水—热耦合作用下煤体瓦斯的吸附解吸机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气的高效和安全开采,既可以防治矿井瓦斯灾害的发生,又可以提高能源的利用效率。
     针对采用过热水或过热水蒸气,加热煤层开采煤层气的施工方案和工艺,本文进行了较小煤试样的细观渗流试验研究、不同温度和水压作用下大尺寸煤试样对瓦斯的吸附解吸试验研究、毛细管中水和甲烷的运移机理研究以及相应的数值模拟研究。对既定方案所涉及到的水-热耦合作用下煤体瓦斯的吸附解吸机理,进行了较系统的研究,主要得到以下结论:
     1)成功研制用于固体—气、液二相流体渗流的细观试验装置,可以进行煤在显微CT观测下的吸附甲烷和高压注水试验,及其相应的观测和分析。通过对2mmx2.5mmx10mm的煤试样进行CT观测后得出,煤试样吸附甲烷后,相同区域、相同阂值的孔隙率下降约3%,但是随着吸附压力的进一步增加,孔隙率下降的趋势不明显。煤试样在高压注水后,相同区域、相同阈值的孔隙率下降约4%,但是随着注水压力的进一步增加,孔隙率下降的趋势不明显,并且卸载水压后,孔隙率仍会呈现微量的降低。
     2)采用自主研制的吸附—注水—解吸成套试验系统,进行了原位取芯得到的含瓦斯煤样在高压注水后的恒温(20℃)解吸特性试验,结果表明:含瓦斯煤样未注水时的自然解吸规律,与实际矿井的瓦斯涌出规律相近。水对含瓦斯煤样的解吸能力影响较大,等吸附平衡压力的水压注入含瓦斯煤样中,其解吸量只有自然解吸时的50%~70%,得到终态解吸率随注水压力变化的函数关系式。不同注水压力的解吸试验中,得到解吸率随时间变化的函数关系式,其影响因素主要是文中所定义的解吸时间效应临界值t0,注水压力越高,t0值越大。结合煤试样的孔隙分布规律,计算得出煤在不同水压作用下,水能够进入到煤中的临界孔隙尺度,此值越小,解吸率越低,推导得出煤体瓦斯解吸率与吸附平衡瓦斯压力和煤的孔隙分布相关的函数关系式。
     3)通过含瓦斯煤样在高压注水后的升温(30~110℃)解吸特性试验得出,注水后的煤样,瓦斯的解吸能力随着温度的上升逐渐增强,一旦达到或超过水的沸点后,解吸会发生突变。升温至90℃时,含瓦斯煤样在8MPa压力注水后的解吸率,要高于未注水自然解吸时的解吸率。得到解吸率随温度变化的函数关系式,与流体活性及表面吸附势有关。
     4)通过高压注水后煤样的恒温吸附瓦斯特性试验得出,相同初始吸附压力下,煤样的吸附速率随含水率的增加有不同程度的降低;相同时间内的吸附量,亦随含水率的增加而减少。得到终态吸附量和含水率之间,呈现一定的相关性。
     5)通过煤样的高温(30~270℃)吸附—解吸特性试验得出,定容吸附实验中吸附量的下降速率随温度的升高逐渐降低,吸附平衡压力的上升速率随温度的升高逐渐增大;而定压吸附实验中吸附量的下降速率始终随温度的升高而逐渐增大。得到在实验温度(30~270℃)、气体压力(≤7MPa)的范围内,煤对甲烷的吸附始终是第一类吸附,并且在恒温条件到达一定压力时,会出现吸附极限。得到单分子层吸附模型中的吸附参数a、b均随温度的升高呈现负指数规律的衰减,微观上表现为煤表面可吸附气体的吸附位活性随着温度的升高逐渐降低。
     6)以单一毛细一端封闭一端开口的煤壁毛细管为研究对象,得到水进入到煤中孔隙的孔径临界关系式,其作用机理:一是卸载水压之后,封闭管内的气体会推动毛细管中的水柱向外运动,因此,此时的管内气体压力会大于水柱产生的毛细管力;二是在管内的毛细管水柱不完全排出的前提下,会达到一个气液的平衡。并且得到温度作用下水—气流动的相变规律的不等关系式,说明了水的相变点是一个临界点,低于此值仍然是二相流的状态,而一旦高于此值,就转变为一相流,即可以对此进行单相甲烷气体流动的渗流解吸特性研究。
     7)建立了温度作用下煤中甲烷—水的耦合流动数学模型,此模型由含瓦斯煤样注水后的温度作用方程、气—水各自流动的运动方程以及连续性方程组成。
     8)通过对不同尺度、不同孔隙率下的微观孔隙级煤试样进行的数值试验,得出:相同的初始外界水压力下,试样的内部气体压力越大,水渗流的区域越小,水压/气压=2时的渗流区域大约是无气体压力时的2/3。对于薄板模型,恒温条件下,相同孔隙率模型的渗流速率与所选择的试样的尺度有关;相同尺度模型的渗流速率与模型孔隙率的大小有关。对于立方模型,渗流速率与试样尺度的关系不大。
     9)数值试验中,随着温度的上升,气体逐渐侵占原先水渗流的孔隙单元,而且温度到达一定值后,气体几乎会全部占据所有孔隙单元,并且水压/气压=10时所需要的温度值大约在240-270℃之间,而水压/气压=5时所需要的温度值只有120~150℃左右。拟合得出,气体渗流区域百分比随温度变化,呈现良好的线性相关性;对于薄板模型,线性相关性与孔隙率的大小和模型的尺度有关;对于立方模型,线性相关性不仅与孔隙率的大小和模型的尺度有关,而且还与升温前的渗流状态有关。
The high efficiency exploitation and utilization methods of coalbed methane, not only the mine gas disasters were decreased but also energy utilized efficiencies were improved.
