢带层设计参数,可在确保对容器简体保护能力的前提下,大幅度减少钢带用量。
Ultra High Pressure (UHP) technology is widely applied in various modern industrial fields, such as petrochemical industry, isopressing and liquid jet, etc. The use of UHP for seafood processing, which has been developed extensively, potentionly addresses requirements of modern consumers who prefer minimally processed seafoods. One advantage of UHP technology is that it does not use heat, which causes the sensory and nutritional attributes of seafood products remain virtually unaffected. By this way, quality of seafood products is improved compared to those processed with traditional thermal methods. This technology has a promising future.
    Ultra High Pressure Vessel (UHPV) is one of core equipments of UHP technology. UHPV employed in seafood process particularly specializes in quick-actuating end closure, ultra high working pressure and long fatigue life, and its safety is of great importance. Financed jointly by Fundamental Project of Zhejiang Science & Technology Bureau, the Excellent Talent of New Century of Education Ministry and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20010335032), a series of research has been carried out on some key technologies of UHPV:
    (1) UHPV Structure with self-shielding and quick-actuating device. Based on some advantages of flat steel ribbon-wound pressure vessel and requirements of essential safety and quick-actuating on UHPV, a novel structure of UHPV was put forward, which can shield vessel with protective Flat Steel Ribbons (FSR) and achieve quick-actuating with meshing gear. A new type of Tooth-Locked Quick-Actuating (TLQA) end closure was also put forth, in which detachable seal plug and end head were employed.
    (2) Shielding capability of helically winding FSR layer. Based on energy deposited in UHPV, the formula of ultimate load-bearing capability as well as energy
    absorbed before fracture of FSR were derived. The shielding function and capability of FSR to vessel was analyzed quantificationally in detail, and 2 design criterions on FSR were put forward.
    (3) Design criterion on Prestressed Collar (PC). The force state and protective function of PC were analyzed in detail, and a method was given to determine some key parameters on prestressed collar, and a design criterion on PC was also achived.
    (4) Mechanical analysis on sealing process of delta-ring. According to force state features of delta-ring, two simplified mechanical model, that is, rectangular ring model and line model, were proposed. Based on elastic-plastic theory and principle of sealing process of delta-ring, the contact pressure between delta-ring and vessel shell, as well as the stress and the strain of delta-ring are analyzed, and the formulation of the residual contact pressure vs. the working pressure, the material properties and geometric parameters were obtained. The formulation can be applied to the delta back-up ring, but also to the carriers of in dual "O" ring seal.
    (5) Numerical simulation on strength of UHPV and structural optimization on its key components. A 3-D FE whole model was established to simulate peak stress in TLQA end closure of UHPV, and a 2-D FE whole axisymmetric model was also established to simulate buttress thread end closure. Optimized structures of this two kind end closure of UHPV were achieved, and fatigue life of vessel was extended.
    (6) Experiment on the self-shielding and quick-actuating UHPV. An experiment was carried out to investigate the strengths of seafood UHPV, and the sealing properties and quick-actuating efficiency were verified. Burst experimental results of 6 model vessels proved that the derived formulations on ultimate load-bearing capability and energy absorption of FSR layer are reasonable.
引文
[1] 中国标准出版社.特种设备安全监察条例.北京:中国标准出版社.2003.
    [2] 刘兆彬 等主编.特种设备安全监察条例释义.北京:中国标准出版社.2003.
    [3] Xin Ma, Jinyang Zheng, Xinan Chen. et al. Numerical and experimental investigation on strength and buckling behavior of complex thin-walled structures under internal pressure load. Proceedings of the 7th international conference on mesomechanics.Montreal, Canada. 2005.
    [4] 马歆,郑津洋,陈西南等.内压载荷下复杂薄壁箱形结构数值模拟与优化设计.浙江大学学报.2006,40(5):897-902.
    [5] 郑津洋,朱国辉,黄载生.超高压容器的典型事故案例和对策分析.压力容器.1991,8(4):52-56.
    [6] 沈学萌,梁金忠,张永生等.失效人造水晶高压釜底部应力分析.中国特种设备安全.2005,21(4):21-23.
    [7] 朱国辉,郑津洋著.新型绕带式压力容器.北京:机械工业出版社.1995.
    [8] 马力.食品常温超高压处理的研究现状与发展前景.四川农业大学学报.1995,13(3): 381-385.
    [9] 郦伯贤译.超高压食品加工技术的研究开发.杭州食品科技.1992,27(4):1-2.
