高压烧结炉的强度分析与结构改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压烧结炉在冶金、钢铁、陶瓷等行业中有着广泛的应用,且承受交变载荷。此类设备结构复杂,典型部件包括:炉体、炉门、卡箍、炉内构件、炉门铰链及支座等。
     本论文借助通用有限元软件ANSYS、采用热-力耦合与接触非线性技术、依据JB4732-1995《钢制压力容器——分析设计标准》(2005年确认)进行强度校核及疲劳评定,对应力校核不能通过的结构部位进行改进。
     针对烧结炉的核心部位——卡箍快开结构,进行接触分析及安定性评定,证明不会产生塑性扩展。同时,参考HG20582-1998《钢制化工容器强度计算规定》对卡箍啮合部分进行常规计算与强度校核。比较常规计算与有限元应力分析的结果,为分析设计的可靠性提供依据。在此基础上,利用APDL语言建立卡箍啮合部分的参数化模型,选择存在优化空间的结构尺寸进行优化设计。
     最后,根据高压烧结炉的工作环境及可能的失效模式编写风险评估报告,对可能发生的事故提出应急方案及预防措施,从设计者的角度进一步诠释了压力容器的设计宗旨。
High pressure sintering furnaces are widely used in metallurgy, steel, ceramic and many other fields. Their structure is complex and they normally work under alternating loads. The main components of a high pressure sintering furnace include furnace body, furnace door, lathedog, inner component, door hinge and supporters.
     In this dissertation, strength check and fatigue assessment of a high pressure sintering furnace are carried out in the finite element software ANSYS. Thermal-mechanical coupling and contact non-linear technique are adopted and JB4732-1995 Steel Pressure Vessel-Design is taken as the pressure vessel design standard. All structures which fail to meet the requirement of stress intensity have been improved.
     In addition, contact analysis and shakedown assessment are conducted on the core part of the sintering furnace, the quick open-closure device, to prove the impossibility of the happening of the ratcheting phenomenon. At the same time, traditional calculation by rule and strength check are carried out on the clamp according to the standard HG20582-1998. By comparing the results of the traditional calculation results and the stress analysis, the regulation for reliable design by analysis is obtained. Then, a parameterized model of the clamp based on parametric language is built and the optimal design on the structure parameters within optimization space is conducted.
     Finally, an exposure rating report is compiled according to the working environment of the high pressure sintering furnace and its potential failure mode. The report provides an emergency plan and preventive measures for accidents that may occur and presents a deeper interpretation of the purpose in designing pressure vessel from the perspective of the designer.
引文
[1]罗阳,陈虞才.新技术,新设备在NdFeB稀士磁体生产中的应用之五—烧结炉的改进[J].磁性材料及器件,2007,6
    [2]侯炜强,张金凤.真空气淬工艺研究及设备的研制[J].电子工艺技术,2008,29(4)
    [3]崔占华.VHQ型高压气淬真空炉的设计[J].金属热处理,2008,33(8)
    [4]任洛长.YZL-1型真空中频热压连续炉[J].真空与低温,1999,5(1)
    [5]刘阳兴,富宏军,等.多室连续式真空炉的研制与应用[J].真空,2005,42(2)
    [6]李全旺,尹中荣,高亚洁.100KW真空垂熔烧结炉的研制[J].真空,2006,43(3)
    [7]焦明华,马少波,俞建卫.JHN高温氮气烧结炉的研制与应用[J].机械工程师,1995.3
    [8]韩建德,闵光辉,于化顺.真空热压烧结炉的研制[J].工业炉,2001,23(2)
    [9]叶青,吴敏,陈承.脱蜡烧结一体炉技术问题分析[J].硬质合金,2007,24(4)
    [10]陈祎,罗永洁,等.硬质合金烧结炉—热等静压炉的优化.中南大学学报(自然科学版).2007,38(2)
    [11]赵渤亭,聂杰,张连仲.压力烧结炉的设计及制造[J].化工设备与管道,2009,46(2)