     For the industry project and technology of coalbed methane exploitation, superheating water or vapour was adopted to inject into coal seam afterwards so many fractures were shaped. The paper was stated theoretical study, meso-permeation of two phase fluid mechanics experiments, macro-large scale coal samples in laboratory on different temperature and water pressure of methane adsorption or desorption experiments, and micro-small scale coal specimen corresponding with laboratory ones in numerical studies. Finally, the adsorption or desorption law of coalbed methane influenced by coupling of water and temperature was studied systematically for the probable technology. And the results showed that:
     1) The meso two phase fluid permeation testing machine of coal-gas-water was also successful manufactured. And the viewings of coal adsorbed methane and high pressure water injection experiments under micro CT were observing. It is presented for the coal specimen of2mm×2.5mm×10mm and showed that once coal specimen adsorbed methane, the porosity was decreased about3%at the same zone and the tendency was not obvious followed by gas pressure increased. Once after water injection, the porosity was also decreased about4%at the same zone. If external water unloaded, the porosity was still decreased.
     2) The adsorption-water injection-desorption testing machine was manufactured by own for room temperature (20℃) desorption characteristics experiments of high pressure water injection after adsorption methane using direct cylinder raw coal sample, the results presented that:the natural desorption law of experimental coal sample is the same as actual coal mine. Desorption percentages (PD) in different water injection conditions are obeyed one time effect formula, the value is determined by critical value of desorption time effect t0, the law is more water pressure, larger the value. Desorption characteristics of methane bearing coal sample are mostly influenced by water, PD are only50~70%times to natural at equality water pressure with gas pressure. Followed by water injection pressure increased, final PD is relative with water pressure. Combining porous distribution law of coal samples, the critical pore size-scale of water into coal sample was calculated in different water pressure. The smaller is critical value, the lower is PD. And PD of coal sample is related with equilibrium adsorption methane pressure and porous distribution law of coal.
     3) For the temperature raised (30~110℃) desorption characteristic experiments of coal sample in high pressure water injection after adsorbed methane, the results presented that:desorption capacity of methane bearing coal sample after water injection is improved as a function of temperature rose. Desorption will reach saltation once up to or exceed boiling point of water. And the PD in90℃after water injection is still larger than natural PD. There is a function relationship between PD and temperature; they are related with liquid activity and surface adsorption potential.
     4) For the methane adsorption experiments of water bearing coal sample and the results presented that:the methane adsorption capacity will decreased after block coal sample adsorbed water. It is existed functional relationship between adsorption capacity and moisture rate.
     5) For the high temperature (30~270℃) desorption characteristic experiments of methane bearing coal sample, the results presented that:the decreasing velocity of adsorption in fixed volume experiments is decreased with temperature rose; increasing velocity of equilibrium adsorption gas pressure is increased with temperature rose. The decreasing velocity of adsorption in fixed pressure experiments is increased with temperature rose. In experimental temperature (30~270℃) and gas pressure (<7MPa), the adsorption is still the first one of coal adsorb methane and would be reach maximum value once up to definite gas pressure at the constant temperature. It is defined the single molecular adsorption model. The adsorption parameter a and b in single molecular adsorption is decreased in minus exponential law as a function of temperature. The actual mechanism is adsorption activity at the surface of coal is decreased with temperature rose.
     6) In theoretical studies, coal base single capillary pipe which one side sealing the other opening is adopted as research object and pore size critical formula of water injecting into coal is deduced. There are two conditions in actual use:the first is after water pressure unloaded, the gas in pipe is move out so gas pressure was more than capillary force due to water; the second is there is a new equilibrium between gas and liquid if water still exists in capillary pipe. The inequality of phase change law coupling of liquid and gas influenced by temperature is deduced. It is presented that the phase change point of water is a critical one, there was two phase fluid state which less than it and become single phase state once more than it. In that case gas and liquid fluid has become gas fluid, and could be used as permeation and desorption features.
     7) The temperature and coupling fluid mathematical model of methane-water in coal has been deduced. It is composed of methane bearing coal sample equation as a function of temperature after water injection, kinematics and continuity equations of single gas and water.
     8) The corresponding numerical studies of micro porous coal specimen in different size-scale and porosity were preceded, and the results presented that:at the same initial external water pressure, the more inner gas pressure of specimen, the smaller seepage zone of water. The zone of water divide gas equal2is about2/3times of no gas. The seepage velocity is related with specimen size-scale for sheet model of same porosity at constant temperature, seepage velocity is related with model porosity of same size-scale. But the seepage velocity is not related with specimen size-scale for cube model.
     9) Porous units of former water become gas followed by temperature rose, and once up to definite value, all of the units are full of gas. Water pressure divide gas equal10will at240~270℃for all gas units, but only120~150℃with water divide gas equal5. Beyond results simulation, percentage of gas seepage area is displayed good linear correlation as a function of temperature. The linear correlation is related with porosity and size-scale for sheet model. And the correlation is not only related with porosity and size-scale, but also seepage condition before warming up for cube model.
