聚烯烃塑料在超临界流体中降解行为及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料高分子的科技进步给人类带来了巨大文明,但大量废弃物的出现也给人类提出了严峻的挑战。超临界流体(Supercritical Fluid,SCF)技术是一种有效处理塑料废弃物的绿色环保方法,然而,超临界流体相对苛刻的反应条件限制了该技术的工业应用。本文在自行设计的高压反应装置中,以聚烯烃塑料—聚乙烯、聚丙烯为原料,以降低生产成本为出发点,同时积极探索聚烯烃降解的机理,为超临界流体在塑料废弃物处理领域的应用提供有价值的依据。本文主要在以下几方面开展了研究和探讨:
     (1)以聚丙烯为研究对象,研究了压力、温度和反应时间等对聚丙烯在超临界水中降解行为的影响。用乌氏黏度计测量产物的黏均分子量,色谱-质谱检测分析液体油的组成结构和成分。实验结果显示:在本实验的条件下,聚烯烃类塑料—聚丙烯在超临界水中可以完全转化成单体和低分子;在反应的前30分钟内,降解速度最快:温度是影响降解反应的重要因素。
     (2)选取一种常用的工业自由基引发剂——过氧化苯甲酰(BPO)作为添加剂,研究了其对聚丙烯在超临界水中降解行为的影响。对使用添加剂和未使用添加剂的实验产物采取多种方式检测对比,结果表明:在反应温度较低和反应时间较短的情况下,添加BPO可以有效促进聚丙烯的降解,达到与未添加BPO实验中高温和长时间反应相比拟的效果。同时讨论了聚丙烯在超临界水中降解反应机理,对BPO在反应中的促进作用也进行了分析。因为BPO热分解温度很低,过氧键(O—O)容易断裂产生自由基C6H5COO·。BPO的降解反应为放热反应,该初始反应放出的能量部分提供给了链断裂所需要的能量,导致自由基C6H5COO·容易裂解形成一个新的自由基C6H5·。两种自由基均比较稳定,可进攻聚烯烃大分子链,进一步形成大分子自由基,且在大分子链上产生活性点。随着反应时间的增加,引发剂BPO不断分解,自由基浓度增加,造成聚烯烃的大规模降解。因此在相同反应温度和反应时间条件下,加有BPO的实验产物平均分子量要明显小于对照实验产物测量结果。
     (3)讨论了升温升压过程对聚丙烯在超临界水中降解的影响,认为升温升压过程也是影响聚丙烯在超临界水中降解的一个重要因素。在此研究中详细记录了聚丙烯降解的升温升压过程,升温升压过程经过气相区进入超临界区的称为过程一,升温升压过程经过液相区进入超临界区的称为过程二。在本实验的条件下,不同的升温升压过程将导致实验结果产生很大的差异;适当控制反应中的升温升压过程使其经过液相区进入超临界区,将有效促进聚烯烃塑料的降解,从而降低生产成本。
     (4)以聚乙烯为研究对象,详细讨论了结晶度对聚乙烯在超临界流体中降解的影响。结果表明:超临界条件下塑料的降解与一般水热条件下的降解有很大的不同。高分子材料一般由晶体和非晶体两部分组成。它们的分子都是长链状,链内碳原子间靠共价键连接,具有很强的结合力。而链与链之间则靠范德瓦耳斯力相互结合,在晶体情况下由于分子整齐排列,分子间的范德瓦耳斯力比在非晶中要强得多。当这样的材料处于一般水热反应条件时,链间结合较弱的非晶体便较容易作为单链溶解,进而非晶部分发生降解,但晶体部分仍然存在,从而结晶度提高。当这种材料处于超临界水中时,由于压力和温度的提高使溶剂和溶质的分子间相互作用大大增强以及超临界流体中大量自由基的存在,塑料高分子中无论晶体和非晶体的分子长链都会受到攻击,从而降解成为短链小分子量的低聚物,这种过程对晶体和非晶体都是同等的,链间结合力的差别在这样的条件下已经显示不出来。
Plastic brings us civilization and convenience. However, lots of waste plastics have been the serious environmental problem. In recent years, SCF technology has been focused as a "super green" solvent for the conversion of waste materials into resources. But the reaction conditions, such as temperature and pressure, are so hard that they prevent us using in the production of industry. In order to find new ways for lowering the reaction conditions, in this research, a supercritical fluid reaction system was constructed and used in the study of the major characters of polypropylene and polyethylene degradation in supercritical water, expecting to lay the foundation of using supercritical water in the Plastic wastes treatment. This work includes the following parts:
     (1) Effect of temperature, pressure and reaction time on polypropylene (PP) degradation in supercritical water was investigated with the aim of developing a process for recycling of waste plastics. A series of experiments were carried out in a reaction system at temperatures of 653K and 673K under pressure about 26 MPa for 30, 75 and 120 min respectively. Products were analyzed by Ostward-type viscometer, gas chromatography and mass spectrometers (GC/MS) etc. The results indicated that mean molecular weight (Mw) of the samples decreased greatly along with the time prolonging or the temperature increasing, and PP was decomposed to hydrocarbon of methane series, hydrocarbon of ethylene series, cycloparaffinic hydrocarbons and few benzenoid hydrocarbons by solvolysis of supercritical water. In the process, efficiency of the reaction is utmost in the first 30 minutes and reaction temperature is an effective factor on PP degradation.
     (2) Effect of benzoylperoxide(BPO) on the depolymerization behavior of pp in
     supercritical water was reported in the article. Two series of experiments with and without BPO were run at temperature of 380℃, 400℃and pressure about 26MPa for 30min, 75min or 120min respectively. The color and phase character of products were observed and compared, the mean molecular weight of samples was estimated by Ostwald viscometer, the components and configurations of products were analyzed by IR and GC-MS. The results show that PP can be entirely decomposed to oligomers and monomers under the experimental conditions, the decomposition of PP can be promoted with temperature increase in supercritical water condition. At lower temperature and shorter reaction time, effect of additive BPO on PP depolymerization is equivalent to that at higher reaction temperature and longer time in the experiments without BPO. The reaction mechanism was also discussed in the paper. BPO is an important source of free radicals in modern industry. In supercritical water the 0-0 bond broke easily, and then BPO was decomposed to free radical C6H5COO·. Because the depolymerization of BPO is an exothermic reaction, the free radical C6H5COO·further decomposed to a new free radical C6H5·. Those free radicals (including HO) could attack long chains of PP, and PP was cracked to monomers with low molecular weight. As the reaction time was longer, density of the free radicals increased, and then the degradation of PP in supercritical water was accelerated. So Mw of the product in the presence of BPO is smaller obviously than that in the absence of BPO under the same reaction conditions.
     (3) Effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was carried out in a reaction system at a pressure of 26 MPa, temperature of 380 or 400℃for 30, 70, and 120 min by Course One (the increasing course of temperature and pressure is via gaseous regions to supercritical regions), and the other group was carried out at corresponding holding conditions by Course Two (the increasing course of temperature and pressure is via liquid regions to supercritical regions). The time of the increasing courses was about 30 min. Products were analyzed by Ostward-type viscometer, gaseous chromatography, and mass spectrometers (GC/MS). Characterization results suggested that different increasing courses of temperature and pressure would give rise to different results, although they were treated under the similar holding conditions. It was also found that Course Two was more effective on PP degradation in supercritical water. Therefore, controlling the increasing course of temperature and pressure is a promising way to advance efficiency and decrease cost in the industrial process for recycling of waste plastics.
