MgO-FeO和Fe-Ni-S体系的高温高压研究及其地球物理意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿MgSiO_3和镁方铁矿(Mg,Fe)O作为地球下地幔含量最丰富的候选矿物,其高温高压实验数据用来与地震学探测数据进行对比以限定下地幔的真实矿物学组分。本学位论文以冲击波动高压实验技术和多面体压砧静高压实验技术为高压加载手段,测量了下地幔重要候选矿物—镁方铁矿(Mg,Fe)O及MgO在下地幔底部高温高压条件(136GPa,5000K)下的状态方程,分析了可能存在的相变;研究了二元体系MgO-FeO和三元体系Fe-Ni-S的高温高压相图。这些研究,提升了对地球深部组分模型和矿物学模型的认识,并为解释下地幔底部地震波数据的异常现象提供了物理支持。
     本文研究主要取得以下一些认识:
     (1)由于天然的钙钛矿MgSiO_3和镁方铁矿(Mg,Fe)O很难得到,给这两种矿物的高温高压实验研究工作带来不便。本文分别用活塞圆筒(Piston-cylinder)和大腔体二级压砧(Mutli-anvil)技术在高温高压下合成了大块钙钛矿结构的MgSiO_3和不同Fe/Mg比的镁方铁矿(Mg,Fe)O样品,对所得到样品进行了微区电子探针、拉曼光谱和X射线衍射的分析。为高压实验特别是冲击压缩实验提供了满足实验要求的高压相初始样品。
     (2) 测量了单晶MgO在114和192 GPa冲击压缩下的Hugoniot数据。结合前人的冲击波数据,揭示了沿MgO的P—V Hugoniot线在170±10 GPa存在体积不连续的本质。由于这一压力点对应的冲击温度仅为3000±400 K,大大低于熔化温度,从而排除了熔化引起体积变化的可能。因此我们认为Hugoniot线上1.9%的体积增加,是MgO从立方体结构的B1相(NaCl-type)向六角密堆积结构的B8相(NiAs-type)转变所引起。此结果进一步深化了对MgO在高温高压下相转变的认识,有重要的科学意义。
     (3) 为了进一步对解释并验证对实验结果的分析,本文还在200 GPa的压力范围内用基于局域密度近似的第一性原理方法模拟考察了MgO在B1相(NaCl)、B2相(CsCl)、B4相(wurtzite)和B8相(NiAs)四种不同结构下的相对稳定性。结果表明,实验测得的MgO Hugoniot线上在170±10 GPa处(对应的温度约3000±400 K)发生的~2%体积跃变可以用MgO从B1相(NaCl)到B8相(NiAs)的结构相变来解释。通过对比计算结果和实验数据得到了在高
MgSiO_3 perovskite and ferropericlase (Mg,Fe)O are generally considered as the most dominant components in the Earth's lower mantle. Experimental measurements of P-V-T properties of Earth-related phases are crucial for developing accurate mineralogical and compositional models of the Earth's interior. Two stage gas-gun and multi-anvil apparatus are used to simulate high pressure and high temperature condition. This study focuses on the P-V-T equation of state and phase transition of (Mg,Fe)O at high pressure and high temperature. We also examine the phase relations of the MgO-FeO and Fe-Ni-S system at high pressure and high temperature and their implications in the composition of the Earth's interior. Our study improves our understanding mineralogical and compositional models of the Earth's interior, and also provides the explanations for the scattering of seismic waves and change in velocity gradient found in the lowermost mantle.
    The main achievements in this study are as followings:
    (1) We introduce the experimental methods to synthesize large bulk MgSiO_3 perovskite and ferropericlase (Mg,Fe)O using Piston-cylinder and Mutli-anvil apparatuses, and the synthesized samples were analyzed by micro electronic probe, Raman spectrum, and X-Ray diffraction. This makes it possible to do shock wave experiments with the large bulk MgSiO_3 perovskite and ferropericlase (Mg,Fe)O as starting materials.
    (2) We report new shock-compression data for single-crystal MgO at 114 and 192 GPa. Our data together with the existing shock-wave data revealed a discontinuity at 170±10 GPa along the MgO Hugoniot. The estimated temperature at the discontinuity is about 3000±400 K, far too low to be melting. The discontinuity gives a volume increase of 1.9%, consistent with a phase transition from a NaCl structure (B1) to a high-temperature phase (most likely a NiAs-type hexagonal B8 phase) along the MgO Hugoniot. Our results add to fundamental understandings of the behavior of MgO, one of the most
引文
[1] Jeanloz R, Ahrens T J. Equations of state FeO and CaO [J]. Geophys. J. R. Astron. Soc., 1980, 62: 505.
    [2] Fei Y, Mao H K. In situ determination of the NiAs phase of FeO at high pressure and temperature [J]. Science, 1994, 266:1678.
    [3] Vassiliou M S, Ahrens T J. The equation of state of Mg_(0.6)Fe_(0.4)O to 200 GPa [J]. Geophys. Res. Lett., 1982, 9: 127.
    [4] Garnero E J and Helmberger D V. A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases [J]. Phys. Earth Planet. Inter., 1995, 91: 161.