引文
[1]冯增朝.低渗透煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008.
    [2]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2006.
    [3]冯增朝.低渗透煤层瓦斯抽放理论与应用研究[D].太原:太原理工大学,2005.
    [4]马东民.煤层气吸附解吸机理研究[D].西安:西安科技大学,2008.
    [5]肖晓春.滑脱效应影响的低渗透储层煤层气运移规律研究[D].阜新:辽宁工程技术大学,2009.
    [6]沈自求.气-液两相流传递研究[J].大连理工大学学报,1999,39(2):228-234.
    [7]周东平.空化水射流声震效应促进煤层瓦斯解吸渗流机理研究[D].重庆:重庆大学,2010.
    [8]杜春志.煤层水压致裂理论及应用研究[D].徐州:中国矿业大学,2008.
    [9]梁卫国.盐类矿床水压致裂水溶开采的多场耦合理论及应用研究[D].太原:太原理工大学,2004.
    [10]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [11]Busch A, Gensterblum Y, Krooss B M, et.al. Methane and carbon dioxide adsorption-diffusion experiments on coal:up scaling and modeling [J]. International Journal of Coal Geology,2004,60: 151-168.
    [12]Busch A, Gensterblum Y, Krooss B M, etal. Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals:an experimental study [J]. International Journal of Coal Geology,2006,66:53-68.
    [13]Busch A, Gensterblum Y. CBM and CO2-ECBM related sorption processes in coal:A review [J]. International Journal of Coal Geology,2011,87(2):49-71.
    [14]Ceglarska-Stefanska G, ZarQbska K. The competitive sorption of CO2 and CH4 with regard to the release of methane from coal [J]. Fuel Processing Technology,2002(77-78):423-429.
    [15]Ceglarska-Stefanska, G, ZarQbska K. Sorption of carbon dioxide-methane mixtures [J]. International Journal of Coal Geology,2005,62:211-222.
    [16]Goodman A L,Busch A,Duffy G J, etal. An inter-laboratory comparison of CO2 isothermsmeasured on Argonne premium coal samples [J]. Energy and Fuels,2004,18:1175-1182.
    [17]Bachu S. Flow systems in the Alberta Basin:patterns types and driving mechanisms [J]. Canadian Petroleum Geology Bulletin,1999,47:455-474.
    [18]Bachu S, Michael K. Possible controls of hydrogeological and stress regimes on the producibility of coalbed methane in Upper Cretaceous-Tertiary strata of the Alberta basin, Canada [J]. American Association of Petroleum Geologists Bulletin,2003,87:1729-1754.
    [19]Banerjee I, Goodarzi F. Paleoenvironment and sulfur-boron contents of theMannville (LowerCretaceous) coals of southernAlberta,Canada [J]. SedimentaryGeology,1990,67:297-310.
    [20]Banks D, Hall G, Reimann C, etal. Distribution of rare earth elements in crystalline bedrock groundwaters:Oslo and Bergen region, Norway [J]. Applied Geochemistry,1999,14:27-39.
    [21]Banner J L, Wasserburg G J, Dobson P F, etal. Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri [J]. Geochimica Cosmochimica Acta,1989,53: 383-398.
    [22]Parks K, Toth J. Field evidence for erosion-induced underpressuring in Upper Cretaceous and Tertiary strata, west central Alberta, Canada [J]. Bulletin of Canadian Petroleum Geology,1995,43:281-292.
    [23]Patz M J, Reddy K J, Skinner Q D. Chemistry of coalbed methane discharge water interacting with semi-arid ephemeral stream channels [J]. Journal of the American Water Resources Association,2004, 40:1247-1255.
    [24]Van Stempvoort D R, Hendry M J, Schoenau J J, etal. Sources and dynamics of sulfur in weathered till, Western Glaciated Plains of North America [J]. Chemical Geology,1994,111:35-56.
    [25]Verplanck P L, Antweiler R C, Nordstrom D K, etal. Standard reference water samples for rare earth element determinations [J]. Applied Geochemistry,2001,16:231-244.
    [26]Verplanck P L, Nordstrom D K, Taylor H E, etal. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation [J]. Applied Geochemistry,2004,19: 1339-1354.
    [27]Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology,1999,161:291-301.
    [28]Worrall F, Pearson D G. The development of acidic groundwaters in coal-bearing strata:Part Ⅰ. Rare earth element fingerprinting [J]. Applied Geochemistry,2001,16:1465-1480.
    [29]孙茂远,黄盛初等.煤层气开发与利用手册[M].北京:煤炭工业出版社,1998.
    [30]吴世跃.煤层气与煤层耦合运动理论及其应用的研究—具有吸附作用的气固耦合理论[D].沈阳:东北大学,2005.
    [31]易俊.声震法提高煤层气抽采率的机理及技术原理研究[D].重庆:重庆大学,2007.
    [32]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].阜新:辽宁工程技术大学,2004.
    [33]肖知国,王兆丰.煤层注水防治煤与瓦斯突出机理的研究现状与进展[J].中国安全科学学报,2009,19(10):150-159.
    [34]张晓梅,宋维源.煤岩双重介质注水驱气渗流的理论研究[J].煤炭学报,2006,31(2):186-190.
