含氢分子体系的高温高压物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Investigation on Physical Properties of Hydric Molecular System under High Pressure and High Temperature Conditions
  • 作者:李芳菲
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2008
  • 导师:邹广田
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-05-01
摘要
本论文利用激光加热金刚石对顶砧高温高压技术、共聚焦拉曼散射和前向布里渊散射技术相结合的一套新的实验方法,以水和氨这两种含氢分子体系为研究对象,系统研究了高温高压对弹性性质、晶体结构、分子间的键合解离等性质的影响。利用电加热高温高压布里渊散射系统进行了水的高温高压布里渊散射研究,首次发现了水由低密度向高密度转变的液-液相转变边界,解决了存在已久的争议问题,拓展了水的高温高压相图。利用高压拉曼散射、布里渊散射、同步辐射X射线衍射方法,研究了高压下氨的声速、弹性和晶体结构变化,揭示了氨的等结构相变并对相变机制给予了理论分析。研究发现,氨在发生等结构相变的压力点附近,剪切弹性常数发生变化,压力引起了晶格畸变,N-H键的性质发生改变。
     首次搭建了激光加热高温高压前向布里渊散射实验系统,采用磁控溅射镀膜技术和光刻技术,解决了激光加热高温高压拉曼、布里渊散射测量中液体样品绝热层制备和透明样品不易被加热等关键技术问题,建立了新的实验方法。利用这个新技术对水和氨进行了激光加热高温高压拉曼、布里渊散射研究,结合分子动力学模拟分析了水和氨在不同温度压力下的状态,阐述了高温高压水和氨的解离机制。
High pressure investigation on physical properties of hydric molecular system plays an important role both on fundamental research and fundamental application research of condensed matter. Under high pressures several molecular solids undergo some changes, such as structural transition, molecular dissociation, and insulator-metal transition and so on. The knowledge of their action under pressure is evry useful for understanding the important progress in condense materials, such as the force between atoms or molecules, it’s also useful for realizing the practicality area of physical models, finding out new rule, and presenting theoretical base for practicality application. Investigation on the force between molecule and equation of state of some small molecular systems may accelerate the development of earth and planet science, provide lots of theoretical base for understanding its internal composition and evolvement rule.
     Both of NH3 and H2O belong to typical Hydric Molecule and they occupy a large content in the nature, because of the existence hydrogen bonding there are many structural transation. For hundards of years, people engaged in explore the high pressure and high temperature properties. On the one hand, liquid water and ammonia under high temperature and high pressure were used in hydrothermal syntheses studies and economic manufacture, on the other hand, there are abundant water and ammonia which exist at these extreme conditions, for example the Uranus and Neptune, buried between a rocky core and a gaseous atmosphere, their interiors are mostly composed of a thick intermediate layer of“hot ices”, predominantly water, hydrocarbons and ammonia. Many observable properties of these planets, such as gravitational moments, and partially also their atmospheric composition, are thought to be determined by the physical and chemical properties of matter within this layer. At the same time the molecular dissociation under high pressure were found in water and ammonia system. on account of above reasons, NH3 and H2O are ideal system for investigating the microcosmic mechanism of dissociation and the source of macrocosmic properties.
     The main content in this thesis includes room temperature high pressure investigation, electricial heating high temperature and high pressure investigation and laser heating high temperature and high pressure investigation. In the course of preparing this thesis, we established electricial heating Brillouin scattering system, laser heating platelet geometry Brillouin scattering system, and cage type confocal Raman scattering system; we also introduced some novel experiment method, such as in situ increasing pressure under high pressure and sample encapsulation technique. Some interested topic, including liquid-liquid phase transition, isostructural transition and superionic state under extreme conditions were analyze in detail.