    [5] Dziewonski A M and Anderson D L. Preliminary Reference Earth Model [J]. Phys. Earth Planet. Inter., 1981,25: 295-356.
    [6] Jackson I, Rigden S M. Composition and temperature of the earth's mantle: seismological models interpreted throug experimental studies of earth materials [A], in: The Earth's Mantle: Composition, Structure, and Evolution [M], edited by Jackson I., Cambridge: Camdridge University Press, UK, 1998, pp405-460.
    [7] Liu LG. Silicate perovskite from phase transformation of pyrope-garnet at high pressures and temperatures [J]. Geophys. Res. Lett., 1974, 1: 277-180.
    [8] Dubrovinsky L S, Dubrovinskaia N A, Saxena S K, Annersten H, Halenius Harryson H, Tutti F, Rekhi S, Le Bihan T. Stability of ferropericlase in the lower mantle [J]. Science, 2000, 289: 430.
    [9] Badro J, Fiquet G, Guyot F, Rueff J-P, Struzhkin V V, Vank6 G, Monaco G. Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity [J]. Science, 2003, 300:789-791.
    [10] Duffy T S, Hemley R J, Mao H-K. Equation of state and shear strength at multimegabar pressures: magnesium oxide to 227 GPa [J]. Phys. Rev. Lett. 1995, 74: 1371.
    [11] Hazen RM and Jeanloz R, Wustite (Fe_(1-x)O): A review of its defect structure and physical properties [J]. Rev Geophys Space Phys, 1984, 22: 37-46.
    [12] Zou G, Mao H K, Bell P M, and Virgo D. High pressure experiments on the iron oxide Wustite (Fe_(1-x)O) [J]. Year Book Carnegie Inst Washington, 1980, 79: 374-376.
    [13] Yagi T, Suzuki T and Akimoto S, Static compression of wustite (Fe_(0.98)O) to 120 GPa [J]. J Geophys Res, 1985, 90: 8784-8788.
    [14] Lin J-F, Heinz D L, Mao H-K, Hemley R J, Devine J M, Li J, and Shen G. Stability of magnesiowustite in Earth's lower mantle [J]. Proc Natl Acad Sci USA 2003, 100: 4405.
    [15] Fei Y. Crystal chemistry of FeO at high pressure and temperature [A]. Dyar M D, McCammon C and Schaefer M W. Mineral Spectroscopy: A Tribute to Roger G. Burns [M]. Houston, Geochemical Society, Special Publication No. 5, 1996,243-254.
    [16] Kondo T, Ohtani E, Hirao N, Yagi T, Kikegawa T. Phase transitions of (Mg,Fe)O at megabar pressures [J]. Phys Earth Planet Int, 2004, 143-144: 201.
    [17] Cohen R E, Mazin I I, Isaak D G. Magnetic collapse in transition metal oxides at high pressure: Implications for the Earth [J]. Science, 1997, 275: 654.
    [18] Mazin I I, Fei Y, Downs R, Cohen R E. Possible polytropism in FeO at high pressures [J]. Am. Mineralogy, 1998, 83:451.
    [19] Fang Z, Terakura K, Sawada H, Miyazaki T, Solovyev I. Inverse versus Normal NiAs Structures as High-Pressure Phases of FeO and MnO [J]. Phys. Rev. Lett., 1998, 81: 1027.
    [20] Fyfe W S. The possibility of d-electron coupling in olivine at high pressure [J]. Geochim Cosmochim Acta, 1960, 19: 141-143.
    [21] Lin J-F, Struzhkin V V, Jacobsen S D, Hu M Y, Chow P, Kung J, Liu H, Mao H-K, Hemley R J. Spin transition of iron in magnesiowustite in the Earth's lower mantle [J]. Nature, 2005, 436: 377-380.
    [22] Speziale S, Milner A, Lee V E, Clark S M, Pasternak M P, and Jeanloz R. Iron spin transition in Earth's mantle [J]. Proc Natl Acad Sci USA, 2005, 102: 17918-17922.
    [23] Cohen R E. MgO-the simplest oxide [A]. Aoki H, Syono Y and Hemley R J. Physics Meets Mineralogy [M]. Cambridge Univ. Press, New York, 2000, 95-123.
    [24] Utsumi W, Weidner D J, Liebermann R C. Volume measurements of MgO at high pressures and high temperatures [A]. Manghnani M H, Yagi T. Properties of Earth and Planetary Materials at High Pressure and Temperature [M]. American Geophysical Union, Washington, D.C., 1998, 101: 327-333.
    
