基于多场耦合计算的水轮发电机冷却通风特性分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灯泡贯流式水轮发电机是灯泡贯流式水电站的主体设备,它具有结构尺寸大、电磁负荷高等特点,是目前水电站大中型水轮发电机的首选。然而,水轮发电机发热一直是影响水轮发电机组安全运行的一个主要因素,发电机通风冷却系统结构的设计是否合理,能否满足发电机实际运行的需要,成为要研究和解决的重点问题之一。
     本文基于流体力学与传热学的基本理论,针对流场和温度场多场共同作用下的灯泡贯流式水轮发电机通风结构开展了理论研究工作。通过对灯泡贯流式水轮发电机轴径向通风结构在冷却介质是空气的情况下的温度场和流场,进行了全三维数值模拟及分析,研究了传统结构下的各场量分布情况以及耦合相关性。并探究了发电机转子支架轴径向安放角对流场和温度场的影响,以及发电机转子支架安放位置的变化对发电机轴功率的影响,揭示了转子支架轴径向安放角变化,冷却气体流量变化时定子和转子及铁心和绕组上的温度分布特性。
     通过对传统结构灯泡贯流式水轮发电机轴径向通风结构的数值计算结果与实际运行机组测点数据的比较表明,采用热场(温度场)、流场之间相互耦合的数值计算方法所得结果是可靠的。同时研究结果也揭示了传统设计轴径向通风冷却结构在定子及绕组之间通风孔间隙处存在有明显局部高温的原因。
     本文提出了发电机转子支架轴径向安放角的概念,利用风机的设计方法,采用基于涡流理论、叶素理论的Wilson方法对传统发电机转子支架进行了重新设计,并以MATLAB语言为工具编写叶片设计的计算程序;为便于叶片加工制造,又对叶片径向安放角与轴向安放角进行修正,输出各参数的计算结果。
     通过对叶片径向安放角与轴向安放角的单相匹配的数值研究发现,当叶片轴向安放角=0时,随着径向安放角的增加发电机内部最高温度有所下降,但数值较小;当叶片径向安放角=0时,随着轴向安放角增加,发电机内部最高温度有所下降,较仅仅改变径向安放角时下降的数值有所增加,但整体的温度下降仍然不够明显。
     通过对叶片径向安放角与轴向安放角的双向匹配的数值研究发现,在不采用风机强制通风时轴径向支架安放角=6,=6°时通风冷却结构的流场流动更为顺畅、流场分布更加合理,冷却介质的轴向流速和径向速度有最佳匹配值。发电机转子在相同转速下,优化后径向通风结构使得定子及周围流体所传递与辐射的能量有所减小,最终使得温度场内最高温度与高温区域均有所减小,最高温度较传统结构在通风量相同时降低约15℃-18℃,冷却效果明显;而叶片优化设计后,发电机轴功率的消耗不超过1‰。
     通过对最优转子支架轴径向安放角组合方案,非定常模式下多场耦合的研究,更加深入揭示了发电机内部流场压力、温度场及转子轴功率的时域特性。从各个监测点上参数变化规律,再一次验证了添加轴径向安放角要比传统无安放角通风结构的冷却效果要好,这种后弯式通风支架结构更有利于冷却空气在轴向和径向的流动,在保证水轮发电机正常运行情况下能减少风机的使用数量;由轴功率和支架监测点的振动特性可知,优化后的结构对支架材料并未提出更高要求,更符合通风结构的使用。
As the main equipment of bulb tubular hydropower station, flow-bulbhydrogenerator has many advantage such as the large structure size and highelectromagnetic load, so at present it is the first choice of the large and medium-sized turbine generator in the hydropower station. However, hydrogenerator feverhas been one of the main factors affecting the safety operation of hydroelectricgenerating. Whether the structure design of generator ventilation cooling systemis reasonable and can meet the needs of the generator operation, has become theemphasis and difficulty to understand and solve.
     Based on the fluid mechanics and heat transfer, this paper carried outresearch of several common ventilation structures of bulb tubular turbinegenerator under electric field, fluid field and temperature field. For the bulbtubular turbine generator axial-radial ventilation structure which cooling mediumis air, the3D numerical simulation and analysis method was adapted and thetraditional structure of the field distribution and the coupling correlation isstudied. The influence which setting angle of the generator rotor bracket axial-radial carried on the flow field and temperature field was explored and theinfluence which the generator rotor bracket setting angle carried on the generatorshaft power was also explored. The temperature distribution of the stator, rotorand core winding as the cooling gas discharge changed flow was revealed.
