鄯善油田裂缝性油藏注水井解堵增注关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以鄯善油田为研究对象,通过分析影响制约单井注入能力的主要原因;剖析伤害机理,确定伤害范围;建立酸化井层选择模型;建立裂缝性油藏酸化模型;提出高效增注工作液体系,最终形成配套增注工艺技术。具体完成工作如下:
     (1)通过系统分析注水井注入压力升高,欠注严重的原因,提出地质构造、井间连通性、储层物性、钻完井伤害、转注井伤害、注入条件变化是导致注水井投注初期注入压力高的主要原因;而注入水水质、粘土伤害、投注与增注措施伤害等综合因素的影响导致注水井投注后压力升高;
     (2)采用模糊物元分析方法,通过综合考虑渗透率、有效孔隙度、表皮系数、注水层厚度、连通性、实注系数、吸水指数减小幅度7种评价指标,建立了专门针对注水井酸化的井层选择模型。其中连通性、吸水指数减小幅度是以往类似模型尚未考虑的。并通过对鄯善油田10口注水井的实例计算,验证了本模型的有效性,得出结论与实际相符,可为酸化方案优化提供理论依据;
     (3)通过大量实验研究了盐酸、氢氟酸与砂岩矿物反应机理,并结合提高解堵效果及减小酸化二次伤害的出发点,提出一种新型砂岩酸化酸液体系—FTC酸体系。酸度特性试验、溶蚀试验、缓蚀性评价试验、驱替实验、微观孔隙结构评价试验等表明该体系具有良好的缓速、缓蚀、抑垢等特点,是一种性能优良的低伤害、深穿透酸液体系;
     (4)选用较易由流动实验取得并能反映地层水和地层实际情况的经验参数,基于微粒捕集机理,根据经典渗滤模型(对流方程),结合岩心实验数据,对模型进行半解析求解,模拟了油田注水伤害程度和伤害半径;
     (5)通过获取储层裂缝分布数据,生成和储层裂缝在统计意义上等效的离散裂缝网络,引入渗透率张量原理将裂缝性致密砂岩储层转化为均质各向异性储层,结合“两酸三矿物”酸岩反应模型,建立了天然网络裂缝储层酸化综合模型;
     (6)针对储层地质特点及技术实施条件,提出泡沫分流酸化工艺和化学微粒分流酸化工艺,并研制了与之配套的泡沫酸液及注水井酸化化学分流剂,室内性能评价结果表明,两种分流酸化技术分流效果好、对地层无伤害、现场实施方便;
     (7)考虑储层参数及液体室内试验结果,基于模拟计算,为现场施工提供了理论依据充分、实用性强的施工参数确定方法和一般范围,研究成果指导现场酸化施工4井次,酸化后均取得良好的降压增注效果,酸化成功率均达到100%。
     本论文所取得的系列研究成果为鄯善油田注水井实现解堵增注提供了理论支撑与技术保障,对酸化技术在注水井中的应用提供了一定的理论依据和研究思路,进一步丰富和完善了裂缝性油藏砂岩酸化相关模拟研究,弥补了目前国内外注水井酸化理论与技术研究中存在的不足。
Shanshan oilfield is taken as the research object in this paper. The main reasons of low injection rate are analyzed; The damage mechanism and damage range of injection well are determined; A selection model of wells and layers in injection well acidizing and an acidizing model of fractured reservoir are established; An efficient acid system is proposed. Eventually, a set of efficient injection stimulation technology is come into being. Specific work is as follows:
     (1) By systematically analyzing the reasons of the high injection pressure and low injection rate in injection wells, it is proposed that the geological structure, connectivity, reservoir properties, drilling and completion damage and the change of injection condition are the main reasons that lead to high injection pressure in the early injection stage. While the injecting water's quality, clay damage and the damage caused by stimulation or other factors lead to the increasing pressure after injection;
     (2) Using the fuzzy matter element evaluation method and by considering permeability, the effective porosity, skin factor, layer's thickness, connectivity, real injection coefficient and injectivity index reduction, a model to select acidizing layers specially for injection wells is set up. Besides, the connectivity and injectivity index reduction haven't yet been considered in the previous similar models. By calculating ten injection wells in Shanshan oilfield as an example, this model is verified valid and the conclusion is consistent with the actual situation, which can provide the theoretical basis for acidizing optimization;
     (3) The reaction mechanism of hydrochloric acid, hydrofluoric acid and sandstone mineral is studied by numerous experiments. Aimed at effectively improving the plug removal effect and reducing the acidification secondary damage, a new acid system--FTC acid system for sandstone acidizing is proposed. The acidity characteristics test, dissolution test, corrosion inhibition evaluation test, displacement test and microscopic pore structure evaluation test show that the acid has good retarder, corrosion inhibition and anti-scaling characteristics, which is an excellent acid system with low damage and deep penetrating.