    [25] Fei Y. Effects of temperature and composition on the bulk modulus of (Mg,Fe)O [J]. Am Mineral, 1999, 84: 272.
    
    [26] Dewaele A, Fiquet G, Andrault D, Hausermann D. P-V-T equation of state of periclase from synchrotron radiation measurements [J]. J Geophys Res, 2000, 105: 2869.
    
    [27] Fei Y, Li J, Hirose K, Minarik W, Orman J V, Sanloup C, Westrenen W, Komabayashi T, Funakoshi K. A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements [J]. Phys Earth Planet Inter, 2004,143-144:515.
    
    [28] Speziale S, Zha C-S, Duffy T S, Hemley R J, Mao H-K. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure-volume-temperature equation of state [J], J Geophys Re, 2001,106: 515.
    [29] Jackson I, Niesler H. The elasticity of periclase to 3 GPa and some geophysical implications [A]. Atimoto S, Manghnani M H. High-Pressure Research in Geophysics [M]. Center for Academic Publications, Tokyo, 1982,93-113.
    [30] Zha C, Mao H K, Hemley R J. Elasticity of MgO and a primary pressure scale to 55 GPa [J]. Prec. Nat. Acad Sci. U.S.A., 2000, 97: 13494.
    
    [31] Marsh S P. LASL Shock Hugoniot Data [M]. University of California Press, Berkeley, 1980,658.
    
    [32] Vassiliou M S, Ahrens T J. Hugoniot equation of state of periclase to 200 GPa [J]. Geophys Res Lett, 1981, 8: 729-732.
    
    [33] Duffy T S, Ahrens T J. Compressional sound velocity, equation of state, and constitutive response of shock-compressed magnesium oxide [J]. J Geophys Res, 1995, 100: 529-542.
    