     Compared the numerical results with actual testing point data for traditionalaxial-radial ventilation structure for bulb tubular turbine generator, this paperfound that the thermal field, temperature field, flow field numerical calculationmethod of the multi-field coupling between the results is reliable. At the sametime the calculation results also revealed the reason for the local hightemperature in the clearance between the stator and coil for the traditional axial- radial ventilation cooling structure.
     In this paper, the concept of generator rotor bracket axial-radial SettingAngle was put forward on the basis of the working principle of the fluidmachinery fan for reference. Based on the vortex theory, blade element theory ofWilson method the traditional generator rotor bracket was designed using fandesign method. The blade design calculation was programmed by means ofMATLAB language. For convenience of blade manufacturing, the blade radialSetting Angle and axial Angle correction was updated and results was output.
     Through the study of unilateral matching relationship of radial SettingAngle and axial Setting Angle of blade, we can found that when the blade axialAngle=0, with the increasing of radial setting Angle generator within thehighest temperature declined, but the value is small; When radial blade Angle=0, with the increasing of axial setting Angle, the highest temperaturegenerator internal also fell, but the temperature drop of the whole is still notenough.
     Through the study of bilateral matching relationship of Setting Angle andaxial Setting Angle of blade, we can find that when the blade axial Angle=12and=12with forced ventilation fan ventilation cooling structure of flowfield flows was more smoothly, flow field distribution was more reasonable andit means the axial velocity and radial velocity of cooling medium has the bestmatch. As Generator rotor operated at the same speed, the optimized radialventilation structure makes the stator and the surrounding fluid transmission andradiation energy reduced, eventually reduced the highest temperature and hightemperature area were also reduced. And the highest temperature compared withtraditional structure about15DHS in ventilation rate phase at the same timereduce15℃-18℃, the cooling effect was obvious; And after this kind ofstructure of blade optimization design, the generator shaft power consumption isnot total1‰.
     Through the research of the optimal combination scheme of Setting Angle ofrotor bracket axial-radial put more unsteady mode field coupling, the studyfurther revealed the internal electric field generator, flow pressure, temperaturefield and the time domain characteristics of the rotor shaft power. Parameterschange rule of the monitoring point verified again add axial-radial setting Angle than conventional ventilation without setting Angle structure of the cooling airflow better. And the bending type blade ventilation structure is moreadvantageous to the flow of cooling air in the axial and radial, meanwhile it caneliminate the heat as much as possible, under the condition of ensure the normaloperation of hydraulic generator, unit can reduce the amount of use fan.
引文
[1] Advanced Cooled-Engine Shell/Spar Turbine Vanes and Blades[R]. EPRI report AP4751Project1319-5,1986.
    [2] RAULE G,BAUER R. Properties of materials for the high temperature helium turbineunder mechanical and thermal loading[R]. Mannheim: BBC Central Materials Laboratory,1982.
    [3] KODOCHIGOV N G,ROMANTSOV A A,DOLGOV S A. Materials used for the mainelements of high temperature elements of HTGR turbo compressor[C].2nd InternationalTopic Meeting on High Temperature Reactor Technology. Beijing: Department of NuclearEnergy Engineering under the Tsinghua University,2004.1-13.
    [4] NATESAN K. Materials Behavior in HTGR Environments[R]. Washington: U SDepartment of Commerce, National Bureau of Standards Special Technical Publication,2003. NUREGPCR-6824, ANL-02P37.
    [5] SERAN J L, BILLOT P, URLET H, et al. Metallic and graphite materials for out of coreand in2core components of the VHTR: first results of the CEA R&D program[C].2ndInternational Topic Meeting on High Temperature Reactor Technology. Beijing:Department of Nuclear Energy Engineering under the Tsinghua University,2004(E15).1-16.
    [6] HALL B, ROAD C, CHESHIRE K. Results from EU5th framework HTR projects HTR-M&HTR-M1[C].2nd International Topic Meeting on High Temperature ReactorTechnology. Beijing: Department of Nuclear Energy Engineering under the TsinghuaUniversity,2004(E12).1-15.