     (4) polyethylene (PE) was chosen as the initial material, and the effect of crystallinity on depolymerization of PE in supercritical water was investigated in this work. Products were analyzed by FI-IR, GPC and DSC etc. The results indicated that the reaction mechanism of PE degradation in supercritical water was different from its depolymerization under hydrothermal condition. In general, there is dissolution course before the degradation of the plastic. That is, the macromolecules dissolve in the solvent firstly, and then decompose to low molecular weight. The solvency of supercritical fluid is very high, so most of the molecules of the plastic dissolve in it. The free radicals of SCF attack long chains of plastic and then the macromolecules crack into oligomers and monomers. However, the solvency of liquid under hydrothermal condition is low relatively. It makes the amorphous part of the plastic dissolve it and then decompose, whereas the other part is difficult to dissolve in. As a result, the crystallinity of plastic was increased during the whole reaction process. It indicates that depolymerization was firstly proceed in the amorphous phase underhydrothermal condition.
引文
[1] 陈占勋.废旧高分子材料资源及综合利用.化学工业出版社,2001.4:1-2.
    [2] 董小林.环境经济学.人民交通出版社,2004.11:16-17.
    [3] 汪安佑,雷涯邻,沙景华.资源环境经济学.地质出版社,2005.9:74-75.
    [4] 陈克宇,汪贺娟.环境科学与技术,1998,3:19-21.
    [5] STEVEN F R, RICHARD R. Oxidation rates of common compounds in supercritical water, Journal of Hazardous Materials, 1998, 59: 261-278.
    [6] TadafumiA., OsamuS., LatuhiloM., etal. Recovery of Terephthalie acid by decomposition of PET in supercritieal water. Kagaku Kogaku Ronbushu, 1997, 23:505-511.
    [7] Vishal Karmore, Giridhar Madras. Continuous distribution kinetics for the degradation of polystyrene in supercritieal benzene. Ind. Eng. Chem. Res., 2000, 39: 4020-4023.
    [8] Madras Giridhar, SmithJ.M., McCoyBenjaminJ. Thermal degradation kinetics of polystyrene in solution. Polymer Degradation and Stability, 1997, 58(10-11):131-138.
    [9] ChiantoreO., CaminoG, CostaL., GrassieN. Weaklinks in polystyrene. Polymer Degradation and Stability, 1981, 3(5):209-219.
    [10] G Sivalingam, Giridhar Madras. Kinetics of degradation of polycarbonate in supercritieal and subcritical benzene. Ind. Eng. them, Res., 2002, 41: 5337-5340.
    [11] Takehiko Moriya. Characteristic of polyethylene craking in supercritical water compared to thermal eraking. Polymer Degradation and Stability, 1999, 65 (3): 373-386.
    [12] Lee S., Hong I. K.Depolymerization behavior for eis-polyisoprene rubber in supercritical tetrahydrofuran. Journal of Industrial and Engineering Chemistry, 1998,4(1):26-30.
    [13] Shibata Mitsuhiro, MasudaTaiji, etal.Depolymerization of poly(butyleneterephthalate)using high temperature and high pressure methan01. Journal ofApplied Polymer Science,2000,77(14):3228-3233.
    [14] 曹维良,张敬畅,李勇.超临界流体技术在PET解聚中的应用.北京化工大学学报,1999,26(4):73—74.
    [15] 孟令辉等.超临界流体的应用:PET的分解.原料回收材料科学与工艺,1999,7(2):96—99.
    [16] 陈克宇,汪贺娟.在超临界水中聚苯乙烯泡沫的降解.环境科学与技术,1998,21(3):19—21.
    [17] 徐鸣,森吉孝.在超临界水中添加剂对PS泡沫分解的影响.四川化工与腐蚀控制,1999,2(1):2—5.
    [18] 王军,沈美庆,马沛生,等。聚丙烯在超临界水中的降解初探.高分子材料科学与工程,2004,20(2):65-68.
    [19] 潘志彦,胡自伟,林春绵,等.聚苯乙烯在超临界二甲苯中的解聚.高校化学工程学报,2002,16(2):227—231.
    [20] 彭英利,马承愚.超临界流体技术应用手册。化学工业出版社,2005,9:256—257.
    [21] 漆新华,庄源益.超临界流体技术在环境科学中的应用.科学出版社,2005,4:1—2.
    [22] 化土百科全书,Vo1.2:325—340.化学土业出版社,北京,1991.12.
    [23] 亓玉台,李会鹏,赵胜利等.超临界流体技术及在石油化土和环境保护种的应用.石油炼制与化工,2000 31(3):27.
    [24] Mizan, T.L, Savage, P.E, Ziff, R.M.J.Phys.Chem.1996, 100, 403.
    [25] Tucker, S.C., Maddox, M.W.J.Phys. Chem. B 1998, 102, 2437.
    [26] Petsche, L B., Debendetti, P.G. J.Phys.Chem. 1991, 95, 386.
    [27] Dobbs, J.M., Johnston, K.P. Ind. Eng. Chem. Res. 1987, 26, 1467.
    [28] Koga, Y., Iwai, Y., Hata, Y., Arai, Y. Fluid Phase Equilib. 1996, 125, 115.
    [29] Tomasko, D.L., Knutson, B.L., Pouillot, F., Liotta, C.L., Eckert, C.A. J.phys.hem. 1993, 97, 11823.
    [30] Kim, S., Johnston, K.P., AIChE J. 1987, 33, 1603.
    [31] Dillow, A.K., Hafner, K.P., Yun, S.L.J., Deng, F., Kazarian, S.G., Liotta, C.L., Eckert, C.A. AIChE J. 1997, 43,515.
    [32] Gupta, R.B., Comes, J.R., Johnston, K.P.J.Phys.Chem. 1993,97,707.
    [33] Andrew, D., DesIslet, B.T., Margaritis, A., Weedon, A.C. J.AM.Chem.Soc. 1995, 117, 6132.
    [34] Ellington. J.B., Park, K.M., Brennecke, J.F. Ind. Eng. Chem. Res. 1994, 33,965.
    [35] 彭英利,马承愚.超临界流体技术应用手册。化学工业出版社,2005,9:41—42.
    [36] 曹飞.超临界流体中的催化反应.陕西化工,1997,26(40):17—20.
    [37] Saito S.J. Supercrit. Fluids, 1995, 8:177.
    [38] Noyori, R. Asymmetric Catalysic in Organic Synthesis, Johnston Wiley and Sons, New York,1994.
    [39] Metal Promoted Selectivity in Organic Synthesis, Noels, A.F., Graziani, M., Hubert, A.J., Eds, Kluwer Academic Publishers: Dordrecht, 1991.
    [40] Corey, E.J, Noe, M.C.J.Am.Chem.Soc. 1996, 118, 11038.
    [41] MacFarland,D.K., Landis, C.R. Organometallics, 1996, 15,483.
    [42] Noyori, R., Hashiguchi, S. Acc.Chem.Res. 1997, 30, 97.
    [43] Berrisford, D.J., Bolm, C., Sharpless, K.B. Angew. Chem., Int. Ed. Engl. 1995, 34, 1059.
    [44] RajanBabu,T.V., Ayers,T.A., Halliday, G.A., You, K.K., Calabrese, J.C. J.Org. Chem. 1997, 62, 6012.
    [45](a)Jacobsen, E.N., Zhang,W., Giiler, M.L. J.Am.Chem.Soc. 1991, 113, 6703. (b)Palucki, M., Finney, N.S., Pospisil,P.T., Giiler, M.L., Ishida,T., Jacobsen, E.N. J.Am.Chem.Soc. 1998, 120,948.
    [46]Togni, A., Breutel,C, Schnyder, A., Spindler, F, Landert, H., Tijani, A. J.A.Chem. Soc. 1994, 116,4062.
    [47]Tiltscher, H., Wolf, A., Schelchshorn, J., Dialer, K. United States Patent 4605811,1986.
    