     (4) Based on the empirical parameters, which can reflect the actual situation of the formation water and the formation, particulate trap mechanism, and classical percolation model (convection equation), the damage degree and radius after injection in the oilfield is simulated combined with the experimental data of cores. The model is solved by semi-analytical approach.
     (5) By obtaining reservoir fracture distribution data, equivalent discrete fracture networks and permeability tensor, the fractured tight sandstone reservoir is transferred into homogeneous anisotropic reservoir. Then acidizing simulation in natural network fracture reservoir is realized based on the mature model of two acids and three minerals.
     (6) In order to achieve the acid distribution and facilitate the safe and effective implementation, the foam diversion and chemical particles diversion acidizing technology is proposed. And the diverting agent with good shunt effect, no damage to stratum and on-site implementation is developed.
     (7) According to the reservoir parameters, laboratory test results and the simulation result, the determination method of practical construction parameter and the general scope are provided. The research findings have guided field acidizing treatments four times, which achieves a good acidizing effect and with the successful rate of100%.
     In this paper, the series of research results provide theoretical basis and technical support for plug removal and injection stimulation in injection well of Shanshan oilfield. Furthermore, it provides certain theoretical basis and research approaches on acidizing technology in injection wells, which enriches and improves the related acidizing simulation study in the fractured sandstone reservoir. Also, the deficiencies of the current research on the theory and technology of injection well acidizing at home and abroad are made up.
引文
[1]蒋廷学.重复压裂选井选层的模糊识别方法[J].石油钻采工艺,1997,19(3):60-62.
    [2]蒋廷学,田占良.模糊数学在压裂设计中的应用[J].天然气工业,1998,18(3):61-64.
    [3]范学平,吴宏,张华春.神经网络专家系统及其在压裂酸化决策中的应用研究[J].石油勘探与开发,1998,25(1):73-75.
    [4]付永强,郭建春,赵金洲等.多层次模糊聚类在压裂酸化选井选层中的应用[J].天然气工业,2001,21(5):58-60.
    [5]吴建发,郭建春,赵金洲.压裂酸化选井模糊综合评判方法[J].石油钻采工艺,2004,26(2):54-57.
    [6]郭建春,吴建发,赵金洲.压裂酸化选井的人工神经网络软件研制[J].天然气工业,2004,24(11):67-69.
    [7]闵琦,张法,周丰.酸化压裂选井选层的灰色多目标局势决策方法[J].石油与天然气学报,2005,27(3):364-365,382.
    [8]杨光,申芙蓉.重复压裂选井选层模糊综合评判方法[J].内蒙古石油化工,2007,4:140-142.
    [9]赵小龙,刘向君,刘洪等.压裂酸化井层模糊综合评价模型的改进与应用[J].特种油气藏,2012,19(3):128-131.
    [10]赵艳.压裂酸化井层优选方法研究[J].内蒙古石油化工,2012,11:148-150.
    [11]肖芳淳.模糊物元分析及其应用研究[J].强度与环境,1995(2):51-59.
    [12]法鲁克·西维.油层伤害——原理、模拟、评价和防治[M].北京:石油工业出版社,2003.7.
    [13]Iwasaki T, Slade J, Stanley W E. Some notes on sand filtration with discussion [J]. American Water Works Association,1937,29(10):1591-1602.