    [7] GAO Tieyu, GONG Jianying. Heat Transfer Research on a Certain Gas Turbine Blade[C].Power and Energy Engineering Conference (APPEEC), Wuhan,2011:1-4.
    [8] FURUMOTO T, UEDA T, AMINO T, et al. A study of internal face finishing of thecooling channel in injection mold with free abrasive grains[J]. Journal of MaterialsProcessing Technology,2011,211(11):1742-1748.
    [9] DUBOUE J, LIAMIS N, PATE L et al. Recent advances in aerothermal turbine design andanalysis[R]. AIAA Joint Propulsion,2000.
    [10] THOMAS J M. Computer automated multidisciplinary analysis and design optimization ofinternal cooled turbine blades[D]. USA: Pennsylvania State University,2001.
    [11] TALYA S S, RAJADAS J N. Multidisciplinary optimization of gas turbine blade design[R].AIAA Joint Propulsion,1998.
    [12] Talya S S, Rajadas J N. Multidisciplinary analysis and design optimization procedure forcooled gas turbine blades[R]. AIAA Joint Propulsion,2000.
    [13]虞跨海,岳珠峰,杨茜.涡轮冷却叶片气动与传热设计优化[J].计算力学学报,2010,27(2):310-314.
    [14]郑舒桐.风扇_压气机内外涵分流比特性及分流环效应研究[D].西安:西北工业大学,2007.
    [15]郭文,吉洪湖,蔡毅,等.高压涡轮动叶内部冷却结构的改进设计[J].南京航空航天大学学报,2006,38(4):408-412.
    [16]邵伏永. D型涡扇发动机风扇改型设计研究[D].南京:南京航空航天大学,2008.
    [17]舒伟.微型风扇叶顶间隙内部流场和静特性计算[D].杭州:浙江理工大学,2008.
    [18]赵勇.风扇/压气机非设计点性能计算和进气畸变影响预测方法研究[D].南京:南京航空航天大学,2008.
    [19]成超.小型降温风扇数值模拟及实验研究[D].武汉:华中科技大学,2008.
    [20] BRINGHENTI C, TOMITA J T, BARBOSA J R. Performance study of a1mw gas turbineusing variable geometry compressor and turbine blade cooling[C]. Proceedings of theASME turbo expo2010, Glasgow, SCOTLAND,2010,(3):703-710.
    [21]上官文斌,吴敏,王益有,等.发动机冷却风扇气动性能的计算方法[J].汽车工程,2010,32(9):799-802.
    [22]周洪儒,顾忠华,韩万金,等.某型高压动叶冷却结构设计[J].汽轮机技术,2010,52(6):406-408.
    [23] ZHOU Chao, HODSON H. The Tip Leakage Flow of an Unshrouded High PressureTurbine Blade With Tip Cooling[J]. Journal of Turbomachinery-Transactions of TheASME,2011,133(4):041028.
    [24] SHIGEMITSU T, FUKUTOMI J, NASADA R, et al. The Effect of Blade Outlet Angle onPerformance and Internal Flow Condition of Mini Turbo-Pump[J]. Journal Of ThermalScience,2011,20(1):32-38.
    [25] FRACKOWIAK A, WOLFERSDORF J, CIA KOWSKI M. Solution of the inverse heatconduction problem described by the Poisson equation for a cooled gas-turbine blade[J].International Journal of Heat and Mass Transfer,2011,54(5-6):1236-1243.
    [26] XIE Gongnan, BENGT S, WANG Qiuwang. Predictions of Enhanced Heat Transfer of anInternal Blade Tip-Wall With Hemispherical Dimples or Protrusions[J]. Journal ofTurbomachinery-Transactions of the ASME,2011,133(4):041005.
    [27] ANAGNOSTOPOULOS J S. Blade Design Effects on the Performance of a CentrifugalPump Impeller[C]. Computational Fluid Dynamics2010, St Petersburg, RUSSIA,2011,859-861.
    [28] YU Kuahai, YANG Xi, YUE Zhufeng. Aerodynamic and heat transfer design optimizationof internally cooling turbine blade based different surrogate models[J]. Structural AndMultidisciplinary Optimization,2011,44(1):75-83.
    [29] SARRAF C, NOURI H, RAVELET F, et al. Experimental study of blade thickness effectson the overall and local performances of a Controlled Vortex Designed axial-flow fan[J].Experimental Thermal and Fluid Science,2011,35(4):684-693.