    [10] David Farr. High pressure technology in the food industry. Trends in Food Science and Technology. 1990, 1(7): 14-16.
    [11] Knorr D. Novel approaches in food-processing technology: new technologies for preserving foods and modifying function. Food Biotechnology. 1999, (10): 485-491.
    [12] 鲍志英,德力格尔桑.食品加工中超高压灭菌的机理.农产品加工.2003,11:14-15.
    [13] LeBail A, Chevalier D, Mussa D M, et al. High pressure freezing and thawing of foods. International Journal of Refrigeration. 2002, 25:504-513.
    [14] Hite B H. The effect of pressure in the preservation of milk. Bulletin of the West Virginia Agricultural Experiment Station of Morgantown. 1899, 54: 15-35.
    [15] 王越男,德力格尔桑,钱宏光.超高压杀菌处理对乳中蛋白质的影响.畜牧与饲料科学.2004,25(3):46-48.
    [16] 阮征,曾庆孝.高流体静压处理技术.四川食品工业科技.1997,(1):28-32.
    [17] 赵立川,唐玉德,祁振强.超高压食品加工及其装置.河北工业科技.2002,19(2): 21-28.
    [18] Trujillo A J, Capellas M, Buffa M, et al. Application of high pressure treatment for cheese production. Food Research International. 2000, 33:311-316.
    [19] Josep Yuste, Marta Capellas, Daniel Y C F, et al. Inactivation and sublethal injury of foodborne pathogens by high pressure processing Evaluation with conventional media and thin agar layer method. Food Research International. 2004, 37: 861-866.
    [20] Butz P, Edenharder R, Fister H, et al. The influence of high pressure processing on antimutagenic activities of fruit and vegetable juices. Food Research International. 1997, 30 (3): 287-291.
    [21] 陈祥奎.超高压杀菌新技术.食品与发酵工业.1995,(4):69-79.
    [22] 鲍志英,德力格尔桑.超高压技术对病原微生物的杀灭作用.饮料工业.2004,7(2): 37-41.
    [23] Valerie Lullien Pellerin, Claude Balny. High-pressure as a tool to study some proteins properties: conformational modification, activity and oligomeric dissociation. Innovative Food Science and Emerging Technologies. 2002, 3:209-221.
    [24] Tedford L A, Smith D, Schaschke C J. High pressure processing effects on the molecular structure of ovalbumin, lysozyme and β-lactoglobulin. Food Research International. 1999, 32: 101-106.
    [25] 吴怀祥.高压食品加工.食品科学.1996,17(11):3-9.
    [26] Cheftel J C, Joseph C. Effects of high pressure on meat: A review. Meat Science. 1997, 46 (3): 211-236.
    [27] Hugas M, Garriga M, Monfort J M. New mild technologies in meat processing: high pressure as a model technology. Meat Science. 2002, 62: 359-371.
    [28] Balny C. Some Recent Aspects of the Use of High Prssure for Protein Investigations in Solution. High Pressure Research. 1989, 2: 1-28.
    [29] Morild E. The theory of Pressure Effects on Enzymes. Adv. Protein Chem. 1981, 34: 93-166.
    [30] Luc Heremans, Karel Heremans. Pressure effects on the Raman spectrum of proteins: stability of the salt bridge in trypsin and elastase. Journal of Molecular Structure. 1989, 214: 305-314.
    [31] Ohmori T, Shigehisa T, Taji S, et al. Biochemical effects of high hydrostatic pressure on the lysosome and proteases involved in it. Bioscience, Biotechnology and Biochemistry. 1992, 56: 1285-1288.
    [32] Hibi Y, Matsumoto T, Hagiwara S. Effect of high pressure on the crystalline structure of various starch granules. Cereal Chemistry. 1993, 70: 671-676.
    [33] Hayashi R, Hayashida A. Increased amylase digestibility of pressure-treated starch. Agricultural and Biological Chemistry. 1989, 53: 2543-2544.
    [34] Cheftel J C. Effects of high hydrostatic pressure on food constituents: an overview. High Pressure and Biotechnology. 1992: 195-209.
    [35] Winter R, Pilgrim W C. SANS study of high pressure phase transitions in model biomembranes. Berichte der Bunsengesellschaft fuer Physikalische Chemie. 1989, 93 (6): 708-717.
    [36] Carrier D. Protective effect of lipidic surfaces against pressure-induced confomrational changes of poly (L-lysine). Biochemistry. 1990: 254-258.