    [34] Cohen R E, Gong Z. Melting and melt structure of MgO at high pressures [J]. Phys Rev B, 1994, 50: 12301.
    [35] Vocadlo L, Price G D. The melting of MgO-computer calculations via molecular dynamics [J]. Phys Chem Miner, 1996, 23: 42.
    [36] Cohen R E, Weitz J S. The melting curve and premelting of MgO [A]. Manghnani M H, Yagi T. Properties of Earth and Planetary Materials at High Pressure and Temperature [M]., American Geophysical Union, Washington, D.C., 1998, 185-196.
    [37] Alfe D. Melting curve of MgO from first-principles simulations, Phys Rev Lett, 2005, 94: 235701.
    [38] Belonoshko A B, Dubrovinsky L S. Molecular dynamics of NaCl (B1 and B2) and MgO (B1) melting: two-phase simulation [J]. Am Mineral, 1996, 81: 303.
    [39] Strachan A, Cagln T, Goddard Ⅲ W A. Phase diagram of MgO from density-functional theory and molecular-dynamics simulations [J]. Phys. Rev. B, 1999, 60: 15084.
    [40] Zerr A, and Boehler R. Constraints on the melting temperature of the lower mantle from high pressure experiments on MgO and magnesiowustite [J]. Nature 1994, 371: 506.
    [41] Aguado A, Madden P A. New insights into the melting behavior of MgO from molecular dynamics simulations: the importance of premelting effects [J]. Phys Rev Lett, 2005, 94: 68501.
    [42] Fei Y, Mao H-K, Shu J, and Hu J. P-V-T equation of state of Magnesiowustite (Mg_(0.6),Fe_(0.4))O [J]. Phys Chem Minerals, 1992, 18:416-422.
    [43] Zhang J, and Kostak Jr. P. Thermal equation of state of Magnesiowustite (Mg_(0.6),Fe_(0.4))O [J]. Phys Earth Planet Int, 2002, 129: 301.
    [44] Rosenhauer M, Mao H K and Woermann E. Compressibility of magnesiowustite(Mg_(0.6),Fe_(0.4))O to 264 kbar [J]. Carnegie Institution of Washington Year Book, 1976, 75: 513-515.
    [45] Richet P, Mao H K and Bell P M. Bulk moduli of magnesiowustite from static compression measurements [J]. J of Geophys Res, 1989, 94: 3037-3045.
    [46] Badro J., Rueff J. P., Vanko G. Electronic transitions in perovskite: possible noconvecting layers in the lower mantle [J], Science, 2004, 305:383-386.
    [47] Bundy FP. Ultra-high pressure apparatus [J]. Physics Reports, 1988, 167: 133-176.
    [48] Fei Y, Wang Y. High-pressure and high-temperature power diffraction [A]. in High-temperature and high pressure crystal chemistry [M], edited by Hazen R M and Downs R D, 2000, pp521-551.
    [49] Bertka C M and Fei Y. Mineralogy of the Martian interior up to core-mantle boundary pressures [J], J. Goephys, Res., 1997, 102(B3): 5251-5264.
    [50] Inbar I, Cohen R C. High-pressure effects on thermal properties of MgO [J]. Geophys Res Lett, 1995, 22: 1533.
    [51] Karki B B, Wentzcovitch R M, de Gironcoli S, Baroni S. High-pressure lattice dynamics and thermoelasticity of MgO [J]. Phys Rev B, 1999, 61: 8793.
    [52] Matsui M, Parker S C, Leslie M. The MD simulation of the equation of state of MgO: Application as a pressure calibration standard at high temperature and high pressure [J]. Am Mineral, 2000, 85:312.
    [53] Ruoff A L. Linear Shock-Velocity-Particle-Velocity Relationship [J]. J. Appl. Phys., 1967, 38: 4976.
    [54] Mitchel A C, Nellis W J. Shock compression of aluminum, copper, and tantalum [J]. J. Appl. Phys. 1981, 52: 3363.
    [55] Gong Z, Fei Y, Dai F, Zhang L, Jing F. Equation of state and phase stability of mantle perovskite up to 140 GPa shock pressure and its geophysical implications [J]. Geophys Res Lett, 2004, 31: L04614.
    [56] McQueen R G, Marsh S P, Taylor T W, Fritz S N, Carter J W. in High Velocity Impact Phenomena [M], edited by R. Kinslow, Academic Press, New York, 1970, pp. 294-419.
    [57] Anderson O L. The volume dependence of thermal pressure in perovskite and other minerals [J]. Phys. Earth Planet. Int., 1999, 112: 267-283.
    [58] Svendsen B, Ahrens T J. Shock-induced temperatures of MgO [J]. Geophys J R Astron Soc, 1987, 91: 667.
    [59] Jackson M D and Gordon R G. Electron-gas theory of some phases of magnesium oxide [J]. Phys Rev B, 1988, 38: 5654.
    