    [48] Subramainiam, B., McCoy, B. J. Ind. Eng. Chem. Rcs. 1994, 33, 504. [49] Stinson, S.C. Chem. Eng. News 1997, 75, 37.
    [50]Ding Z Y, Frisch M A , Li L X, et al. Ind. Eng. Chem. Res., 1996 , 35 : 3257 —3279.
    
    [51] Schmieder H , Abeln J . Chem. Eng. Technol., 1999, 22 (11): 903 -908.
    [52] Lin K.S., Wang H P., Environ. Sci. Technol., 2000, 34: 4849-4854.
    [53] Oshima Y, Tomita K, Koda S. Ind. Eng. Chem. Res., 1999, 38: 4183 -4188.
    [54] Kronhlma J, Huhtala S, Haario H, et al. Advances in Environmental Research. 2002,6: 199—206.
    [55] Kim Y.L., Kim J. D., Lim J. S., et al., Ind. Eng. Chem. Res., 2002, 41 : 5576 —5583
    
    [56] Maharrey S P, Miller D R. J. Phys. Chem. A, 2001, 105: 5860-5867.
    [57] Brock E E, Oshima Y, Savage P E, et al. J. Phys. Chem., 1996, 100: 15834 —15842.
    
    [58] Watanabe M, Sue K, Adschiri T, et al. Chem. Commun., 2001, 2270 —2271
    [59] Oh C H , Kochan RJ, Charlton T R. Energy &Fuels, 1996, 10: 326 -332
    [60] Zhang GM, Hua I. Ind. Eng. Chem. Res., 2003, 42: 285-289.
    [61] Segond N, Matsumura Y, Yamamoto K. Ind. Eng. Chem. Res., 2002, 41:6020 —6027
    [62] Wang T, Xiang B T, Liu J, et al. Environ. Sci. Technol, 2003,37: 1955 —1961
    
    [63]Hunter T B, Rice S F, Hanush R G. Ind. Eng. Chem. Res., 1996, 35: 3984 —3990
    
    [64] Adschiri T, Kanazawa K, Arai K. J. Am. Ceram. Soc, 1992, 75: 1019—1023
    [65] Adschiri T, Kanazawa K, Arai K. J . Am. Ceram. Soc, 1992, 75: 2615 —2620
    [66] Hakuta Y, Terayama H, Onai S , et al. J. Mater. Sci. Lett., 1998,17: 1211 —1213
    [67] Hakuta Y, Onai S , Adschiri T, Arai K. Proc. Int. Symp. Supercrit. Fluids B, 1997,255—259.
    [68] Hakuta Y, Adschiri T, Suzuki T, et al. J. Am. Ceram. Soc, 1998, 81 (9): 2461 —2465.
    
    [69]Hakuta Y, Seino K, Ura H, et al. J. Mater. Chem, 1999, 9 (10): 2671 -2675.
    [70] Hakuta Y, Haganuma T, Sue K, et al. Materials Research Bulletin, 2003, 38: 1257-1265.
    [71] Wang T, Smith R L Jr, Inomata H, Arai K. Hydrometallurgy, 2002, 65:159 —175.
    [72]Bertini F, Audisio G, Beltrame P L. J. Appl. Polym. Sci, 1998, 70: 2291 —2298.
    [73] Smith R L Jr, Fang Z, Inomata H, et al. J. Appl. Polym. Sci, 2000, 76: 1062 —1073.
    
    [74] Lilac WD, Lee S. Advances in Environmental Research, 2001, 6: 9 -16
    [75] Fang Z, Kozinski J A. J. Appl. Polym. Sci, 2001, 81: 3565-3577.
    [76] Fang Z, Kozinski J A. Fuel, 2000, 81: 935-945.
    