    [37] Gilleland M G, Lanier T C. Investigation into the mechanism of gelation of surimi pastes treated by high isostatic pressures. Food Science. 1997, (4): 1-5.
    [38] Ashie I N A, Lanier T C. High-Pressure Effects on Gelation of Surimi and Turkey Breast Muscle Enhanced by Microbial Transglutaminase. Journal of Food Science. 1999, 64 (4): 704-708.
    [39] Chung Y C, Gebrehiwot A, Farkas D F, et al. Gelation of surimi by high hydrostatic pressure. Journal of Food Science. 1994, 59 (3): 523-524.
    [40] Gilleland M G, Lanier T C, Hamann D D. Covalent bonding in pressure-induced fish protein gels. 62. 1997, 62 (4): 713-716.
    [41] Okamato M, Kawamura Y, Hayashi R. Application of high pressure to food processing: textural comparison of pressure- and heat-induced gels of food proteins. Agricultural and Biological Chemistry. 1990, 54 (1): 183-189.
    [42] Isabelle Van Opstal, Catherine F Bagamboula, Suzy C M Vanmuysen, et al. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. International Journal of Food Microbiology. 2004, 92: 227-234.
    [43] J L M Ritz, M. Federighi Tholozan, et al. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. International Journal of Food Microbiology. 2002, 79: 47-53.
    [44] Haiqiang Chen, Dallas G. Hoover. Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott A in whole milk. Innovative Food Science and Emerging Technologies. 2004, (5): 269-276.
    [45] Barbosa-Canovas G.V. Key goals of emerging technologies for inactivating bacteria. Food Safety Magazine. 2002, (3): 34-42.
    [46] Cheftel J C. Review: high pressure, microbial inactivation and food preservation. Food Science and Technology International. 1995, (1): 75-90.
    [47] 励建荣,傅月华,顾振宇 等.高压催陈黄酒的研究.食品与发酵工业.1998,25(3):36-38.
    [48] 白艳红,杨公明,德力格尔桑.高压处理对牛羊肌肉感官特性及显微结构的影响.食品工业科技.2004,25(5):67-69.
    [49] 王能贻.水产品冷冻加工机械发展趋向的探讨.渔业机械仪器.1995,(1):17-19.
    [50] 励建荣.我国水产品加工业现状与发展战略.保鲜与加工.2005,(3):1-3.
    [51] 路世勇.我国水产品加工业现状与发展思路.现代渔业信息.2005,20(10):14-16.
    [52] 王剑河.发展我国水产品加工业思路探讨.水产科技.2005,(4):5-8.
    [53] 吴兹华.水产品的冻结贮藏与解冻.冷藏技术.1991,(2):28-37.
    [54] 钟思胜,贾永刚,ZHANG Weixian,et al.海产品安全性及对策探讨.海洋开发与管理.2005,(6):9-13.
    [55] 卢红梅,张义明.工厂中环境和海产品加工前后的微生物学检验.无锡轻工大学学报.2003,22(5):86-90.
    [56] 石有昌,韩悦.生食贝壳类海产品引起甲型肝炎流行的1:2病例对照调查研究.中国医学理论与实践.2000,(3):379-380.
    [57] 王杏珠.日本产产品保鲜技术的现状及研究概况.现代渔业信息.1997,12(8):16-19.
    [58] 王长云,傅秀梅,管华诗.水产加工技术发展现状及展望.海洋湖沼通报.1996,(3): 59-66
    [59] Lopez-Caballero M, Pérez-Mateos M, Montero P, et al. Oyster preservation by high-pressure treatment. Journal of Food Protection. 2000, 63 (2): 196-201.
    [60] Pérez-Mateos M, Lourenco H, Montero P. Rheological and biochemical characteristics of high pressure and heat-induced gels from blue whiting muscle proteins. Journal of Agriculture and Food Chemistry. 1997, 45: 44-49.
    [61] Pérez-Mateos M, Montero P. High pressure induced gel of sardine (Sardine pilchardus) washed mince as affected by pressure-time-temperature. Journal of Food Science. 1997, 62 (6): 1183-1188.
    [62] Pérez-Mateos M, Montero E Response surface methodology multivariate analysis of properties of high-pressure-induced fish mince gel. European Food Research and Technology. 2000, 211: 79-95.
    [63] Hsu K C, Ko W C. Effect of hydrostatic pressure on aggregation and viscoelastic properties of tilapia myosin. Journal of Food Science. 2001, 66 (8): 1158-1162.