    [35]刘保县,熊德国,鲜学福.电场对煤瓦斯吸附渗流特性的影响[J].重庆大学学报(自然科学版),2006,29(2):83-85.
    [36]赵阳升,胡耀青,杨栋等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [37]尹光志,李小双,赵洪宝等.瓦斯压力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2009,28(4):696-702.
    [38]梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报(自然科学版),1999,18(5):483-486.
    [39]叶建平等.中国煤层气资源[M].北京:中国矿业大学出版社,1998.
    [40]张新民,庄军,张隧安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [41]Huang, S. The investment perspective of coal mine methane projects in China. UK-China CBM Technology Workshop-Resources Development and Commercialization [R]. Beijing:Hua Qiao Da Sha, November 2000.
    [42]张彦平,何湘清,金建新等.国外煤层甲烷气开发技术译文集[M].北京:石油工业出版社,1996。
    [43]杜尔.美国瓦斯研究总结[J],余申翰译,煤矿安全,1990,11(4):2-8。
    [44]Zhu, X. China's policies for CBM development and utilization:today and tomorrow[C]. Proceedings of Second International Methane Mitigation Conference. Russia:Novosibirsk,2000:565-570.
    [45]奥雷格·泰拉科夫.独联体国家煤层气开发利用现状[J].中国煤层气,1999,2:26-28。
    [46]基思·利弗菲尔德.英国煤层气开发现状[J].中国煤层气,2003,1:72-73。
    [47]Alexeev A D, Feldmen E P. Methane desorption from a coal-bed [J]. Fuel,2007,86:2574-2580.
    [48]Vutukuri V S, Lama R D, Salujia S S. Handbook on mechanics properties of rocks (Vol.1) [M].1974.
    [49]Tyler R, Kaiser W R, Ambrose W A, Laubach A R, Ayers W B. Coalbed methane characteristics in the foreland of the Cordilleran Thrust belt, western United States. In:Beamish, B.B., Gamson, P.D. (Eds.) [C]. Symposium on Coalbed Methane Research and Development in Australia, Vol.4(2). Queensland:James Cook Univ. of Queensland,1992:11-32.
    [50]桑托斯·甘沃.印度煤层气勘探开发综述[J].中国煤层气,1999,1:10-12。
    [51]World Coal Institute. Ecoal [M]. The Quarterly Newsletter of the World Coal Institute,1998,28.
    [52]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society,1918,38:1361-1403.
    [53]Langmuir I. The constitution and fundamental properties of solids and liquids [J]. Journal of the American Chemical Society,1918,38:2221-2295.
    [54]Airey E M. Gas emission from broken coal:An experimental and theoretical investigation [J]. International journal of rock mechanics and mining sciences & Geomechanics Abstracts,1968,5: 475-494.
    [55]Do D, Rice R. On the relative importance of pore and surface diffusion in non-equilibrium adsorption rate processes [J]. Journal of Chemical Engineering Science,1987,42:2269-2284.
    [56]Shen J, Qin Y, Wang G X, etal. Relative permeabilities of gas and water for different rank coals [J]. International Journal of Coal Geology,2011,86(2-3):266-275.
    [57]Han F S, Busch A, van Wageningen N, etal. Experimental study of gas and water transport processes in the inter-cleat(matrix) system of coal:Anthracite from Qinshui Basin, China [J]. International Journal of Coal Geology,2010,81(2):128-138.
    [58]Gruszkiewicz M S, Naney M T, Blencoe J G, etal. Adsorption kinetics of CO2, CH4, and their equilolar mixture on coal from the Black Warrior Basin, West-Central Alabama [J]. International Journal of Coal Geology,2009,77(1-2):23-33.
    [59]Payne S H, Kreutzer H J. Analysis of thermal desorption data [J]. Surface Science,1989,222: 404-429.
    [60]Krooss B M, Bergen F, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals [J]. International Journal of Coal Geology, 2002,51:69-92.
    [61]Hossein J, Faruk C. Determination of multi-component gas and water equilibrium and non-equilibrium sorption isotherms in carbonaceous solids from early-time measurements [J]. Fuel, 2007,86:1601-1613.
    [62]Sakvrovs R, Day, S, Weir, S, etal. Temperature dependence of sorption of gases by coals and charcoals [J]. International Journal of Coal Geology,2008,73:250-258.
    [63]Snyder G T, Riese W C, et al. Origin and history of waters associated with coalbed methane:1291, 36C1, and stable isotope resulting from the fruit land formation, CO and NM [J]. Journal of Geochemistry Cosmochemistry Acta,2003,67:4529-4544.
    [64]Gosiewska A, Drelich J, et al. Mineral matter distribution on coal surface and its effect on coal wettability [J]. Journal of Colloid Interface Science,2002:107-116.
    [65]Gu F, Chalaturnyk R. Analysis of coalbed methane production by reservoir and geomechanical coupling simulation [J]. Journal of Canadian Petroleum Technology,2005,44(10):33-42.
    [66]Gerami S, Pooladi D, et al. Type curves for dry CBM reservoirs with equilibrium desorption [J]. Journal of Canadian Petroleum Technology,2008,47(7):48-56.
    [67]Guo R, Mannhardt K. Laboratory investigation on the permeability of coal during primary and enhanced Coalbed Methane production [J]. Journal of Canadian Petroleum Technology,2008,47(10): 26-32.