    [14]Eliassen R. Clogging of rapid sand filters [J]. American Water Works Association,1941, 33(5):926-942.
    [15]Ling J T. A study of filtration through uniform sand filters[C].ASCE.1955,81:751.
    [16]Stanley D R. Sand filtration studied with radiotracers[C]. ASCE.1955,81:592.
    [17]Ives K J. A theory of the functioning of deep filters [J]. Fl. Hdlg,1962,150:199.
    [18]Maroudas A, Eisenklam P. Clarification of suspensions:a study of particle deposition in granular media:Part Ⅰ—Some observations on particle deposition [J]. Chemical Engineering Science,1965,20(10):867-873.
    [19]Maroudas A, Eisenklam P. Clarification of suspensions:a study of particle deposition in granular media:Part Ⅱ—A theory of clarification [J]. Chemical Engineering Science, 1965,20(10):875-888.
    [20]Donaldson E C, Baker B A, Carroll H B. Particle transport in sandstones. SPE6905, 1977.
    [21]Herzig J P, Leclerc D M, Goff P L. Flow of suspensions through porous media—Application to deep filtration [J]. Industrial & Engineering Chemistry,1970, 62(5):8-35.
    [22]Tien C, Turian R M, Pendse H. Simulation of the dynamic behavior of deep bed filters [J]. AIChE Journal,1979.25(3):385-395.
    [23]Gruesbeck C, Collins R E. Entrainment and deposition of fine particles in porous media [J]. SPE 8430,1982.
    [24]Gruesbeck, Collins, R.E. Particle Transport Through Perforations. SPE 7006, 1982:859-862.
    [25]Wojtanowicze, A.K.,Krilov, Z. and Langlinais, J.P. Study on the Effect of Pore Blocking Mechanisms on Formation Damage. SPE16233,1987:449-463.
    [26]Abbaszadeh M, Kamal M. Pressure-transient testing of water-injection wells [J]. SPE 16744,1989,4(1):115-124.
    [27]Yeh N S, Agarwal R G. Pressure Transient Analysis of Injection Wells in Reservoirs With Multiple Fluid Banks.SPE19775.1989.
    [28]C.ROQUE, G.CHAUVETEAU, M. Mechanisms of Formation Damage by Retention of Particles Suspended in Injection Water. SPE30110,1995:15.
    [29]张宁生.对油井产出水回注造成地层损害的模拟[J].石油钻采工艺,1995.17(1):47-54.
    [30]刘想平,侯立朋.油田注入水中固体颗粒对地层伤害的数学模型[J].江汉石油学院学报,1995,17(2):69-74.
    [31]来松清,苏燕翎.对悬浮固体侵入造成的地层伤害进行数学模拟的新方法[J].国外油田工程,1998,8:1-6.
    [32]罗明亮,蒲春生,樊友宏.储集层微粒运移堵塞预测模型及其应用[J].油气地质与采收率,2001,8(3):74-76.
    [33]李明忠,秦积舜,郑连英.注入水质造成油层损害的评价技术[J].石油钻采工艺,2002,24(3):40-42.
    [34]蒋建勋,王永清,李海涛等.注水开发油田水质优化方法研究[J].西南石油学院学报,2003,25(3):27-28.
    [35]吴小庆,杨旭,杜宁等.注水井偏微分方程反问题的适定性[J].西南石油学院学报,2004,26(3):37-40.
    [36]韩炜,张公社,黄茗等.注水井固相颗粒伤害数值模拟研究及应用[J].西安石油大学学报,2005,20(5):36-40.
    [37]伦增氓.悬浮固相颗粒对储集层基质孔隙的堵塞规律研究[J].后勤工程学院学报,2006,3,30-32.
    [38]杨旭,吴小庆,李进.注水井中固体颗粒对井伤害的数学模型研究[J].西南石油学院学报,2006,,28(3):13-16.
    [39]郑琴,孙健.地层伤害偏微分方程反问题模型及计算方法研究[D].中国西部油气地质,2006(1):91-94.