    [30]戴萍,林枫.旋转状态下燃气涡轮叶片内部冷却的研究进展[J].热能动力工程,2010,25(4):363-368.
    [31] HAN J C, DUTTA S, SRINATH V E.燃气轮机传热和冷却技术[M].程代京,谢永慧,译.西安:西安交通大学出版社,2005.
    [32] HAN J C, PARK J S, et al. Heat Transfer and Pressure Drop in Blade Cooling Channelswith Turbulence Promoters[R]. NASA Contractor Reports,1984.
    [33] LACOVIDES H, LAUNDER B E. Computational fluid dynamics applied tointernal gas-turbine blade cooling: a review[J]. International Journal of Heat and Fluid Flow,1995,16(6):454-470.
    [34] IACOVIDES H, RAISEE M. Recent progress in the computation of flow and heat transferin internal cooling passages of turbine blades[J]. International Journal of Heat and FluidFlow,1999,20(3):320-328.
    [35] HAN J C,HUH M. Recent Studies in Turbine Blade Internal Cooling[C]. Heat TransferResearch, Antalya, TURKEY,2010,41(8):803-828.
    [36]侯云鹏,李伟力,周封,等.大型水轮发电机定子三维温度场的等参元计算[J].大电机技术,2000,(6):14-19.
    [37]王保国,李荣先,马智明,等.非结构网格下含冷却孔的涡轮转子三维流场计算[J].航空动力学报,2001,16(3):225-231.
    [38]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电机定子温度场的数值计算[J].中国电机工程学报,2005,25(13):129-134.
    [39]苏生,胡捷,刘建军,等.复杂空冷叶片换热特性研究[J].燃气涡轮试验与研究,2008,21(3):26-31.
    [40]李伟力,李勇,杨雪峰,等.大型空冷汽轮发电机定子端部温度场与流体场的计算与分析[J].中国电机工程学报,2009,29(36):80-87.
    [41]虞跨海,杨茜,倪俊,等.基于响应面的涡轮叶片冷却通道设计优化[J].航空学报,2009,30(9):1630-1634.
    [42]李伟力,杨雪峰,倪俊,等.空冷汽轮发电机冷却气流风量对定子内流体的影响[J].中国电机工程学报,2009,29(21):53-61.
    [43] GUNTUR K, AMANO R S, LUCCI J M. Turbulent Flow and Heat Transfer in VariableGeometry U-Bend Blade Cooling Passage[C]. Asme International Design EngineeringTechnical Conferences and Computers and Information in Engineering Conference,Proceedings, San Diego, California, USA,2009,2:321-328.
    [44]李俊山.燃气轮机涡轮导向叶片涡流交错肋冷却技术研究[J].航空发动机,2010,36(4):11-15.
    [45]阚瑞,陈伟,任静,等.梯形带肋内部冷却通道的流动及传热特性[J].工程热物理学报,2010,31(5):753-756.
    [46]邓丁元,高行山,虞跨海,等.椭圆形扰流柱冷却通道流动与换热数值研究[J].航空动力学报,2010,25(7):1545-1552.
    [47] NOWAK G, WROBLEWAKI W. Optimization of blade cooling system with use ofconjugate heat transfer approach[J]. International Journal of Thermal Sciences,2011,50(9):1770-1781.
    [48] KIM K M, PARK J S, LEE D H, et al. Analysis of conjugated heat transfer, stress andfailure in a gas turbine blade with circular cooling passages[J]. Engineering FailureAnalysis,2011,18(4):1212-1222.
    [49] AL-KAYIEM H H, GHANIZADEH A H. Analysis of the Temperature Distribution inGT Blade Cooled by Compressed Air[J]. Journal of Applied Sciences,2011,11(10):1733-40.
    [50] XIE Gongnan, BENGT S, ZHANG Weihong. Comparisons of Pins/Dimples/ProtrusionsCooling Concepts for a Turbine Blade Tip-Wall at High Reynolds Numbers[J]. Journal ofHeat Transfer,2011,133(6):061902(9pp.).
    [51] XIE Gongnan, BENGT S, WANG Lieke, et al. Augmented Heat Transfer of an InternalBlade Tip by Full or Partial Arrays of Pin-Fins[J]. Heat Transfer Research,2011,42(1):65-81.