     It was found that water possess of many special physical and chemical properties because of the existence of hydrogen bonding, in the solid state, each H atom in one molecule participate in forming hydrogen bonding, and a tetrahedron framework can be found among the H2O molecule. When the ice change to liquid water state, some of hydrogen bonding was destroyed the tetrahedron skeleton of ice became breakdown, however, within a short range there were still lots of hydrogen bonding in the liquid and they also present as a tetrahedron configuration, and the configuration of hydrogen bonding can be changed when the temperature and pressure was changed, this structural transition from liquid to liquid has attracted more attention in recent years. We investigated the Brillouin spectra of water at high temperatures and high pressures with the electricial heating Brillouin scattering system, the pressure dependence of acoustic velocity, elastic constant along several isotherms were obtained, a subtly cusp can be found in the elastic constant evolutions and it was regarded as the phase transition boundary from low density water to high density water. The Phase diagram of water was developed. The pressure dependences of refractive index were obtained using both platelet and back scattering geometry Brillouin spectra, the isothermal equation of state was presented. Using laser heated high temperature and high pressure Brillouin scattering system cmbined with the molecular dynamic simulation analysis, we investigated the structural transitions of H2O from solid to superionic and liquid state at different pressure and temperatures, it was found that increasing the trmperature at 20GPa and 30GPa H2O transit from solid to liquid, the superinic state can’t be observed, however, at 45GPa and 2000K the superinic state can be observed, in this state oxygen atoms vibrate around body centered cubic lattice positions while the protons jump among equivalent sies along the O-O separations.
     To understand the isostructural transition in the ammonia system under pressures, we studied the high pressure structural property of ammonia by in situ high pressure synchronization X ray diffraction, high pressure Raman scattering and Brillouin scattering technique. The result of synchronization X ray diffraction found that at around 10GPa the pressure evolution of interplanar spacings show a turn point, around which the slope changed obviously, the c/a-axis ratio initially slowly increase up to 10GPa and then start to decrease at a higher rate. We may understand this as a change in the electrical structure of the sample. The Brillouin scattering results present the change of shear elastic constant, a crossover can be found in the pressure evlution of C12 and C13 at about 10GPa, which may be caused by the lattice distortion. Compared with foregoing results we can also found changes at around 10GPa from the Raman spectra both in intra- and inter-band. The property of N-H bond changed and then the mode of vibration was changed. In order to find out whether the symmetric H-bonded state exists, we investigated the Raman spectra of ammonia up to 62GPa, unlike the result of M. Gauthier no change was found at 60GPa, however, the antisymmetric bending mode was detected at room temperature for the first time, and a turn point was at about 29GPa was observed, we may suppose a structural change in ammonia.
     To study the structure and physical properties of ammonia at high temperature and high pressures, search the superionic boundary and understand the dissociate process in molecule, we performed electrical heated Brillouin scattering measurements and laser heated Raman and Brillouin scattering measurements. The pressure evolutions of velocity, refractive index at different isotherms were obtained, and finally the equation of state of liquid ammonia was presented, no density or structural change was found in the range of our study. The laser heated Raman spectra of ammnia at 18GPa and 62GPa were obtained, combined with the molecular dynamic simulation analysis it can be found that, the ammonia system appears as the fluids at 18GPa and 1800K conditions, at this time the intermolecular modes disappear because of the crystal structure breakage, on the other hand, the jumps of proton between neighboring molecules induced the intensity of intramolecular modes became weak and disappear. Comparatively at 62GPa and 2160K conditions, the system was in the superionic phase, at this time, the proton also jumps between the moleculars, while the N atom vibrate around the crystal lattice positions.
引文
[1] Magali Benoit, Dominik Marx, Michele Parrinello, Tunnelling and Zero-Point motion in High-Pressure Ice, Natyre, 1998, 392, 258-261.
    [2] C. Lobban, J. L. Finney, W. F. Kubs, The Structure of a New Phase of a New Phase of Ice, Nature, 1998, 391, 268-270.
    [3] I. M. Chou, J. G. Blank, A. F. Goncharov, H. K. Mao, R. J. Hemley, In situ Observations of a High-Pressure Phase of H2O Ice Science, 1998, 281, 809-812.
    [4] R. J. Hemley, H. K. Mao, Critical Behavior in the Hydrogen Insulator-Metal Transition, Science, 1990, 249, 391-393.
    [5] P. Loubeyre, F. Occelli1, R. LeToullec, Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen, Nature, 2002, 416, 613-617.
    [6] C. Narayana, H. Luo, J. Orloff, A. L. Ruoff, Solid Hydrogen at 342 Gpa: No Evidence For an Alkali Metal, Nature, 1998, 393, 46-49.
    [7] I. I. Mazin, R. E. Cohen, Insulator-metal transition in solid hydrogen: Implication of electronic-structure calculations for recent experiments, Phys. Rev. B, 1995, 52, R8597-8600.
    [8] K. Nagao, T. Takezawa, H. Nagara, Ab initio calculation of optical-mode frequencies in compressed solid hydrogen, Phys. Rev. B, 1999, 59, 13741.