    [68]De silva P N K, Ranjith P G, Choi S K. A study of methodologies for CO2 storage capacity estimation of coal [J]. Fuel,2012,91(1):1-15.
    [69]Perera M S A, Ranjith P G, Peter M. Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal:Carbon dioxide, water and nitrogen saturations [J]. Energy,2011, 36(12):6941-6947.
    [70]Papendick S L, Downs K R, Vo K D, etal. Biogenic methane potential for Surat Basin, Queensland coal seams [J]. International Journal of Coal Geology,2011,88(2-3):123-134.
    [71]Wang S G, Elsworth D, Liu J S. Permeability evolution in fractured coal:The roles of fracture geometry and water-content [J]. International Journal of Coal Geology,2011,87(1):13-25.
    [72]Gentzis I, Goodarzi F, Cheung F K, etal. Coalbed methane producibility from the Mannville coal in Alberta, Canada:A comparision of two areas [J]. International Journal of Coal Geology,2008,74(3-4): 237-249.
    [73]Fitzgerald J E, Sudibandriyo M, Pan Z, et.al. Modeling the adsorption of pure gases on coals with the SLD model [J]. Carbon,2003,41:2203-2216.
    [74]Andreas B, Gensterblum Y, Krooss B M, et al. Investigation of high-pressure selective adsorption/desorption behavior of CO2 and CH4 on coals:An experimental study [J]. International Journal of Coal Geology,2006,66(1):53-68.
    [75]Yu H G, Yuan J, Guo W J, et al. A preminary laboratory experiment on coalbed methane displacement with carbon dioxide injection [J]. International Journal of Coal Geology,2008,73: 156-166.
    [76]Zhu W C, Liu J, Sheng J C. Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams [J]. International Journal of Rock Mechanics & Mining Sciences,2007,44:971-980.
    [77]He M C, Wang C G, Feng J L, et al. Experimental investigations on gas desorption and transport in stressed coal under isothermal conditions [J]. International Journal of Coal Geology,2010,83(4): 377-386.
    [78]Ziarani A S, Aguilera R, Clarkson C R. Investigating the effect of sorption time on coalbed methane recovery through numerical simulation [J]. Fuel,2011,90:2428-2444.
    [79]Gao G, Huang Z L, Huang B J, etal. The solution and exsolution characteristics of natural gas components in water at high temperature and pressure and their geological meaning [J]. Petroleum Science,2012,9(1):25-30.
    [80]Svabova M, Weishauptova Z, Pribyl O. The effect of moisture on the sorption process of CO2 on coal [J]. Fuel,2012,92(1):187-196.
    [81]秦文贵,张延松.煤孔隙分布与煤层注水增量的关系[J].煤炭学报,2000,25(5):514-517.
    [82]王兆丰,李晓华,戚灵灵等.水分对阳泉3号煤层瓦斯解吸速度影响的实验研究[J].煤矿安全,2010,(7):1-3.
    [83]Arri L E, Yee D, Morgan W D, etal. Modeling coalbed methane production with binary gas sorption [C]. SPE Paper 24363, Presented at the SPE Rocky Mountain Regional Meeting, Casper, WY,1992: 459-472.
    [84]Hall F E, Zhou C, Gasem K A M, etal. Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixtures on wet fruitland coal [C]. SPE Paper 29194, Presented at the SPE Eastern Regional Meeting, Charleston, West Virginia,1994:329-344.
    [85]Karacan C O, Okandan E. Assessment of energetic heterogeneity of coals for gas adsorption and its effect on mixture predictions for coalbed methane studies [J]. Fuel,2000,79:1963-1974.
    [86]Karacan C O. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection [J]. Energy and Fuels,2003,17:1595-1605.
    [87]Busch A, Gensterblum Y, Krooss B M. Methane and CO2 sorption and desorption measurements on dry Argonne premium coals:pure components and mixtures [J]. International Journal of Coal Geology, 2003,55:205-224.
    [88]Allardice D J, Clemow L M, Favas G, etal. The characterisation of different forms of water in low rank coals and some hydrothermally dried products [J]. Fuel,2003,82:661-667.
    [89]Mohammad S A, Gasem K A M. Modeling the competitive adsorption of CO2 and water at high pressures on wet coals [J]. Energy & Fuels,2012,26(1):557-568.
    [90]Battistutta E, Eftekhari A A, Bruining H, etal. Manometric sorption measurements of CO2 on moisture-equilibrated bituminous coal [J]. Energy & Fuels,2012,26(1):746-752.
    [91]Beaton, A. Production potential of coalbed methane resources in Alberta[R]. Earth Sciences Report. 2003,03.
    [92]Beaton, A, Pana, C, Chen, D, etal. Coalbed methane potential of Upper Cretaceous-Tertiary strata[R]. Earth Sciences Report.2002,06.
    [93]Beaton, A, Langenberg, W, Pana, C. Coalbed methane resources and reservoir characteristics from the Alberta Plains, Canada [J]. International Journal of Coal Geology,2006,65:93-113.
    [94]Bodden W, Robert E. Permeability of coals and characteristics of desorption tests:Implications for coalbed methane production [J]. International Journal of Coal Geology,1998,35:333-347.
    [95]Cheung K, Sanei H, Klassen P, et al. Produced fluids and shallow groundwater in coalbed methane (CBM) producing regions of Alberta, Canada:Trace element and rare earth element geochemistry [J], International Journal of Coal Geology,2009,77:338-349.