    [52] EL-GABRY L A, AMERI A A. Comparison of Steady and Unsteady RANS Heat TransferSimulations of Hub and Endwall of a Turbine Blade Passage[J]. Journal ofTurbomachinery,2011,133(3):031010(9pp.).
    [53] LYNCH S P, THOLE K A, KOHLI A, et al. Computational Predictions of Heat Transferand Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring[J].Journal of Turbomachinery-Transactions of The ASME,2011,133(4):041003(10pp.).
    [54]毛军逵,胡博,苏云亮,等.气膜内冷通道高度对气膜孔流量系数的影响[J].航空动力学报,2011,26(3):543-550.
    [55] ZHENG Zhong, ZHANG Hai-ou, WANG Gui-lan, et al. Finite Element Analysis on theInjection Molding and Productivity of Conformal Cooling Channel [J]. Journal ofShanghai Jiaotong University(Science),2011,16(2):231-235.
    [56] KURNIA J C, SASMITO A P, MUJUMDAR A S. Numerical investigation of laminar heattransfer performance of various cooling channel designs[J]. Applied Thermal Engineering,2011,31(6-7):1293-1304.
    [57] STADMORE H A. Radar cross section fundamental for the aircraft designer[R]. AI AA-79-1818,1979.
    [58]李伟力,周封,侯云鹏,等.型水轮发电机转子温度场的有限元计算及相关因素的分析[J].中国电机工程学报,2002,22(10):85-90.
    [59] HESELHAUS A. Hybrid program system for the coupled calculation of hot gas flow andmaterial temperatures applied to cooled turbine blades[J]. Forschungsbericht-DeutscheForschungsanstalt fuer Luft-und Raumfahrt,1997,97(10):146pp.
    [60] TORBIDONI L, HORLOCK J H. A new method to calculate the coolant requirements of ahigh-temperature gas turbine blade[J]. Journal of Turbomachinery-Transactions of theASME,2005,127(1):191-199.
    [61] WANG Xinjun, WANG Wei, CHOU Luke, et al. Flow and Heat Transfer of Air and Steamin Internal Cooling Passages of Turbine Blade[C]. Proceedings of the ASME Turbo Expo2010, Glasgow, UK,2010,4:43-52.
    [62]王强,郭兆元,周驰,等.单腔内冷涡轮的气热耦合数值仿真[J].航空动力学报,2011,26(1):78-84.
    [63] JING He, LIU Liping, ANTHONY M. Conjugate Thermal Analysis of Air-CooledDiscrete Flush-Mounted Heat Sources in a Horizontal Channel[J]. Journal of ElectronicPackaging,2011,133(4):041001-041008.
    [64] PARK J H, ALI S, KANG S M. Fast Thermal Analysis of Vertically Integrated Circuits (3-D ICs) Using Power Blurring Method[C]. ASME2009InterPACK Conference collocatedwith the ASME2009Summer Heat Transfer Conference and the ASME20093rdInternational Conference on Energy, San Francisco, California, USA,2009.
    [65] HELCIO R. Inverse Problems in Heat Transfer New Trends on Solution Methodologiesand Applications[J]. Journal of Heat Transfer,2012,134(3):031011-031023.
    [66]李俊卿.采用混合单元的汽轮发电机定子温度场的分析与计算[J].中国电机工程学报,2009,29(18):78-82.
    [67]王红宇,苏鹏声,王祥珩.采用热路方法和三维有限元方法计算三峡水轮发电机三维热网络热阻参数的研究[J].大电机技术,2007,(1):11-18.
    [68]芦小龙,赵淳生.超声电机定子热机电耦合特性[J].振动工程学报,2011,24(5):522-528.
    [69]韩力,李辉,马辉,等.大型灯泡贯流式水轮发电机的通风与温升[J].大电机技术,2005,(5):1-5.
    [70]廖毅刚.大型灯泡贯流式水轮发电机通风系统研究[J].东方电机评论,2003,17(1):42-46.
    [71]顾德宝.大型空冷汽轮发电机内流体流动与传热耦合计算[D].哈尔滨:哈尔滨理工大学工学硕士学位论文,2008.
    [72]靳慧勇.大型空冷汽轮发电机耦合场数值计算与分析[D].哈尔滨:哈尔滨理工大学工学硕士学位论文,2006.
    [73]刘立军.大型汽轮发电机失磁过程及定子温度场计算与分析[D].哈尔滨:哈尔滨理工大学工学硕士学位论文,2007.