    [77] Tang S K, Li S F. Study on Process for Extraction of Medicinal Ingredients Procyanidins from Red Grape Seeds with Supercritical Carbon Dioxide [A]. The 4~(th) International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [78] Liang M T, Ho C Y, Chang C J, Liang Z C. Separation of Aqueous Isopropanol by Supercritical CO_2 Fractionation [A]. The 4~(th) International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [79]Yoo K P. Process Development of SCORR for Pattern Wafers [A]. The 4~(th) International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [80] Ling Y C. A Green Method to Remove Organic Residue from Photoresist Etching via Oxidative Degradation in Supercritical Carbon Dioxide [A]. The 4~(th) International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [81] Tan C S, Ting Y B. Removal of Photoresist by CO-Based Fluids in Different Operations [A]. The 4~(th) International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [82] Chang Y P, Su C S, Chen Y P. Recrystallization and Micronization of Pharmaceuticals Using the Continuous Supercritical Anti-Solvent (SAS) Process[A]. The 4~(th) International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [83] Lee Y W. Formation of Nano Particles in Supercritical Fluids [A]. The 4~(th) International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [84] Wai C M. Nanoparticle Catalysts for Chemical Synthesis in Supercritical Carbon dioxide [A]. The 4~(th) International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [85] Liu Z M. Coating Carbon Nanotubes with -Fe_2O_3 Nanoparticles in Supercritical Carbon Dioxide-Ethanol Solution [A]. The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [86] Tsai C C, Lin H M, Lee M J. Solubility of Disperse Dyes of Blue 56, Violet 1, and Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent [A]. The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [87] Bao P, Dai J J. The effect of the Structure of Disperse Dyes on the Dyeing Properties in Supercritical CO_2 [A]. The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [88] Seidlitz H, Lack E. Recycling of Scrap Types with SFE Technology [A]. The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [89] Breitholz A, Yoo K P, Arlt W. Supercritical Water Oxidation as Environmentally-Benign Treatment for Organic Hospital Wasters [A]. The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [90] Iwaya T, Sasaki M, Goto M. Hydrothermal Depolymerization of Nylon 6 in Sub- and Supercritical Water [A]. The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Applications [C]. Taipei, 2005.
    [91] Brennecke J F, EcKert C A. AIChE J., 1989, 35 (9): 1409 -1427.
    [92] 张建君,朱美文,于恩平,等.北京化工学院学报,1993,20(2):1-7.
    [93] 徐海军,邓碧玉,蔡云升等.化学工程,1991,19(2):58—63.
    [94] Anitescu G, Tavlarides L L. Ind. Eng. Chem. Res., 2002, 41(1): 9-21.
    [95] Lin Y, Wai C M, Jean F M, et al. Environ. Sci. Technol. 1994, 28:1190
    [96] Scurto A M, Xu G, Brennecke J F, et al. Ind. Eng. Chem. Res., 2003, 42:6464—475.
    [97] Chen J W, Wu W Z, Han B X, et al. J. Chem. Eng. Data., 2003, 48(6): 1544—1548.
    [98] Zhang J C, Wu X Y, Cao W. Chin. J. Chem. Eng., 2002, 10(2): 223-227.
    [99] Ke J, Han B X, George M W, et al. J. Am. Chem. Soc., 2001, 123: 3661—670.
    [100] Ke J, George M W, Poliakoff M, et al. J. Phys. Chem. B, 2002, 106: 4496—4502.
    [101] Hou Z S, Han B X, Gao L, et al. Green Chem., 2002, 4 (5): 426-430.
    [102] Hou Z S, Han B X, Gao L, etal. NewJ. Chem., 2002,26(9): 1246—1248.
    [103] Chang Y H, Jiang T, Han B X, et al. Ind. Eng. Chem. Res., 2003, 42 (25): 6384—6388.
    [104] Gao L, Wu WZ, Hou Z S, et al. J. Phys. Chem. B, 2003, 107(47): 13093—13099.
    [105] Gao L, Jiang T, Zhao G Y, et al. J. Supercrit. Fluids, 2004, 29:107-111.
    [106] Hou Z S, Han B X, Zhang X G, et al. J. Phys. Chem. B, 2001, 105:4510—1513.
    [107] Gao L, Hou Z S, Zhang H F, et al. J. Chem. Eng. Data, 2001, 46:1635—1637.
    [108] Chen, J.Y., Ou, C.F., "Depolymerization of polyethylene terephthalate resin under pressure", Appl. Polym. Sci., 42, 1501-1507 (1991).
    [109] 曹维良,张敬畅,李勇,“超临界流体技术在PET解聚中的应用”,北京化工大学学报26(4),73—74(1999).