    [96]Lehman L, Blauch M. Desorption enhancement in fracture-stimulated coalbed methane wells[C]. Proceedings-SPE Annual Western Regional Meeting.1998:153-160.
    [97]Lawrenceo A. Groundwater flow associated with coalbed gas production, Ferron Sandstone, east-central Utah [J]. International Journal of Coal Geology,2003,56(1-2):69-95.
    [98]Robert A L. Hydrodynamic and stratigraphic controls for a large coalbed methane accumulation in Ferron coals of east-central Utah [J]. International Journal of Coal Geology,2003,56(1-2):97-110.
    [99]Slawomir, K. Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland) [J]. International Journal of Coal Geology,2009,80:23-34.
    [100]Clarkson C R, Bustin B M, Levy J H. Application of the mono/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure [J]. Carbon,1997,35(12):1689-1705.
    [101]Clarkson C R, Jordan C L, Gierhart R R. Production data analysis of coalbed-methane wells [J]. SPE-Reservoir Evaluation & Engineering,2008,11(2):311-325.
    [102]Clarkson C R. Case study:production data and pressure transient analysis of Horseshoe Canyon CBM wells [J]. Journal of Canadian Petroleum Technology,2009,48(10):26-38.
    [103]Clarkson C R, Rahmanian M, Kantzas A. Relative permeabiligy of CBM reservoirs:Controls on curve shape [J]. International Journal of Coal Geology,2011,88(4):204-217.
    [104]Clarkson C R, Bustin R M. Coalbed methane:current field-based evaluation methods [J]. SPE-Reservior Evaluation & Engineering,2011,14(1):60-75.
    [105]Ziarani A S, Aguilera R, Clarkson C R. Investigating the effect of sorption time on coalbed methane recovery through numerical simulation [J]. Fuel,2011,90(7):2428-2444.
    [106]Lu T K, Yu H, Zhou T Y, et al. Improvement of methane drainage in high gassy coal seam using waterjet technique [J]. International Journal of Coal Geology,2009,79:40-48.
    [107]聂百胜,何学秋,冯志华等.磁化水在煤层注水中的应用[J].辽宁工程技术大学学报(自然科学版),2007,26(1):1-3.
    [108]陈尚斌,朱炎铭,刘通义等.清洁压裂液对煤层气吸附性能的影响[J].煤炭学报,2009,34(1):89-94.
    [109]郭红玉,苏现波.煤层注水抑制瓦斯涌出机理研究[J].煤炭学报,2010,35(6):928-931.
    [110]Paul S, Chatterjee R. Determination of in-situ stress direction from cleat orientation mapping for coal bed methane exploration in south-eastern part of Jharia coalfield, India [J]. International Journal of Coal Geology,2011,87(2):87-96.
    [111]Li L C, Yang T H, Liang Z Z, etal. Numerical investigation of groundwater outbursts near faults in underground coal mines [J]. International Journal of Coal Geology,2011,85(3-4):276-288.
    [112]Wang Z M, Zhang J. Critical thickness of a low permeable coal bed for horizontal well production in China [J]. Energy Sources Part A-Recovery Utilization and Environmental Effects,2011, 33(4):307-316.
    [113]Pashin J C. Variable gas saturation in coalbed methane reservoirs of the Black Warrior Basin: Implications for exploration and production [J]. International Journal of Coal Geology,2010,82(3-4): 135-146.
    [114]Kinnon E C P, Golding S D, Boreham C J, etal. Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia [J]. International Journal of Coal Geology,2010,82(3-4):219-231.
    [115]Zhang S H, Tang S H, Tang D Z, etal. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China [J]. International Journal of Coal Geology,2010,81(2): 117-127.
    [116]Ross H E, Hagin P, Zoback M D. CO2 storage and enhanced coalbed methane recovery: Reservior characterization and fluid flow simulations of the Big George coal, Powder River Basin Wyoming, USA [J]. International Journal of Greenhouse Gas Control,2009, Vol.3(6):773-786.
    [117]Sasaki K, Ono S, Sugai Y, etal. Gas production system from methane hydrate layers by hot water injection using dual horizontal wells [J]. Journal of Canadian Petroleum Technology,2009,48(10): 21-26.
    [118]Zarrouk S J, Moore T A. Preliminary reservoir model of enhanced coalbed methane(ECBM) in a subbituminous coal seam, Huntly Coalfield, New Zealand [J]. International Journal of Coal Geology, 2009,77(1-2):153-161.
    [119]Yang X, Sun C Y, Yuan Q, etal. Experimental Study on Gas Production from Methane Hydrate-Bearing Sand by Hot-Water Cyclic Injection [J]. Energy & Fuels,2010,24:5912-5920.
    [120]Kinnon E, Golding S D, Boreham C J, etal. Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia [J]. International journal of coal geology,2010,82:219-231.
    [121]Bachu S. Flow of formation waters, aquifer characteristics, and their relation to hydrocarbon accumulations in the northern part of the Alberta Basin [J]. American Association of Petroleum Geologists Bulletin,1997,81:712-733.
    [122]Anderson C J, Tao W, Jiang J W, et.al. An experimental evaluation and molecular simulation of high temperature gas adsorption on nanoporous carbon [J]. Carbon,2011,49:116-125.