    [40]袁达明,李俊山,雷呈凤.注水井地层伤害压力偏微分方程模型及求解[J].理论研究,2008,22(1):23-26.
    [41]王玉英,刘延,杨涛.注入物对储层的伤害分析[J].油气田地面工程,2008,27(1):44-45.
    [42]霍进,陈陆建,王本成等.储层伤害试井评价新方法研究[J].西南石油大学学报,2012,34(1):108-114.
    [43]胡博仲.大庆油田高含水期稳油控水采油工程技术[M].北京:石油工业出版社,1997:254-257.
    [44]陆小兵,王守虎,隋蕾等.电脉冲解堵增注机理分析及应用[J].油气田开发,2011,29(6):61-79.
    [45]张玉娟.特低渗透油田磁化射流振荡增注技术研究[D].中国科学院渗流流体力学研究所,2011.
    [46]McCafferty, J.F., Tate, E.W., Williams, D.A. Field Performance in the Practical Application of Chlorine Dioxide as a Stimulation Enhancement Fluid. SPE 20626,1993.
    [47]封永利.超高压注水井解堵增注技术的研究与应用[J].断块油气田,2005,12(1):71-73.
    [48]崔宝臣,吴景春,贾振歧.非离子表面活性剂/低碳醇体系的界面活性及应用[J].油田化学,2003,20(4):354-356.
    [49]李晓东,刘慧,徐方俊.烷醇酰胺表面活性剂在降压增注技术中的性能与应用研究[J].哈尔滨理工大学学报,2009,14(6):120-123.
    [50]杨灵信,郭文军,徐艳伟等.聚硅纳米材料降压增注技术在文东油田的应用[J].江汉石油学院学报,2003,25(增刊):105-106.
    [51]孙治国,韦良霞,郭慧等.聚硅纳米材料在纯梁中低渗透油田的增注实验研究[J].石油天然气学报,2006,28(1):105-107.
    [52]杨永超,李桂峰,闫晨龙等.濮城油田沙三中6-10油藏活性纳米粉体降压增注技术研究[J].海洋石油,2008,28(1):56-62.
    [53]陈冠良,刘恒录.层内自生弱酸降压增注技术在文南油田的应用[J].蒙古石油化工,2006,16(5):158-159.
    [54]吕蓬勃,朱明立.CO2助排技术在低压低渗油层酸化中的应用[J].油气井测试,2001,10(6):56-59.
    [55]谢军德,郑延成等.层内C02产气深部解堵技术研究与应用[J].油天然气学报,2010,32(1):356-358.
    [56]夏光,刘春祥等.暂堵酸化技术在渤海油田注水井的应用[J].石油天然气学报,2010,32(6):483-486.
    [57]姚峰,杲春,王宇.前置碱剂酸化解堵技术在注水井中的应用[J].钻井液与完井液,2003,20(2):19-21.
    [58]李积祥,侯洪涛,张丽等.低渗油藏注水井解堵增注技术研究[J].特种油气藏,2011,18(3):106-108.
    [59]陈晓明,梁德栋,冯莉萍.振动一酸化复合解堵增注技术在莫北油田的应用[J].钻采工艺,2006,29(5):97-101.
    [60]黄学宾,陈宗林,朱建民等.高压低渗油田增注工艺技术的研究与应用[J].内蒙古石油化工,2000,26(增刊):174-177.
    [61]杨静,温晓等.应用多氢酸技术实现大港油田段六拨区块降压增注[J].钻采工艺,2008,3(增刊):63-67.
    [62]Schecher R.S, and Gidley J. L. The Change in Pore Size Distributions From Surface Reactions in Porous Media. AICHEJ,1969,5:339-350.
    [63]Williams B B, Whiteley M E. Hydrofluoric acid reaction with a porous sandstone [J]. SPE 3112,1971,11(3):306-314.
    [64]J C Labrid. Thermodynamic and Kinetic Aspects of Argillaceous Sandstone Acidizing. SPE 5165.1975.
    [65]McCune. C.C., Folger, H.S.Lund, K.Cunningham, J.R., and Ault. J.W. A New Model of The Physical and Chemical Changes in Sandstone During Acidizing. SPE 5175,1975.