    [64] Toshiaki Ohshima, Hideki Ushio, Chiaki Koizumi. High-pressure processing of fish and fish products. Trends in Food Science and Technology. 1993, 4 (11): 370-375.
    [65] Lakshmanan R, John R P, Alistair P. Potential applications of high pressure for improvement in salmon quality. Trends in Food Science and Technology. 2003, 14 (9): 354-363.
    [66] Songming Zhu, Hosahalli S. Ramaswamy, Alain Le Bail. Ice-crystal formation in gelatin gel during pressure shift versus conventional freezing. Journal of Food Engineering. 2005, 66: 69-76.
    [67] Martino MN, Otero L, Sanz PD, et al. Size and location of ice crystals in pork frozen by high-pressure assisted freezing as compared to classical methods. Meat Science. 1998, 50 (3): 303-313.
    [68] Chevalier D, Le bail A, Ghoul M. Freezing and ice crystals formed in a cylindrical food model: Part Ⅱ. Comparison between freezing at atmospheric pressure and pressure shift freezing. Journal of Food Engineering. 2000, 46 (4): 287-293.
    [69] Chevalier D, Sentissi M, Havet M, et al. Comparison between air blast freezing and pressure shift freezing of lobsters. Journal of Food Science 2000, 65 (2): 329-333.
    [70] Jocelyn Rouill, Alain Lebail, Ramaswamy H S. High pressure thawing of fish and shellfish. Journal of Food Engineering. 2002, 53: 83-88.
    [71] LeBail A, Boillereaux L, Davenel A, et al. Phase transition in foods: effect of pressure and methods to assess or control phase transition. Innovative Food Science and Emerging Technologies. 2003, (4): 15-24.
    [72] Kalichevsky M T, Knorr D, Lillford P J. Potential applications of high-pressure effects on ice-water transitions. Trends in Food Science and Technology. 1995, (6): 253-259.
    [73] Taylor A C. The physical state transition in the freezing of living cells. Annals of the New York Academy of Sciences. 1960, 85: 595-609.
    [74] Bing Li, Da Wen Sun. Novel methods for rapid freezing and thawing of foods-a review. Journal of Food Engineering. 2002, 54:175-182.
    [75] Chourot J M, Cornier G, Legrand J, et al. High pressure thawing. Proceedings of the 5th World Congress of Chemical Engineering. 1996, (2): 181-187.
    [76] Chourot J M, Boillereaux L, Havet M. Numerical modelling of high pressure thawing: application to water thawing. Journal of Food Engineering. 1997, 34: 63-75.
    [77] 白亚乡,胡玉才,徐建萍.物理技术在食品贮藏与果蔬保鲜中的应用.物理学和高新技术.2003,32(3):171-175.
    [78] Mary Smiddy, Lisa O'Gorman,Roy D, et al. Greater high-pressure resistance of bacteria in oysters than in buffer. Innovative Food Science & Emerging Technologies. 2005, 6 (1): 83-90.
    [79] Lopez-Caballero M, Pérez-Mateos M, Montero P, et al. Oyster preservation by high-pressure treatment. Journal of Food Protection. 2000, 2000, (2): 196-201.
    [80] 励建荣,夏道宗.食品工业中的高压装置.包装与食品机械.2002,(3):1-5.
    [81] 潘见,张文成,陈从贵.饮料超高压杀菌实用性工艺及设备探讨.农业工程学报.2001, 16(1):125-128.
    [82] 陈寿鹏.高压食品装置.食品科学.1996,17(11):2-7.
    [83] 中华人民共和国国家质量监督检验检疫总局.超高压容器安全技术监察规程.2005.
    [84] 日本高压技术协会.HPIS-C-103 超高压圆筒容器设计指针.1989.
    [85] ASME锅炉及压力容器委员会压力容器分委员会编.ASME Ⅷ-3《高压容器建造另一规则》.北京:石油工业出版社.2000.
    [86] Donald M Fryer, John F Harvey. High Pressure Vessels. New York: Chapman & Hall. 1997.
    [87] 朱秋儿,丁伯民,徐正志等编.高压容器设计.上海:上海科学技术出版社.1986.
    [88] 陈国理,陈柏暖,王作池编.北京:化学工业出版社.超高压容器设计.1997.
    [89] 伊恩.L.斯佩恩,杰克.波韦编著,高家驹译.高压技术.北京:化学工业出版社. 1988.