    [110] 陈克宇,王贺娟,陶巍,“在超临界水中聚苯乙烯泡沫的降解”,环境科学与技术,21(3),19—21(1998).
    [111] Douglas, L.w., Sungyu, L., "Kinetics and mechanism of styrene monomer recovery from waste polystyrene by SCW partial oxidation", Adv. Envir. Res., 6 (1), 9-16 (2001).
    [112] Liu, Y.R., Qiang, J.L., "Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gaseousoline fraction", Fuel Processing Technology, 63 (3), 45-55 (2000).
    [113] Zheng, E, Janusz, A., "A comparative study of polystyrene decomposition in supercritical water and air environments using diamond anvil cell", Appl. Polym. Sci., 81, 3565-3577 (2001).
    [114] Takehiko, M., Heiji, E., "Characteristics of polyethylene cracking in supercritical water compared to thermal cracking", Polym. Degrad. Stab., 65 (3), 373-386 (1999).
    [115] 孟令辉,黄玉东,张妍,梁志华,“聚丙烯的热分解与超临界水分解对比实验研究”,材料科学与工艺,11(3),311—314(2003).
    [116] 王军,沈美庆,宫艳玲,马沛生,“聚丙烯在超临界水中的降解反应初探”,高分子材料科学与工程,20(2),65-68(2004).
    [117] 潘志彦,王泉源,等.J.超临界流体技术在废旧塑料解聚中的应用.环境污染治理技术和设备.2003,(4):51~54
    [118] 从浦珠(CONG Pu—zhu),苏克曼(SU Ke—man).分析化学手册(1) (Handbook of Analytical Chemistry).北京:化学工业出版社(Beijing: Chemical Industry Press),1999.
    [119] 从浦珠(CONG Pu—zhu),苏克曼(SU Ke—man).分析化学手册(9)(Handbook 0f Analytical Chemistry).北京:化学工业出版社(Beijing:Chemi cal Industry Press),2000.
    [120] Li, L.X., Chen, ES., Earnest, F., "Generalized kinetic Model for Wet Oxidation of Organic Compounds", AIChEJ, 37 (11), 1687-1697 (1991).
    [121] Qile, M.G.., Wang, P.L., "Study on the thermal decomposition of benzoyl peroxide by accelerating rate calorimeter", Chemical Research and Application, 15 (6), 829—831 (2003). (in Chinese)
    [122] Wu X. H., Su L., Hong S. M., et al. "The Effect of Additive BPO on the Depolymerization of HDPE in Supercritical Water". Polymer Materials Science & Engineering, 22 (1), 135-138 (2006). (in Chinese)
    [123] Su L., Wu X. H., Hong S. M., et al. "An Investigation of Polypropylene Degradation in Supercritical Water Adding Dibenzoyl Peroxide". Chinese Journal of Chemical Engineering, 13 (6) 845-848 (2005).
    [124] Chen Daniel T, Penman Craig A, Riechert Manfred E, et al. Depolymerization of Tire and Natural Rubber Using Super-critical Fluids [J]. J Hazard Mater, 1995, 44(1): 53-60.
    [125] Dubois M A, Dozol J F, Massiani C, et al. Reactivities of Polystyrenic Polymers with Supereritical Water under Nitro-gen or Air:Identification and Formation of Degradation Com-pounds [J]. Ind Eng Chem Res, 1996, 35(8): 2743-2747.
    [126] Park S, Gloyna E E Statistical Study of the Liquefaction of Used Rubber in Supercritical Water [J]. Fue 1, 1997, 76(11): 999-1003.
    [127] Watanabe M, Hirakoso H, Sawamoto S, et al. Polyethylene Conversion in Supercritical Water [J]. J Supercrit Fluids, 1998, 13(1-3): 247-252.
    [128] Darwin P R, AntxonMartinez De Ilarduya, et al. J. Polym. Sci. Pol. Chem. [J], 2002, 40: 2276—2285.
    [129] Launay A, Thominette F, Verdu J. Polym. Deg. Stab. [J], 1999, 63: 385—389.
    [130] Hideki Kurokawa, Masa2aki Ohshima, Kazuo Sugiyama, et al. Polym. Deg. Stab.[J], 2003, 79: 529—533.
    [131] Collins M J, Zeronian S H. J. Appl Polym Sci [J], 1992, 45: 797-804.
    [132] S. M. Hong, L. Y. Chen, X. R. Liu, X. H. Wu, L. Su, Review of Scientific Instruments[J], 76, 1 (2005)
    [133] Li Liangbin, Hong Shiming, and Huang Rui. J. Phys.:Condens. Matter[J], 14(2002): 11195-11198.
    [134] 张研,孟令辉,黄玉东.高分子材料科学与工程,2003,19(4):36~40.
    [135] K.S.Suslick,Science,247,1439(1990).
    [136] 吴纯德,范瑾初.超声空化降解水体中有机物的研究及发展,中国给水排水,13(6):28-29(1997).
    [137] C.Petrier,.et.al.,.J.Phys.Chem., 98, 10514(1994).
    [138] C.Petrier.,.Ultrasonics.Sono.chemistry,.4,.295(1997).
    [139] T.M.Olson,.et.al.,Wat.Res.,.28(6): 1383(1994).
    [140] A.Kotronarou,.et.al.,.Environ. Sci.Technol.,.26,.2420(1992).
    [141] L.Hua,.et.al.,.Environ.Sci.Technol.,.29,.2790(1995).
    [142] P. Kruus,. et.al.,.Ultrason. Sonochem.,.4,.229(1997).
    [143] E.Gonze,.et.al.,.CanadianJ.Chem.Engng.,.75,.245(1997).
    [144] S.Okouchi, et al., Wat.Sci.Tech, 26, 2053(1992).
    [145] C.Petrier, et al., Environ. Sci. Technol., 26(8), 1639(1992).
    [146] Y.Ku, et al., Wat.Res., 31(4): 929(1997).
    