    [60] Desgreniers S. High-density phases of ZnO: structural and compressive parameters [J]. Phys Rev B, 1998, 58: 14102
    
    [61] Jeanloz R, Ahrens T J, Mao H K and Bell PM. B1/B2 transition in CaO from shock-wave and diamond cell experiments [J], Science, 1979,206: 829.
    [62] Strachan A, Cagin T, and W A Goddard III. Phase diagram of MgO from density-functional theory and molecular-dynamics simulations [J]. Phys. Rev. B, 1999,60:15084-15093.
    
    [63] Wim van W, Li J, Fei Y, Frank M R, Hellwig H, Komabayashi T, Mibe K, Minarik W G, Van Orman J A, Waston H C, Funakoshi K, Schmidt M W. Thermoelastic properties of (Mg_(0.64),Fe_(0.36))O ferropericlase based on in situ X-ray diffraction to 26.7 GPa and 2173 K [J]. Phys Earth Planet Int, 2005, 151: 163.
    [64] Kung J, Li B, Weidner D J, Zhang J. Liebermann R C.Elasticity of (Mg_(0.64),Fe_(0.36))O ferropericlase at high pressure: ultrasonic measurements in conjunction with X-radiation techniques [J]. Earth Planet. Sci. Lett. 2002,203: 557.
    [65] Zhang L, Gong Z. Shock compression and phase transitions of magnesiowustite (Mg,Fe)O up to Earth's lowermost mantle conditions [J]. Chin Phys Lett, 2006, 23(11): 3049-3051.
    
    [66] Ni S D, Tan E, Gurnis M, and Helmberger D V. Sharp sides to the Africa superplume [J]. Science, 2002, 196: 1850-1852.
    
    [67] Van der Hilst R and Karason S. Compositional Heterogeneity in the Bottom 1000 Kilometers of Earth's Mantle: Toward a Hybrid Convection Model [J]. Science, 1999,283: 1885.
    
    [68] Garnero E J and Helmberger D V. A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases [J]. Phys Earth Planet Inter, 1995, 91: 161.
    
    [69] Wasson J. Meteorites: their record of Early solar history [M]. Freeman, New York, 1985, pp. 226.
    [70] Anderson O L and Isaak D G. Another look at the core density deficit of Earth's outer core [J]. Phys. Earth Planet. Inter., 2002,131: 19-27.
    
    [71] Mao H K, Wu Y, Chen L C, Shu J F, Jephcoat A P. Static compression of iron to 300 GPa and Fe-Ni alloy to 200 GPa: Implications for the core [J]. J. Geophys. Res., 1990,94: 21737-21742.
    
    [72] McQueen R G, Marsh S F. Shock wave compression of iron-nickel alloys and the Earth's core [J]. J. Geophys. Res., 1966, 71: 1751-1756.
    
    [73] Birch F, Elasticity and constitution of the Earth's interior [J]. J. Geophys. Res., 1952,57:227-286.
    
    [74] Birch F. Density and composition of the mantle and the core [J]. J. Geophys. Res., 1964,69:4377-4388.
    
    [75] Brown J M, McQueen R G. Phase transitions, Grunsisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa [J]. J. Geophys. Res., 1986, 91:7485-7494.
    
    [76] Ahrens T J, Jeanloz R. Pyrite: shock compression, isentropic release, and composition of Earth's core [J]. J. Geophys. Res., 1987, 92: 10363-10375.
    
    [77] Stevenson D J. Models of the Earth's core [J]. Science, 1981,214: 611.
    
    [78] Allegre C J, Poirier J-P, Humles E, Hofmann A W. The chemical composition of the Earth [J]. Earth Planet. Sci. Lett., 1995,134: 515-526.
    
    [79] O'Neill H St.C, Canil D, Rubie D C. Oxide-metal equilibria to 2500 °C and 25 GPa: implications for core formation and the light component in the Earth's core [J]. J. Geophys. Res., 1998,103: 12219-12260.
    
    [80] Li J, Agee C B. Element partitioning constraints on the light element composition of the Earth's core [J]. Geophys. Res. Lett, 2001, 28: 81-84.
    