    [66]Hekim and Y., Fogler H. S. On The Movement of Multiple Reaction Zones in Porous Media. AIChEJ, May,1980, V.26, No.3:403-411.
    [67]Taha R.. Hill A.D. and Sepehrnoorl K. Simulation of Sandstone Matrix Acidizing in Heterogeneous Resevroirs. SPE 13218,1986.
    [68]Bryant. An Improved Model of Mud Acid Sandstone Chemistry. SPE 22855,1991.
    [69]Murtaza Ziauddin, Oliver Berndt and Joal Robert. An Improved Sandstone Acidizing Model:The Importance of Secondary an Tertiary Reactions, SPE54728,1999.
    [70]Zhixi Chen, Desmond Nguyen. "A 3-D Numerieal Model for Designing and Planning of Matrix Acid Stimulation in Low-Permeability Rocks", SPE64403,2000.
    [71]郭建春,陈朝刚,赵金洲等.砂岩基质酸化模型研究与应用[J].石油天然气学报,2005,27(4):485-488.
    [72]刘红现,赵立强,刘平礼等.砂岩酸化地球化学模型研究[J].大庆石油地质与开发,2009,28(1):102-105.
    [73]李松岩,李兆敏,李宾飞.砂岩基质酸化中酸岩反应数学模型[J].中国矿业大学学报,2012,41(2):236-241
    [74]张玄奇.模糊物元精细评价方法在油水井酸化选井选层中的应用[J].兰州大学学报(自然科学版),2004,40(5):83-85.
    [75]李和全,郎兆新,周万平.选择注水井酸化的原则及酸化效果预测[J].新疆石油地质,1997,18(3):271-276.
    [76]钱卫明.利用注水动态资料计算注水井表皮系数与渗透率[J].试采技术,1995,16(2):43-47.
    [77]闫长辉.注采关联性分析[D].成都:成都理工大学,2002.
    [78]赵国瑜.井间示踪剂技术在油田生产中的应用[J].石油勘探与开发,1999,26(4)92-95.
    [79]林加恩,刘尉宁,陈钦雷.注水开发多井系统试井分析理论的应用[J].石油勘探与开发,1996,23(3),75-78.
    [80]Heffer KJ, Fox RJ, Mcgill CA, et al. Novel techniques show links between reservoir flow directionality, earth stress, fault structure and geomechanical changes in mature water-floods. SPE 30711,1995.
    [81]Panda, Chopra AK. An integrated approach to estimate well interact ions. SPE 39563, 1998.
    [82]Albertoni, Larry W L. Inferring connectivity only from well rate fluctuations in waterfloods. SPE 83381,2003,6:616.
    [83]Yousef AA, Gentil P, Jensen JL, et al. A capacitance model to infer interwell connectivity from production and injection rate fluctuations. SPE 95322,2005.
    [84]朱国金,王仪,吉兰敏等.注采井动态连通关系计算方法研究及应用[J].中国海上油气,2011,23(2):100-103.
    [85]李鸿吉.模糊数学基础及实用算法[M].北京市:科学出版社,2005.
    [86]肖芳淳.模糊分析设计在石油工业中的应用[M].北京:石油工业出版社,1993.
    [87]刘建军,闫建钊,程林松.表皮系数分解与油气层伤害定量评价[J].油气井测试,2005,14(2):17-19.
    [88]霍进,陈陆建,王本成等.储层伤害试井评价新方法研究[J].西南石油大学学报,2012,34(1):108-114.
    [89]罗明亮,蒲春生,樊友宏.储集层微粒运移堵塞预测模型及其应用[J].油气地质与采收率,2001,8(3):74-76.
    [90]Xinghui Liu, Faruk Civan, U. of Oklahoma. Formation Damage and Skin Factor Due to Filter Cake Formation and Fines Migration in the Near-Wellbore Region. SPE 27364, 1994.
    [91]许保玖,安鼎年.给水处理理论与设计[M].北京:中国建筑工业出版社1992.11:290-294.