    [90] 北京石油化工总厂编.高压法聚乙烯.北京:化学工业出版社.1979.
    [91] 柳曾典,朱磊,王印培等.在役高压聚乙烯管式反应器的安全性研究.压力容器.1992, 9(1):11-19.
    [92] 关家锟,柳曾典,潘家桢等.高压聚乙烯装置超高压管失效分析.中国锅炉压力容器安全.1997,13(6):22-25.
    [93] 刘康林,黄小平,王金娥等.高压聚乙烯反应管自增强残余应力的无损检测.中国机械工程.2001,12(9):983-985.
    [94] 胡明东,杜护军,崔军.超高压聚乙烯反应器检验与安全分析.压力容器.2002,19(10): 47-51.
    [95] 郑津洋,陈志平 编著.特殊压力容器.北京:化工工业出版社.1997.
    [96] Andreas W. Momber, Yat C. Wong,Edwin Budidharma, et al. Surface profiling of low-carbon steel with supersonic waterjets. Wear. 2001, 249, 10: 853-859.
    [97] Miranda R M, Quintino L. Microstructural study of material removal mechanisms observed in abrasive waterjet cutting of calcareous stones. Materials Characterization. 2005, 54 (4): 370-377.
    [98] 薛胜雄,王乐勤,彭浩军.超高压水射流除锈机理试验研究.中国机械工程.2004,15(20):20.
    [99] 沈忠厚.水射流理论与技术.东营:石油大学出版社.1998.
    [100] 薛胜雄.高压水射流技术与应用.北京:机械工业出版社.1998.
    [101] Gao Daoming, Chen Jie. ANFIS for high-pressure waterjet cleaning prediction. Surface and Coatings Technology. 2006.
    [102] 王志文,蔡仁良编.化工容器设计.北京:化学工业出版社.2005.
    [103] Manning W R D. Ultra-high pressure vessel design. Chemical and Process engineering. 1969, 48: 3-4.
    [104] 邵国华,魏兆灿 等编.超高压容器.北京:化学工业出版社.2002.
    [105] Majzoobi G H, Farrahi G H, Mahmoudi A H. A finite element simulation and an experimental study of autofrettage for strain hardened thick-walled cylinders. Materials Science and Engineering. 2003, 359:326-331.
    [106] Koh S K, Lee S I, Chung S H, et al. Fatigue design of an autofrettaged thick-walled pressure vessel using CAE techniques. International Journal of Pressure Vessels and Piping. 1997, 74 (1): 19-32.
    [107] Seung-Kee Koh. Fatigue analysis of autofrettaged pressure vessels with radial holes. International Journal of Fatigue. 2000, 22 (8): 717-726.
    [108] Alegre J M, Bravo P, Preciado M. Fatigue behaviour of an autofrettaged high-pressure vessel for the food industry. Engineering Failure Analysis. 2006.
    [109] Armstong W P, Jaward M H. Evaluation of therml conductivity in layered vessels. ASME Journal of Pressure Vessel Technology. 1981, 103 (4): 307-313.
    [110] Denoor G, Tascher C. Cylindrical metal pressure bodies made by limited expansion of ttheir walls or without prestress. First Int Conf on Pressure Vessel Technol. 1969, Part Ⅱ: 877-893.
    [111] Freeman A J. Development of a duplex pressure vessel for hot, warm and cold high pressure isostatic pressing systems. Metal Powder Report. 1991, 46 (3): 22-24.
    [112] Frank C. Shen. A filament-wound structure technology overview. Materials Chemistry and Physics. 1995, 42 (2): 96-100.
    [113] Gunnar Harkegard. A procedure for the analysis of wire-wound structures and its application to the optimium design of vessels for high pressure. 4th International Conference on Pressure Vessel Technology. 1982.
    [114] 李世凡,陈国理.绕丝式超高压容器等剪应力设计计算.压力容器.1989,6(6):61-65.
    [115] 许忠斌,陈柏暖,陈国理等.食品高压处理用的绕丝容器设计及试验研究.压力容器.1997(5):27-31.
    [116] Zander K. Some Safety Aspect of Wire Wound Pressure Vessels and Press Frames for Isostatic Pressing in Particular and Industrial Application in General. 2nd International Conference on Pressure Vessel Technology. 1973: 1-40.
    [117] 郑津洋.扁平绕带式压力容器优化设计理论及工程应用研究.浙江大学博士学位论文,杭州.1992.