    [81] Lin J-F, Heinz D L, Campbell A J, Devine J M, Shen G. Iron-silicon alloy in Earth's core [J]. Science, 2002,295: 313-315.
    
    [82] Li J, Fei Y. Experimental constraints on core composition [J]. Treatise Geochem, 2003,2:521-546.
    
    [83] McDonough W F, Sun S-S. The composition of the Earth [J]. Chem. Geoi, 1995,120:223-253.
    
    [84] Dreibus G and Wanke H. Mars: a volatile-rich planet [J]. Meteoritics, 1985, 20: 367-382.
    
    [85] Fei Y and Bertka C. The interior of Mars [J]. Science, 2005, 308: 1120-1121.
    [86] Fei Y, Bertka C M and Finger L W. High-pressure iron-sulfur compound, Fe3S2, and melting relations in the system Fe-FeS at high pressure [J]. Science, 1997, 275: 1621-1623.
    
    [87] Fei Y, Li J, Bertka C M, and Prewitt C T. Structure type and bulk modulus of Fe_3S: a new iron-sulfur compound [J]. Amer. Mineralogist, 2000, 85, 1830-1833.
    [88] Pike W A et al. Melting temperatures in the Fe-Ni-S system at high pressures: Implications for the state of the Martian core [A]. LPS XXX, Abstract, # 1999, 1489.
    [89] Mason B. Composition of the Earth [J]. Nature, 1966,211:616-618.
    [90] Rama Murthy V and Hall H T. The chemical composition of the Earth's core: possibility of sulfur in the core [J]. Physics of Earth and Planetary Interiors, 1970,2: 276-282.
    
    [91] Wanke H and Dreibus G. Chemical Composition and Accretion of the Terrestrial Planets [J]. Philosophical Transactions of the Royal Society London A. Mathematical and Physical Sciences, 1988, 325: 545-557.
    
    [92] Anderson W W, Ahrens T J. An equation of state for liquid iron and implications for the Earth's core [J]. J. Geophys. Res., 1994, 99: 4273-4284.
    [93] Huang E, Bassett W A, and Weathers M S. Phase relationships in Fe-Ni alloys at high pressures and temperatures [J], J, Geophys. Res., 1988, 93(B7): 7741-7746.
    [94] Lin J-F, Heinz D L, Campbell A J, Devine J M, Mao W L, and Shen G. Iron- nickel alloy in the Earth's core [J]. Geophys. Res. Lett., 2002,29: 109-111.
    [95] Hemley R and Mao H K. In situ studies of iron under pressure: new window on the Earth's core [J]. Int. Geol. Rev., 2001,43: 1-30.
    
    [96] Li J, Fei Y, Mao H K, Hirose K, Shieh S R. Sulfur in the Earth's inner core [J]. Earth Planet. Sci. Lett., 2001,193: 509-514.
    
    [97] Dubrovinsky L S, Saxena S K, Tutti F, and Rekhi S. In situ X-ray study of thermal expansion and phase transition of iron at multimegabar pressure [J]. Phys. Rev. Lett., 2000, 84: 1720-1723.
    [98] Williams Q, Jeanloz R, Bass J, Svendsen B, Ahrens T. The melting curve of iron to 250 gigapascals: a constraint on the temperature at Earth's center [J]. Science, 1987,236: 181-182.
    
    [99] Zhang L and Fei Y. The effect of Ni on Fe-FeS phase relations for the chemistry of the Martian core [A]. LPS XXXVI, Abstract#2049, 2005.
    
    [100] Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K [J]. J. Geophys. Res., 1978, 83: 1257-1268.
    
    [101] Jeanloz R. Shock wave equation and finite strain theory [J]. J. Geophys. Res., 1989, 94(B5): 5873-5886.
    
    [102] Luo S-N, Akins J A, Ahrens T J, Asimow P D. Shock-compressed MgSiO_3 glass, enstatite, olivine, and quartz: optical emission, temperatures, and melting [J]. J. Geophys. Res., 2004, 109: B05205.
    
    [103] Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y. Post-perovskite phase transition in MgSiO_3 [J]. Science, 2004, 304: 855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700