    [12]葛国秋,陈今润,张贤德.基于PLC的压力烧结炉控制系统[J].工业控制与应用,2008,27(4)
    [13]Huamao Tan. Pressure sintering furnace[P]中国专利,CN20101133498.2010-03-29
    [14]Boneff; Stoyan (Bayreuth, DE). High pressure sintering furnace[P]美国专利,4830342.1989-05-16
    [15]陈永常,等.高真空烧结炉[M].北京:中国轻工业出版社,2008,4-20
    [16]郑津洋,陈志平,等.特殊压力容器[M].北京:化学工业出版社,1997.206-246
    [17]刘爱萍.齿啮式快开装置参数化整体优化设计方法研究[D].杭州:浙江大学.2001
    [18]JB4732-1995.钢制压力容器—分析设计标准[S].1995
    [19]郑津洋,董其伍,桑芝富.过程设备设计[M].北京:化学工业出版社,2010.180-220
    [20]周昌玉,贺小华.有限元分析的基本方法及工程应用[M].北京:化学工业出版社,2006.2
    [21]李开泰,黄艾香,黄庆怀.有限元法及其应用[M].北京:科学出版社,2007.1
    [22]冷纪桐,赵军,等.有限元技术基础[M].北京:化学工业出版社,2007.5
    [23]王勖成.有限单元法[M].北京:清华大学出版社,2003.1
    [24]李建国.压力容器设计的力学基础及其标准应用[M].北京:机械工业出版社,2004.1
    [25]刘相新,孟宪颐ANSYS基础与应用教程[M].北京:科学出版社,2006.1
    [26]余伟炜,高炳军ANSYS在机械与化工设备中的应用[M].北京:中国水利水电出版社,2006
    [27]王志坚,徐成海,真空高压气淬炉齿啮式快开结构应力有限元计算[J].化工机械,2004,31(6)
    [28]张朝晖ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008.1
    [29]刘涛,杨风鹏,等.精通ANSYS[M]北京:清华大学出版社,2002.9
    [30]卓高柱,孔凡敬,等.压力容器有限元分析及等效线性化处理[J].发电设备,2008,5
    [31]陆明万.关于应力分类问题的几点认识[J].压力容器,2005,22(8)
    [32]张朝辉ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007.5
    [33]蔡慈平.浅谈压力容器的疲劳分析设计[J].化工装备技术,2008,4(29)
    [34]王非.化工容器设计[M].北京:化学工业出版社,2005
    [35]丁伯民.免除疲劳分析的条件[J].化工设备设计,1996,3(33)
    [36]B.F. Langer, Design of Pressure Vessels for Low-Cycle Fatigue, Journal of Basic Engineering,1962
    [37]Criteria of the ASME Boiler and Pressure Vessel Code for Design by Analysis in Section II and VIII, Division 2, Pressure Vessels and Piping:Design and Analysis, A Decade of Progress, PP.61-82
    [38]王正.疲劳与断裂及其在压力容器上的应用[M].北京:兵器工业出版社,1997.02
    [39]ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 [S].2003
    [40]ASEM Boiler and Pressure Vessel Code, Section VIII, Division 2 [S].2003
    [41]BS5500 Unfired Fusion Welded Pressure Vessels[S].1997
    [42]JISB205-1983日本工业标准[S].1983
    [43]王夕芹.压力容器的常规设计和分析设计[J].中国石油大学胜利学院学报,2006,20(4)
    [44]JISB8248-2003压力容器用快速闭塞物[S].2003
    [45]莫春燕,等.柳钢事故应急救援体系建设与发展的探讨[J].柳钢科技,2008,4
    [46]钱春,等.压力容器风险评估报告的格式[J].石油和化工设备,2010.03
    [47]曹树坤,惠继恒.MIM零件连续烧结设备及其控制技术[J].CMET锻压装备与制造技术,2006,(1):72-74
    [48]尉海霞,朱建炳,潘雁频,等.有限元法在辐射制冷器热分析中的应用[J].真空与低温,2006,12(2)
    [49]彭先明,肖军.粉末冶金烧结炉的结构设计及发展趋势[J].粉末冶金技术,1996,14(2)
    [50]韩凤麟.粉末冶金烧结炉的现状与发展[J].粉末冶金工业,1996,6(4)
    [51]李广.卧式连续烧结炉的重新设计与改造[J].电池工业,1996,1(5)
    [52]阎承沛.真空热处理技术设备现状和发展趋势(上)[J].机械工人,2005,11
    [53]关奎之,李云奇.真空烧结炉结构的探讨[J].真空与低温,1996,2(4)
    [54]陈跃辉,郭淳,罗毅.ZYS-50/50/130压力烧结炉设备的研制[J].稀有金属与硬质合金,2008,36(1)
    [55]Hottle H.C, Sarofim A F. Radiative Transfer[M]. New York:McGraw-Hill,1967
    [56]Petzi F.20 Years of P/M Sintering. Powder Metallurgy International,1989,21 (2)
    [57]丁伯民.整体相连的齿啮式卡箍连接设计[J].化工设备设计,1996,33(2)
    [58]HG20582-1998.钢制化工容器强度计算规定[S].1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700