    [147] J.Berlan, et al., Ultrason. Sono chem., 1(2), S97(1994).
    
    [148] I.Hua, et l.,Environ. Sci. Technol., 31(8), 2237(1997).
    
    [149] Y.Yoo.etal., Chemistry Letters, 961(1995).
    
    [150] I.Hua, et al., J. Phys. Chem., 99: 2335(1995).
    
    [151] A.Bhatnagar, H.M.Cheung, Environ.Sci.Technol., 28:1481(1994).
    
    [152] J.G.Lin, et al., Wat.Sci.Tech., 33(6), 75(1996).
    
    [153] Y.Ku, et al., Wat.Res., 31(4): 929(1997).
    
    [154] I.Hua, et al., Environ.Sci.Technol., 30, 864(1996).
    
    [155] E.J.Hart., et al., Radiat.Phys.Chem., 36(4): 511(1990).
    
    [156] J.M.Wu, et al., Environmental Progress,11(3): 195(1992).
    
    [157] H.M.Cheung,S.Kurup,Environ.Sci.Technol.,28,1619(1994).
    
    [158] R.Rajan, et al., Chem.Engng.Sci., 53(2), 255(1998).
    
    [159] F.Trabelsi,et al.,Chem.Engng.Sci.51(10),1857(1996).
    
    [160] J.Berlan, et al.,Ultrason.sonochem.,1(2),S97(1994).
    