    [9] K. Nagao, H. Nagara, Theoretical Study of Raman and Infrared Active Vibrational Modes in Highly Compressed Solid Hydrogen, Phys. Rev. Lett. 1998, 80, 548-551.
    [10] T. Cui, Y. M. Ma, G. T. Zou, Crystal structure of solid molecular hydrogen under high pressures, J.l of Phys. Condens Matter, 2002, 14, 10901-10906.
    [11] M. Pasternak, J. N. Farrell, and R. D. Taylor, Metallization and structuraltransformation of iodine under pressure: A microscopic view, Phys. Rev. Lett. 1987, 58, 575-578.
    [12] K. Shimizu, T. Yamauchi, N. Tamitani, N. Takeshita, M. Ishizuka, K. Amaya and S. Endo, The pressure-induced superconductivity of iodine, Journal of Superconductivity, 1993, 7, 921-924.
    [13] D. Y. Kim, S. Lebègue, C. Moysés Araújo, B. Arnaud, M. Alouani, Rajeev Ahuja, Structurally induced insulator-metal transition in solid oxygen: A quasiparticle investigation, Phys. Rev. B, 2008, 77, 092104.
    [14] S. Serra, G. Chiarotti, S. Scandolo, E. Tosatti, Pressure-Induced Magnetic Collapse and Metallization of Molecular Oxygen: The ζ- O2 Phase, Phys. Rev. Lett. 1998, 80, 5160-5163.
    [15] T Oda, K. Sugimori, H. Nagao, I. Hamada, S. Kagayama, M. Geshi, H. Nagara, K. Kusakabe, N Suzuki, Oxygen at high pressures: a theoretical approach to monoatomic phases, J. Phys: Condens Matter, 2007, 19, 365211.
    [16] E. L. Gromnitskaya, O. F. Yagafarov, O. V. Stalgorova, V. V. Brazhkin, A. G. Lyapin, Pressure-Driven “Molecular Metal” to “Atomic Metal” Transition in Crystalline Ga, Phys. Rev. Lett. 2007, 98, 165503.
    [17] C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi, M. Parrinello, Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions, Science, 1999, 283, 44-46.
    [18] R. J. Nelmes, J. S. Loveday, W. G. Marshall, G. Hamel, J. M. Besson, S. Klotz, Multisite Disordered Structure of Ice VII to 20 GPa, Phys. Rev. Lett. 1998, 81, 2719-2772.
    [19] R. J. Nelmes, J. S. Loveday, R. M. Wilson, J. M. Besson, Ph. Pruzan, S. Klotz, G. Hamel, S. Hull, Neutron diffraction study of the structure of deuterated ice VIII to 10 GPa, Phys. Rev. Lett.1993, 71, 1192-1195.
    [20] O. Mishima, K. T.akemura, K. Aoki, Visual Observations of the Amorphous-Amorphous Transition in H2O Under Pressure, Science, 1991, 254, 406-408.
    [21] P. Y. Feng, X. H. Bu, S. H. Tolbert, G. D. Stucky, Syntheses and Characterizations of Chiral Tetrahedral Cobalt Phosphates with Zeolite ABW and Related Frameworks, J. Am. Chem. Soc. 1997, 119, 2497-2504.
    [22] Y. N. Song, P. Y. Zavalij, N. A. Chernova, M. S. Whittingham, Synthesis, Crystal Structure, and Electrochemical and Magnetic Study of New Iron (III) Hydroxyl- Phosphates, Isostructural with Lipscombite, Chem. Mater. 2005, 17, 1139-1147.
    [23] W. B. Hubbard, Interiors of the Giant Planets, Science, 1981, 214, 145-149.
    [24] W. J. Nellis, N. C. Holmes, A. C. Mitchell, D. C. Hamilton, M. Nicol, Equation of state and electrical conductivity of "synthetic Uranus," a mixture of water, ammonia, and isopropanol, at shock pressure up to 200 GPa (2 Mbar), J. Chem. Phys. 1997, 107, 9096-9100.
    [25] W. B. Hubbard, Neptune's Deep Chemistry, Science, 1997, 275, 1279-1280.
    [26] J. C. Jamieson, A. W. Lawson, and N. D. Nachtrieb, New Device for Obtaining X-Ray Diffraction Patterns from Substances Exposed to High Pressure, Rev, Sci. Instrum. 1959, 30, 1016-1019.