    [118] 郑津洋.扁平绕带式高压容器的失效方式.化工装备技术.1993,14(5): 19-22
    [119] 贾英.扁平绕带式高压容器的安全可靠性分析.机械工程师.2003,34(11):64-65.
    [120] Zhu Guohui, Shah Manesh. Steel composite structural pressure vessel technology: Future development analysis of worldwide important pressure vessel technology. Process Safety Progress. 2004, 23(1): 65-71.
    [121] Lal K M. Filament wound pressure vessels: Effects of using liner tooling of low pressure vessels for high pressure vessels development.37th International SAMPE Symposium and Exhibition. 1992. Anaheim, USA.
    [122] Vasiliev V V, Krikanov A A, Razin A F. New generation of filament-wound composite pressure vessels for commercial applications. Composite Structures. 2003, 58 (4): 449-459.
    [123] David Cohen, Susan C. Mantell, Liyang Zhao. The effect of fiber volume fraction on filament wound composite pressure vessel strength. Composites Part B: Engineering. 2001, 32 (5): 413-429.
    [124] Tae-Kyung Hwang, Chang-Sun Hong, Chun-Gon Kim. Probabilistic deformation and strength prediction for a filament wound pressure vessel. Composites Part B: Engineering. 2003, 34 (5): 481-497.
    [125] Neel Sirosh. Hydrogen composite tank program. The 2002 U.S.DOE Hydrogen Program Review Meeting. Colorado. 2002.
    [126] Fuel Cells Bulletin. 2002, (7): 6.
    [127] Zeitlin A. High Pressure Technology. High Pressure Technology. Scientific American. 1965, 212 (5): 197-203.
    [128] 郭万峻,孟庆臣.超高压食品加工装置设计.哈尔滨工程大学学报.1996,17(4): 84-90.
    [129] 郭万峻,徐扬.超高压食品加工容器装置设计分析.压力容器.1997,14(2):53-55.
    [130] 苏文献.承压设备强度数值模拟若干问题及其工程应用研究.浙江大学博士论文. 2003.
    [131] 郑津洋,董其伍,桑富芝编著.过程设备设计.北京:化学工业出版社.2005.
    [132] 刘鸿文主编.材料力学.北京:高等教育出版社.1992.
    [133] 陆明万.关于应力分类问题的几点认识.压力容器.2005,22(8):18-23.
    [134] Leslie P. Antalffy, Pran N. Chaku. New Division 3 High Pressure Vessel Code. Proceedings of the 1997 ASME Pressure Vessels and Piping Conference. 1997, 344.
    [135] Martin D. Bernstein. Design criteria for boilers and pressure vessels in the U.S.A. Journal of Pressure Vessel Technology, Transactions of the ASME. 1988, 110 (4): 430-443.
    [136] Mraz G J. Development of design criteria for a high pressure vessel construction code. Journal of Pressure Vessel Technology, Transactions of the ASME. 1987, 109 (2): 256-259.
    [137] 高令怡.日本超高压设备技术标准现状综述.石油工程建设.1994,(3):7-12.
    [138] 全国压力容器标准化技术委员会.GB 150-1998 钢制压力容器.北京:石油工业出版社.1998.
    [139] 全国压力容器标准化技术委员会.JB 4732-95 钢制压力容器.分析设计标准.北京:中国标准出版社.1995.
    [140] 郑津洋.快速开关盖式压力容器(一).化工装备技术.1997,18(1):30-38.
    [141] 郑津洋.快速开关盖式压力容器(二).化工装备技术.1997,18(2):34-38.
    [142] 余蜀宜.超临界二氧化碳萃取器萃取分离香茅油.香料香精化妆品.1999(2):6-8.
    [143] 陈列,刘柏钦.中草药超临界CO2萃取产业化若干问题.中草药.1999,30(1):62-65.
    [144] 刘欣,银建中,丁信伟.超临界萃取工艺流程与设备的研究现状和发展趋势.化工装备技术.2002,23(2):14-18.
    [145] 胡兆吉,黄克敏,刘兴林.在用快开门式压力容器的失效事故分析及其预防对策.化工装备技术.2000,21(6):15-18.
    [146] 郑津洋.快速开关盖式压力容器(三).化工装备技术.1997,18(3):31-38.
    [147] 郑津洋.快速开关盖式压力容器(四).化工装备技术.1997,18(4):28-35.