    [161] S.Okouchi, et al.,Wat.Sci.Tech,26,2053(1992).
    
    [162] R.A.Sierka,.G.L.Amy,.OzoneSci.Engng.,.7,.42(1985).
    
    [163] F.Trabelsi, et al., Chem.Engng.Sci.51(10), 1857(1996).
    
    [164] M.N.Ingale, V.V.Mahajani, J.Chem.Tech.Biotechnol, 64, 80(1995).
    
    [165] Li xiong L, Peishi C, Earnest F G. Generalized kinetic Model for Wet Oxidation of Organic Compounds. AIChEJ. 1991,37(11): 1687-1697.
    [166] Moriya T, Enomoto H. Polymer Degradation and Stability. 1999, (65):373-386
    [167] 陈国华,颜文礼.聚乙烯与苯乙烯的接枝聚合研究.华侨大学学报,1994,15(1):44-47
    [168] 陈立军,张心亚,黄洪,沈慧芳,陈焕钦.聚苯乙烯的超临界降解及其相关降解机理.塑料科技2005,170(6):48-50.
    [169] 黄婕,齐文杰,黄科,吴勇强,朱子彬.聚对苯二甲酸丁二醇酯在超临界甲醇中降解机理的研究.高校化学工程学报.2007,21(1):48-53.
    [170] 张研,孟令辉,黄玉东.不同分解方法对聚乙烯分解行为的影响.高分子材料科学与工程.2003,19(4):36-40.
    [1] 朱自强.超临界流体技术—原理和应用.北京:化学工业出版社,2000:1—14.
    [2] 潘志彦,王泉源,林春绵等.环境污染治理技术和设备(Techniques and Equipment for Environmental PollutionControl). 2003, (4): 51—54.
    [3] J S A Wilkes. Green Chem., 2002, 4: 73-80.
    [4] 顾彦龙,杨宏洲,邓友全.离子液体中聚碳酸酯光盘的降解—碳酸二苯酯的回收.2002(4):753—757.
    [5] L A Btanchard, D Hancu, E J Beckman et al. Nature, 1999,399: 28~29.
    [6] L A Blanchard, Z Gu, J F Brennecke. J. Phys. Chem. B, 2001,105: 2437-2444.
    [7] L A Blanchard, J F Brennecke. Ind. Eng. Chem. Res., 2001,40: 287—292.
    [8] Bottenbruch, L. Polycarbonates Polyacetals Polyesters Cellulose Esters, MunichVienna, HanserPubli shers, NewYork, 1996, p. 145.
    [9] Liu, X. 2Z.: Hua, B. HuanjingBaohu2000, 40(inChinese). (刘秀珍,华彬,环境保护,2000, 40.)
    [10] Wilkes,J.S.;Levisky, J.A.; Wilson,R.A.; Hussey, C.L. Inorg.Chem. 1982,21, 1263.
    [11] Suarez, P.A.Z.; Dullius, J.E.L.; Einloft,S.; de Souza, R.F.; Dupont, J.Polyhedron 1996,15,1217.
    [1] Y. Kawamura, M. Takagi, Mater. Sci. Eng. 98 (1988) 415.
    
    [2] Y. Kawamura, M. Takagi, M. Akai, Mater. Sci. Eng. 98 (1988) 449.
    
    [3] A. Kojima, A. Makino, H. Horikiri, Y. Kawamura, A. Inoue, T. Masumoto, J. Magn. Magn. Mater. 162 (1996) 95.
    [4] S. Yoshida, T. Mizushima, A. Makino, A. Inoue, Mater. Sci. Eng. A 304-306 (2001) 1019.
    [5] Young S. Park, Kyung H. Chung, Nack J. Kim, Enrique J. Lavernia, Materials Science and Engineering A 374 (2004) 211-216.
    [6] Xiangcheng Sun, R. Reglero, Xiukui Sun, M. Jose. Yacaman, Materials Chemistry and Physics 63 (2000) 82-87.
    [7] Wei Lu, Lei Yanga, Biao Yan, Bin Lu, Wen-hai Huang, Journal of Magnetism and Magnetic Materials 292 (2005) 299-303.
    [8] X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, Materials Science and Engineering A344 (2003) 175-181.
    
    [9] H. Y. Zhang, Z. Q. Hu, and K. Lu. Nanostructureed Materials. 5(1)41-52(1995).
    [10] Z. C. Qin, Y. Zhang, and W. K. Wang. Acta Physica Sinica. 44(1): 105-109(1995). (in Chinese)
    
    [11] S. M. Hong, L. Y. Chen, X. R. Liu, X. H. Wu, L. Su, Review of Scientific Instruments 76, 1 (2005)
    
    [12] Ru Jia, C G Shao, L Su, D H Huang, X R Liu and S M Hong. J. Phys. D: Appl. Phys. 39 (2006) 3684-368
    
    [13] X. R. Liu S. M. Hong and S. J. Lv. Applied Physics Letters 91, 081910(2007)
    