    [74]项欢,李伟力,程树康.大型水轮发电机定子径向通风沟与散热[J].大电机技术,1999,(2):11-13.
    [75]温嘉斌,孟大伟,鲁长滨.大型水轮发电机通风发热综合计算[J].中国电机工程学报,2000,20(11):6-9.
    [76]李永锋.灯泡贯流式机组发电机通风冷却方式[J].广东水利电,2002,(B4):86.
    [77]陈立卫.灯泡贯流式水轮发电机的通风冷却[J].大电机技术,2010,(6):29-32.
    [78]郑发平,宋文武,李建秀.灯泡贯流式水轮发电机通风冷却的计算研究[J].西昌学院学报(自然科学版),2009,23(1):41-43.
    [79]夏海霞,李桃,姚缨英,等.灯泡贯流式水轮发电机通风系统及定子温度场[J].电工技术学报,2008,23(7):9-13.
    [80]汪进.灯泡贯流式水轮发电机组的运行维护与冷却方式选择原则研究[J].科技资讯,2010,(28):122-123.
    [81] TONE H L. Iterative solution of implicit approximations of multidimensional partialdifferential equations[J]. SIAM J NumerAnal,1968,5:530-558
    [82] KERSHAW D S. The incomplete Cholesky—conjugate gradient method for the iterativesolution of systems of linear equations[J]. Jcomputphysics,1978,26:43-65
    [83] CFX4.2: Servermanual. AEA Technology Pie Harwell[M],1997
    [84]李伟力,周封,侯云鹏,等.大型水轮发电机转子温度场的有限元计算及相关因素的分析[J].中国电机工程学报,2002,22(10):85-90.
    [85]严秋婵,李擎雯.灯泡贯流式机组发电机冷却装置技术改造方式的探讨[J].水力发电,2006,32(10):71-73.
    [86]秦光宇,志华.灯泡式水轮发电机通风冷却及温升计算研究[J].大电机技术,2008,(2):7-8.
    [87]安志华,刘双,金波,等.灯泡式水轮发电机通风冷却系统设计方法[J].大电机技术,2005,(5):5-8.
    [88]李和明,李俊卿.电机中温度计算方法及其应用综述[J].华北电力大学学报,2005,32(1):1-5.
    [89]夏海霞,李桃,倪光正.发电机通风系统流场及转子温度场分析[J].电机与控制学报,2007,11(5):472-476.
    [90]白亚民.发电机温度场计算及其应用[J].华北电力技术,1999,(6):21-29.
    [91]王国海.三峡右岸全空冷水轮发电机关键技术研究[J].中国电机工程学报,2009,29(15):74-79.
    [92]孟大伟,温嘉斌,魏永田,等.双层筒结构灯泡式水轮发电机热交换与肋优化计算[J].电工技术学报,1998,13(1):18-22.
    [93]王炜,梅志桂.水电厂发电机通风温升试验[J].四川电力技术,2004,(3):41-43.
    [94]安蔚瑾,许红静,郭伟,等.水轮发电机定子三维温度场数值模拟[J].天津大学学报,2008,41(8):967-971.
    [95]付敏,李伟力,张东.水轮发电机气隙内磁场和转子温度场计算[J].哈尔滨工业大学学报,2003,35(9):1131-1134.
    [96]朱殿华,郭伟,张雪.水轮发电机通风散热系统的耦合仿真与参数分析[J].2009,28(4):176-180.
    [97] WILCOX D C. Turbulence modeling for CFD[M]. France: DCWIndustriesInc,1993.
    [98] KHANG K C, HSIEH W D, CHEN C S. A modified Low·Reynolds—Number turbulencemodel to recirculating flow in pipe expansion[J]. ASME Trans, Journal offluidsEngineering,1995,17(3):417-423.
    [99]王玉柱,赖旭华.水轮发电机通风问题研究[J].湖南农机,2010,37(6):53-54.
    [100]丁树业,李伟力,马贤好,等.特殊绕组结构的空冷汽轮发电机定子三维温度场计算与分析[J].中国电机工程学报,2006,26(22):140-145.
    [101]蒲工.异步电动机通风结构与温升分布[J].上海大中型电机,2002,(1):26-30.
    [102]王艳武,杨立,陈翾,等.异步电机转子三维温度场及热应力场研究[J].电机与控制学报,2010,14(6):27-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700