    [148] 黄进,郑津洋,陈志平等.整体转圈齿啮式快开装置的强度分析及工程设计方法研究.化工装备技术.2000,21(4):18-27.
    [149] 刘黎,刘俊明.齿啮式蒸压釜法兰中的应力分析.压力容器.1989,(1):48-52.
    [150] 涂文锋,胡兆吉,裘雪玲等.齿啮式快开盖压力容器的有限元分析及强度评定.化工装备技术.2005,26(3):40-43.
    [151] 吴曾谅,张志全.从压力分析看齿啮式法兰的合理截面.化工机械.1989,16(6): 344-347.
    [152] 郑津洋,苏文献,徐平.基于整体有限元应力分析的齿啮式快开压力容器设计.压力容器.2003,20(7):20-24.
    [153] 王志坚,徐成海,李孟春等.真空高压气淬炉齿啮式快开结构应力有限元计算.化工机械.2004,11(6):348-351.
    [154] 陈西南,马歆,苏文献等.带凸形封头非标平焊法兰的设计方法.工程设计学报.2004,11(6):321-325.
    [155] 苏文献,叶立,郑津洋等.齿啮式快开压力容器塑性载荷的5%最大主应变方法.石油化工设备.2006,35(12):26-30.
    [156] 苏文献,郑津洋,开方明等.齿啮式快开压力容器整体有限元塑性载荷分析.压力容器.2006,23(2):33-27.
    [157] 黄进.带椭圆形封头的整体齿啮式快开装置强度及工程设计方法的研究.浙江大学硕士论文.2000.
    [158] 郑津洋,孙国有,陈志平等.高压齿啮式快开盖密封装置的强度试验研究.石油机械.1990,27(8):19-21.
    [159] 褚志斌.高压齿啮式快开装置的强度及连锁装置的研究.浙江大学硕士论文.1998.
    [160] 日本工业标准调查会.JIS B 8284-1993压力容器快速开关盖装置.东京:日本规格协会.1993.
    [161] 中华人民共和国劳动部.快开端盖式压力容器安全管理规定.1992.
    [162] 成大先,王德夫,姬奎先 主编.机械设计手册 北京:化学工业出版社.2002
    [163] 鹈户口英善.螺纹结构强度设计规范的制订及其理论基础.化工设备设计.1985(4): 42-52.
    [164] 蒋家羚,张瑾.GYF-280 型超高压水晶釜有限元结构分析.机械强度.1994,16(1): 14-19.
    [165] 蒋家羚,林兴华,张瑾等.G18-300型高压釜的结构分析与设计计算.化工机械.1991, 18(4):212-216.
    [166] 科诺瓦洛夫.特种锯齿形螺纹内的应力集中.紧固件技术.2002,(3):28-32.
    [167] Chaaban A, Jutras M. Static and fatigue analysis of buttress threads of thick-walled vessels using the finite element method. American Society of Mechanical Engineers, Pressure Vessels and Piping Division. 1988, 148: 35-41.
    [168] Chaaban A, Muzzo U. Finite element analysis of residual stresses in threaded end closures. Journal of Pressure Vessel Technology. Transactions of the ASME. 1991, (113): 398-401.
    [169] Chaaban A, Jutras M. Static. Static analysis of Buttress threads using the finite element method. Journal of Pressure Vessel Technology. Transactions of the ASME. 1992, (114): 209-212.
    [170] Maruyama K. Stress analysis of a bolt-nut joint by the finite element method and the copper-electroplating method. Bulletin of the JSME. 1974, 17 (106): 442-450.
    [171] Maruyama K. Stress analysis of a bolt-nut joint by the finite element method and the copper-electroplating method em dash 3. influence of pitch error or flank angle error. Bulletin of the JSME. 1976, 19 (130): 360-368.
    [172] 陈志平,黄载生.超高压水晶釜螺纹牙载荷分布.压力容器.1994,11(5):37-39.
    [173] 张瑾,蒋家羚.高压连接螺纹轴向载荷分布于应力集中研究.化工设备设计.1991(4): 22-25.
    [174] 杨洪涛,蒋家玲,孙国有.超高压反应釜有限元分析计算.压力容器.1989,8(3): 58-63.
    [175] 练章华,杨龙,韩建增.套管偏梯形螺纹接头泄漏机理的有限元分析.石油矿场机械 2004,33(5):53-57.
    [176] 李云鹏,栾邵信,刘巨保等.φ205超高压釜体螺纹部分热接触有限元分析.计算结构力学及其应用.1994,11(3):336-341.