    [123]Yong Z, Mata V, Rodrigues A E. Adsorption of carbon dioxide at high temperature-a review [J]. Separation and Purification Technology,2002,26:195-205.
    [124]Crosdale P J, Moore T A, Mares T E. Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir [J]. International Journal of Coal Geology,2008,76:166-174.
    [125]Azmi A S, Yusup S, Muhamad S. The influence of temperature on adsorption capacity of Malaysian coal [J]. Chemical Engineering and Processing,2002,45:392-396.
    [126]Pini R, Ottiger S, Burlini L, et.al. Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature [J]. International Journal of Greenhouse Gas Control,2010, 4:90-101.
    [127]杨新乐,张永利,李成全等.考虑温度影响下煤层气解吸渗流规律试验研究[J].岩土工程学报,2008,30(12):1811-1814.
    [128]Frantisek B, Zdenka L. Temperature programmed desorption of coal gases-Chemical and carbon isotope composition [J]. Fuel,2010,89:1514-1524.
    [129]Park J H, Cho Y S, Yi K B, et.al. Adsorption and desorption characteristics of barium oxide at high temperature [J]. Applied Surface Science,2010,256:5528-5532.
    [130]Levy J H, Day S J, Killingley J S. Methane capacities of Bowen Basin coals related to coal properties[J].Fuel,1997,76(9):813-819.
    [131]Maria B, Diaz A, et al. Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain [J]. International Journal of Coal Geology,2007,69:253-266.
    [132]Quintero K, Martinez M, Hackley P, and et.al. Organic Geochemical Investigation and Coal-bed Methane Characteristics of the Guasare Coals (Paso Diablo Mine, Western Venezuela) [J]. Energy sources part A-recovery utilization and environmental effects,2011,33:959-971.
    [133]Dai C, You Q, Zhao H, etal. A study on gel fracturing fluid for coalbed methane at low temperatures [J]. Energy Sources Part A-Recovery Utilization and Environmental Effects,2012,34(1): 82-89.
    [134]Jan T W, Adav S S, Lee D, etal. Hydrogen fermentation and methane production from sludge with pretreatments [J]. Energy & Fuels,2008,22(1):98-102.
    [135]Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of adsorption-pores of coals from North China:an investigation onCH4 adsorption capacity of coals [J]. International Journal of Coal Geology,2008,73(1):27-42.
    [136]唐巨鹏,潘一山,李成全.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    [137]王宏图,杜云贵,鲜学福等.地球物理场中的煤层瓦斯渗流方程[J].岩石力学与工程学报,2002,21(5):644-646.
    [138]钟玲文,张慧,员争荣等.煤的比表面积、孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26-28.
    [139]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    [140]李志强等.不同温度应力条件下煤样渗透率实验研究[J].中国矿业大学学报,2009,38(4): 523-527.
    [141]刘高峰,张子戌,张小东等.气肥煤与焦煤的孔隙分布规律及其吸附-解吸特征[J].岩石力学与工程学报,2009,28(8):1586-1592.
    [142]严继民,张启元.吸附与凝聚-固体的表面与孔[M].北京:科学出版社,1979.
    [143]马东民等.无烟煤对甲烷等温吸附解吸特性实验研究[J].煤田地质与勘探,2007,35(2):25-27.
    [144]易俊,姜永东,鲜学福.在交变电场声场作用下煤解吸吸附瓦斯特性分析[J].中国矿业,2005,14(5):70-73.
    [145]孙可明,梁冰.考虑解吸扩散过程的煤层气流固耦合渗流研究[J].辽宁工程技术大学学报(自然科学版),2001,20(4):548-549.
    [146]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理研究[J].煤炭学报,2008,33(2):131-135.
    [147]胡千庭,周银辉,文光才等.瓦斯含量法预测突出突出危险新技术[J].煤炭学报,2007,32(3):276-280.
    [148]刘晓丹,卢国斌.地球物理方法预测煤与瓦斯突出[J].辽宁工程技术大学学报(自然科学版),2008,27(S):6-9.
    [149]景国勋,张强.煤与瓦斯突出过程中瓦斯作用的研究[J].煤炭学报,2005,30(2):169-171.
    [150]李成武,何学秋.工作面煤与瓦斯突出危险程度预测技术研究[J].中国矿业大学学报,2005,34(1):71-76.
    [151]尹光志,赵洪宝,许江等.煤与瓦斯突出模拟试验研究[J].岩石力学与工程学报,2009,28(8):1674-1680.
    [152]何俊,何学秋,刘明举.煤与瓦斯突出多尺度预测研究[J].岩石力学与工程学报,2004,23(18):3122-3126.
    [153]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.
    [154]陈顒,黄庭芳.岩石物理学[M].安徽:中国科学技术大学出版社,2009.
    [155]赵阳升.煤样—瓦斯耦合理论及其应用[D].上海:同济大学,1992。
    [156]降文萍,崔永君,张群等.不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报,2007,32(3):292-295.
    [157]吕兆兴.孔隙裂隙双重介质逾渗理论及应用研究[D].太原:太原理工大学,2008。
    [158]傅雪海,秦勇,薛秀谦等.煤储层孔、裂隙系统分形研究[J],中国矿业大学学报(自然科技 版),2001,30(3):225-228。
    [159]降文萍,崔永君,钟玲文等.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学,2007,18(4):576-583.
    [160]聂百胜,何学秋,王恩元等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):379-383.