    [14] Klug H P and Alexander L E 1974 X-ray Procedures for Polycrystalline and Amorphous Materials (New York:Wiley)
    [1] 徐世平,廖耀平,翁克难,等.水稻压制变异和高压对水稻生长发育的影响[J].高压物理学报,2001,15(4):241-248.
    [2] 徐世平,廖耀平,肖万生,等.高压对水稻生长发育的影响[J].高压物理学报,1999,13(增刊):58-62.
    [3] 李桂双,白成科,段俊,等.静水高压处理对水稻植株生理特性的影响[J].高压物理学报,2003,17(2):122-128.
    [4] 白成科,李桂双,段俊,等.高压处理后水稻抗氧化酶活性及对逆境胁迫的响应[J].高压物理学报,2005,19(3):235-240.
    [5] 申斯乐,徐世平,翁克难,等.高静水压处理水稻诱导稳定遗传变异系的DNA分析[J].高压物理学报,2004,18(4):1—6.
    [6] 吴学华,陈丽英,苏磊,等.高压氮气处理微型番茄种子对其生长特性的影响[J].高压物理学报,2004,18(4):379-384.
    [7] 陈丽英,吴学华,刘秀茹,等.高压处理种子对提高长春花中长春碱含量的作用[J].高压物理学报,2006,20(2):183-188.
    [8] 杜连恩,魏玉昌,杜文亮,等.大豆化学诱变育种及其规律的研究[J].华北农学报,1989,4(2):39-43.
    [9] 王连铮,裴颜龙,赵荣娟,等.大豆辐射育种的某些研究[J].中国油料作物学报,2001,23(2):1—6.
    [10] 谷运红,苏明杰,秦广雍,等.低能离子注入对大豆种子吸胀冷害的影响[J].激光生物学报,2003,12(5):364—367.
    [11] 王瑞珍,程春明,胡水秀,等.春大豆空间诱变性状变异研究初报[J].江西农业学报,2001,13(4):62-64.
    [12] 王春乙,白月明,温民,等.CO_3和O_3浓度倍增及复合效应对大豆生长和产量的影响[J].环境科学,2004,25(6):6-10.
    [13] Barba A B, Robert M R. Present Knowledge in Nutrition [M]. Internation Life sciences Institute Press, 2001.
    [14] 陈炳卿,孙长颢.营养与健康[M].北京:化学工业出版社,2004.
    [15] 郭建平 高素华 白月明,等.CO_2浓度倍增对大豆影响的试验研究[J].大气科学,1996,20(2):243-249.
    [16] 赵剑,马福荣,杨文杰,等.高压静电场预处理种子对大豆幼苗抗冷害的影响[J].生物物理学报,1997,13(3):489-494.
    [1] Rogers, R.D. and Seddon, K.R. (eds.), Ionic Liquids as Green Solvents: Progress and Prospects, ACS Symp. Ser., Vol. 856(American Chemical Society, Washington D.C., 2003).
    
    
    [2] Rogers, R.D. and Seddon, K.R. (eds.), Ionic Liquids: Industrial Applications for Green Chemistry, ACS Symp. Ser., Vol. 818 (American Chemical Society, Washington D.C., 2002).
    
    [3] Rogers, R.D., Seddon, K.R. and Volkov, S. (eds.), Green Industrial Applications of Ionic Liquids, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 92 (Kluwer, Dordrecht, 2002).
    [4] Wasserscheid, P. and Welton, T. (eds.), Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2003).
    
    [5] Seddon, K.R., "Room-temperature ionic liquids - neoteric solvents for clean catalysis", Kinet. Catal. 37 (5), 693-697 (1996); Seddon, K.R., "Room-temperature ionic liquids - neoteric solvents for clean catalysis", Kinet. Katal 37 (5), 743-748 (1996).
    
    [6] See review, Welton T., Coordination Chemistry Reviews 248, 2459(2004); Chem. Rev. 99, 2071(1999).
    
    [7] See review, Dupont J., et al. Chem Review, 102, 3667-3692 (2002).
    
    [8] Huang XH et al., J. Am Chem. Soc, 127, 17842(2005); Cadena C, et al., J. Am. Chem. Soc, 126, 5300(2004).
    
    [9] Zhou Y, Antonietti M, J. Am. Chem. Soc. 125, 14960(2003); Kuang D, Bresesinski T, Smarsly B, J. Am. Chem. Soc. 126, 10534(2004); Nakashima T, Kimizuka N, J. Am. Chem. Soc. 125, 6386(2003); Wang Y, Yang H, J. Am. Chem. Soc. 127, 5316(2005); Cooper ER, et al., Natrue, 430,1012(2004)
    [10] Jansen MP, et al. J. Am. Chem. Soc. 125, 15466(2003);
    
    [11] Wang YT, Voth GA, J. Am. Chem. Soc. 121, 12192(2005).
    [12] Eastoe J, et al, J. Am. Chem. Soc. 127, 7302(2005).
    
    [13] Wasserscheid P, Chem Int Ed, 2000, 39:3772-3789.
    [14] Bowlas C J, Bruce D W, Seddon K R. Chem Commun, 1996, 14 :1625-1626.
    [15] Bonhotte P, Dias A P, Pageorigion N, et al. Inorg Chem, 1996, 35 :1168-1178.
    [16] Mihkel Koel, Proc. Estonian. Acad Sci Schem, 2000,49(3): 145-155.
    [17] Jeane E L Dullius, Paulo A Z, et al. Organometallics, 1998, 17 :815-819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700