    [177] 栾邵信,刘巨保,李宝彦等.φ138超高压釜体螺纹联接处的强度分析.石油学报. 1994,15(2):155-160.
    [178] 白忠喜,高路.化工设备存在缺陷的可能性及止裂、抑爆对策.化工进展.2001,20 (12):50-52.
    [179] Telitchev Igor Y, Schafer Frank K, Schneider Eberhard E. Analysis of the fracture of gas-filled pressure vessels under hypervelocity impact. International Journal of Impact Engineering. 1999, 23 (1): 905~919.
    [180] 郭吉红.压力容器爆炸事故分析和后果预测.工业安全与环保.2005,31(9):52-54.
    [181] 杨勇,吴菲,姜振锋等.压力容器爆炸时抛出物能量的百分比计算及冲击波的破坏范围估计.苏州大学学报.2000,16(2):49-54.
    [182] Anderson O L. Some safety problems associated with high pressure equipment——Case 38142. Harwood Engineering Company, Inc.
    [183] Brown S, Kirby C. Protection against pressure vessel and piping explosion/ruptures. Pressure Vessel and Piping Technology. 1985, (6): 119-144.
    [184] Raes H D B. Hot isotatic press techology. Powder Metallurgy. 1983, 24 (6): 1-6.
    [185] 朱瑞林.试谈压力容器技术进展的两个重要方面——兼谈我国绕带压力容器技术的先进性.化工装备技术.1995,16(6):44-47.
    [186] 朱国辉,陈志平,郑传祥等.“钢复合材料压力容器技术”典型代表——扁平绕带式压力容器的发展分析.化工装备技术.2000,21(1):1-8.
    [187] Zhu Ruilin, Zhu Guohui. Potential developments of pressure vessel technology by using thin inner core and flat steel ribbon winding techniques. International Journal of Pressure Vessels and Piping. 1996, 65 (1): 1-5.
    [188] 吴红梅,朱国辉.绕带式压力容器大型化发展研究.石油化工设备.1999,28。(6): 39-41.
    [189] 朱国辉,郑传祥.扁平绕带式压力容器的发展优势.化工设备与管道.1997,34(3): 5-9.
    [190] 郑传祥,杨允鑫.压力容器合理结构发展趋势分析.压力容器合理结构发展趋势分析. 1997,34(5):19-23.
    [191] 骆晓玲,黄载生.新型扁平绕带式压力容器.机械工程师.1999,(2):15.
    [192] 郑传祥,朱国辉.扁平绕带式压力容器的复合材料特性分析.化工设备与管道.1996, 43(4):40-42.
    [193] 朱国辉,陈志平,郑传祥等.新型绕带式压力容器技术的突出发展优势.化工机械. 2000, 27 (3): 162-167.
    [194] Zheng J Y, Sun O Y, Wang L Q. A review of development in layered vessels using flat-ribbon-wound cylindrical shells. The International Journal of Pressure Vessels and Piping. 1998, 79 (9): 653-659.
    [195] 郑津洋,马歆,蔺建成等.实用新型专利.自保护快速启闭式超高压食品加工容器.专利号:ZL200520014214.O.
    [196] 薛胜雄,王乐勤,彭浩军 等.超高压水除锈技术及其阶段性方程.高压物理学报.2004,18(3):283-288.
    [197] 薛胜雄.超高压水射流自动爬壁除锈机理与成套设备技术.杭州:浙江大学.2005.
    [198] 吴锦,郑津洋,李桂仙.超高压容器楔形密封环的分析计算.化工装备技术.1993, 14(4):13-18.
    [199] 郭乙木,陶伟明,庄茁编著.线性与非线性有限元及其应用.北京:机械工业出版社. 2004.
    [200] 王勖成,邵敏编著.有限单元法基本原理和数值方法.北京:清华大学出版社.1997.
    [201] A P 博雷西O M 赛德博坦,F B 西利等著,汪一麟,汪一骏译.高等材料力学.北京:科学出版社.1987.
    [202] 杜庆华,余寿文,姚振汉著.弹性理论.北京:科学出版社.1986.
    [203] 铁摩辛柯,古地儿 著,徐芝纶 译.弹性理论.北京:高等教育出版社.1990.
    [204] 张永.超高压海产品加工容器快速启闭密封装置研究.浙江大学硕士论文.2006.
    [205] 郑津洋.自保护式超高压容器的研究.浙江大学硕士论文.1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700