    [92]P.Bedrikovetsky, A.S.L.Vaz Jr., C.Furtado and A.L.S. de Souza. Formation-Damage Evaluation From Nonlinear Skin Growth During Coreflooding. SPE 112509,2008.
    [93]伦纳德.卡尔法亚.酸化增产技术[M].石油工业出版社,2004:28-31.
    [94]孙为银.配位化学[M].化学工业出版社,2004.178-191.
    [95]陈馥,阎醒.砂岩地层酸化新进展[J].油田化学,1996,19(3):75-77.
    [96]赵立强,杜娟,刘平礼.多氢酸酸液体系酸度特性实验分析[J].天然气工业,2008,28(2):93-95.
    [97]王国清,王鸿钢等.无机化学实验[M].中国医药科技出版社,2001:201.
    [98]姚允斌.物理化学手册[M].上海:上海科学技术出版社,1985:99-102.
    [99]天津大学物理化学教研室编.物理化学[M].高等教育出版社,2002:201-205.
    [100]吴忠宝,胡文瑞,宋新民等.天然微裂缝发育的低渗透油藏数值模拟[J].石油学报,2009,30(5):727-730.
    [101]郝明强,刘先贵,胡永乐等.微裂缝性特低渗透油藏储层特征研究[J].石油学报,2007,28(5):93-98.
    [102]Wang Zhenduo. Development and research on fracturing technology in low permeability ultra—deep wells in China.SPE 64492,2000.
    [103]陈剑平,肖树芳.王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [104]T. Tamagawa, T. Matsuura, T. Anraku, K. Tezuka, T. Namikawa. Construction of fracture network model using static and dynamic data. SPE77741,2002.
    [105]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型[J].裂隙网络的随机生成[J].岩石力学与工程学报,2004,23(12):2015-2020.
    [106]郑松青,姚志良.离散裂缝网络随机建模方法[J].石油天然气学报,2009,38(4):106.
    [107]钱海涛,马平,秦四清.岩体不连续面迹长与直径间的概率关系模型分析[J].岩土力学,2007,29(8):1929-1832.
    [108]王志章.裂缝性油藏描述及预测[M].北京:石油工业出版社,1995.
    [109]National Research Council.Rock fractures and fluid flow:contemporary understanding and applications [M].Washington D C:National Academy Press,1996.
    [110]Stephane SAINTPERE, Yannick MARCILLAT. Hole cleaning capabilities of foams compared to conventional fluids[C]. SPE 63049,2000.
    [111]李治龙,钱武鼎.我国油田泡沫流体应用综述[J].石油钻采工艺,1993,15(6):88-93.
    [112]Evren M. Ozbayoglu, Stefan Z. Miska. Cuttings transport with foam in horizontal & highly-inclined wellbores[C]. SPE 79856,2006.
    [113]Friedmann F., Chen W. H., Gauglitz P. A. Experimental and simulation study of high-temperature foam displacement in porous media [J]. SPE Reservoir Engineering. SPE 17357,2005.
    [114]Gillis J. V., Radke C. J. A dual-gas tracer technique for determining trapped gas saturation during steady foam flow in porous media. SPE 20519,1990.
    [115]Hirasaki G. J., Lawson J. B. Mechanisms of foam flow in porous media:apparent viscosity in smooth capillaries [J]. SPE 12129,1985.
    [116]Xu Q., Rossen W. R. Effective viscosity of foam in periodically constricted tubes [J].Colloids Surfaces,2003:175-194.
    [117]Hirasaki G. J. The steam foam process- Review of Steam-Foam Process Mechanisms. SPE 19518,1989.
    [118]Kibodeaux K. R., Zeilinger S. C., Rossen W. R. Sensitivity study of foam diversion processes for matrix acidization. SPE 28550,1994.
    [119]赵立强,钟双飞,潘清川等.暂堵酸化实验研究[J].西南石油学院学报,1995(1):55-61.
    [120]Hill, A.D, Galloway. Laboratory and Theoretical Modeling of Diverting Agent Behavior. SPE 11576,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700