    [161]傅贵,陈学习,雷治平.煤样吸湿速度实验研究[J].煤炭学报,1998,23(6):630-633.
    [162]金龙哲,蒋仲安,任宝宏等.煤层注水中水分蒸发现象的研究[J].中国安全科学学报,2000,10(3):58-62.
    [163]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566-570.
    [164]张占存,马不梁.水分对不同煤种瓦斯吸附特性影响的实验研究[J].煤炭学报,2008,33(2):144-147.
    [165]杨栋.裂缝中气液二相流体临界渗流机理与理论研究[D].太原:太原理工大学,2005。
    [166]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].沈阳:东北大学,2001。
    [167]赵东,冯增朝,赵阳升.煤层瓦斯解吸影响因素的试验研究[J].煤炭科学技术,2010,38(5):43-46。
    [168]赵东,冯增朝,赵阳升.高压注水对煤体瓦斯解吸特性影响的试验研究[J].岩石学与工程学报,2011,30(3):546-555.
    [169]赵东,赵阳升,冯增朝.结合孔隙结构分析注水对煤体瓦斯解吸的影响[J].岩石力学与工程学报,2011,30(4):686-692。
    [170]Zhao D. Feng Z C, Zhao Y S. Effects and influences of water injection on coalbed exploitation in mining engineering [C]. Proceedings of the 2nd International Young Scholars'Symposium on Rock Mechanics. Leiden Netherland:CRC Press/Balkema,2011:731-735.
    [171]Zhao D, Feng Z, Zhao Y. Laboratory Experiment on Coalbed-Methane Desorption Influenced by Water Injection and Temperature [J], Journal of Canadian Petroleum Technology,2011,50(6-8): 24-33.
    [172]冯增朝,赵东,赵阳升.块煤含水率对其吸附性影响的试验研究[J].岩石力学与工程学报,2009,(Supp.2):3291-3295。
    [173]Zhao D, Feng Z C, Zhao Y S. Experimental Study and Microscopic Mechanism of Effects on Coal-seam Gas Absorption by Water[C]. The 2nd International Conference on Mine Hazards Prevention and Control. Paris France:Atlantis Press,2010:280-287.
    [174]Zhao D, Feng Z C. Experiment and Mechanism on characteristics of Coalbed Methane Adsorption affected by Water [J], Advanced Materials Research,2011,243-249:4960-4964.
    [175]Zhao D, Zhao Y S, Feng Z C, etal. Experiments of Methane Adsorption on Raw Coal at 30-270 ℃ [J], Energy Sources Part A:Recovery, Utilization and Environmental Effects,2012,34(4): 324-331.
    [176]赵阳升,冯增朝.井上下联合注热抽采煤层气的方法[P].中国专利:CN.101503957,2009-08-12.
    [177]牛国庆,颜爱华,刘明举.瓦斯吸附和解吸过程中温度变化实验研究[J].辽宁工程技术大学学报,2003,22(2):155-157.
    [178]赵阳升.多孔介质多场耦合作用及其工程响应[M].北京:科学出版社,2010。
    [179]杨新乐.低渗透煤层煤层气注热增产机理的研究[D].阜新:辽宁工程技术大学,2009.
    [180]Thararooop P, Karpyn Z T, Ertekin T. Numerical studies on the effects of water presence in the coal matrix and coal shrinkage and swelling phenomena on CO2-enhanced coalbed methane recovery process [J]. International Journal of Oil Gas and Coal Technology,2012,5(1):47-65.
    [181]Cai Y D, Liu D M, Yao Y B, etal. Geological controls on prediction of coalbed methane of No.3 coal seam in Southern Qinshui Basin, North China [J]. International Journal of Coal Geology,2011, 88(2-3):101-112.
    [182]Xue S, Wang Y C, Xie J, etal. A coupled approach to simulate initiation of outbursts of coal and gas-Model development [J]. International Journal of Coal Geology,2011,86(2-3):222-230.
    [183]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006。
    [184]诺曼·R·莫罗.石油开采中的界面现象[M].北京:石油工业出版社,1994。
    [185]秦允豪.热学[M].北京:高等教育出版社,1999。
    [186]天津大学物理化学教研室编.物理化学(第4版)[M].北京:高等教育出版社,2001。
    [187]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002。
    [188]薛定谔A E.多孔介质中的渗流物理[M].北京:石油工业出版社,1982。
    [189]杨世铭,陶文铨.传热学(第4版)[M].北京:高等教育出版社,2006。
    [190]赵阳升.有限元法及其在采矿工程中的应用[M].北京:煤炭工业出版社,1993。
    [191]Zhou X T, Tao X H, Liang D Q, etal. Simulation of the decomposition of natural gas hydrate in porous media by hot water injection [J]. Energy Exploration & Exploitation,2008,26(4):267-279.
    [192]康志勤.油页岩热解特性及原位注热开采油气的模拟研究[D].太原:太原理工大学,2008。
    [193]王瑞凤.高温岩体地热开发的固流热多场耦合与数值仿真[D].太原:太原理工大学,2002。
    [194]文再明.岩体裂缝面数量三维分形分布规律研究与仿真理论[D].太原:太原理工大学,2003。
    [195]吴海.有效应力规律的细观机理的数值试验研究[D].太原:太原理工大学,2003。
    [196]王江芳.非均质多孔介质的逾渗—渗流特征[D].太原:太原理工大学,2011。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700