    [27] C. E. Weir, E. R. Lippincott, A. V. Valkenburg, E. N. Bunting, Studies in the 1 to 15 micron region to 30000 atmospheres. J. Res. Natl. Bur. Stand., Sec. A, 1959, 63, 55-62.
    [28] 高压物理讲义(参考资料),吉林大学超硬材料国家重点实验室.
    [29] R. M. Housley and J. G. Dash, R. H. Nussbaum, Mean-Square Displacement of Dilute Iron Impurity Atoms in High-Purity Beryllium and Copper, Phys. Rev. 1964, 136, A464-466.
    [30] G. L. Clendenen, H. G. Drickamer, Effect of Pressure on the Volume and Lattice Parameters of Magnesium,Phys. Rev. 1964, 135, A1643-1645.
    [31] J. A. Moyzis, Jr., G. DePasquali, H. G. Drickamer, Effect of Pressure on fNumber and Isomer Shift for Fe57 in Cu, V, and Ti, Phys. Rev. 1968, 172, 665-670.
    [32] P. Debrunner, R. W. Vaughan, A. R. Champion, J. Cohen, J. Moyzis, H. G. Drickamer, Versatile High Pressure M?ssbauer Apparatus, Rev. Sci. Instrum. 1966, 37, 1310-1315.
    [33] A. W. Lawson and T. Y. Tang, A diamond bomb for obtaining powder pictures at high pressures, Rev. Sci. Instrum. 1950, 21, 815-819.
    [34] F. Q. Jing, Dynamic UHP technology (1). Explosion and the impact, 1984, 4 (3), 1-9.
    [35] F. Q. Jing, Experimental equation of state guidance. Beijing: Science Press, 1986.
    [36] B. A. Weinstein, G. J. Piermarini, Raman scattering and phonon dispersion in Si and GaP at very high pressure, Phys. Rev. B, 1975, 12, 1172-1186.
    [37] K. R. Hirsch, W. B. Holzapfel, Diamond anvil high-pressure cell for Raman spectroscopy, Rev. Sci. Instrum. 1981, 52, 52-55.
    [38] K. Sassen, R. Sonnenschein, Microoptic double beam system for reflectance and absorption measurements at high pressure, Rev. Sci. Instrum. 1982, 53, 644-650.
    [39] I. L. Spain, D. R. Black, Energy dispersive x-ray diffraction in the diamond anvil, high-pressure apparatus: Comparison of synchrotron and conventional x-ray sources, Rev. Sci. Instrum. 1985, 56, 1461-1463.
    [40] H. K. Mao, P. M. Bell, High-pressure physics: sustained static generation to 1.36 to 1.72 megabars, Science, 1978, 200, 1145-1147.
    [41] The President's Report, Carnegie Institution of Washington Yearb, 1987, 86, 79-88.
    [42] A. Jayaraman, Ultrahigh pressures, Rev. Sci. Instrum. 1986, 57, 1013-1031.
    [43] Modern Very High Pressure Techniques, edited by R.H. Wentorf. Jr.Butterworths, Washington, DC, 1962.
    [44] W. Klement, Jr., A. Jayaraman, in Progress in Solid Chemistry, Vol. 3, edied by H. Reiss, Pergamon, Oxford, 1967, pp: 289.
    [45] I. L. Spain, in High Presure Techonlogy, Vol. 1, edited by I. L. Spain and J. Paauwe, Dekker, New York, 1977, pp: 395.
    [46] P. W. Bridgman, The Physics of High Pressure, Bell, London, 1952.
    [47] H. T. Hall, Ultra-High-Pressure, High-Temperature Apparatus: the ``Belt'', Rev. Sci. Instrum. 1960, 31, 125-131.
    [48] H. D. Stromberg, D. R. Stephens, Effects of pressure on the electrical resistance of certain metals, J. Phys. Chem. Solids, 1964, 25, 1015-1022.
    [49] F. P. Bundy, in Modern High Pressure Research, edited by R. H. Wentorf. Jr. Butterworths, Washington, DC, 1962.
    [50] E. C. Lloyd, U. O. Hutton, D. P. Johnson, J. Res. Nat. Bur. Stand. C 1959, 63, 59-64.
    [51] H. T. Hall, Anvil Guide Device for Multiple-Anvil High Pressure Apparatus, Rev. Sci. Instrum. 1962, 33, 1278-1280.
    [52] J. Osugi, K. Shimizu, K. Inoue, K. Yasunami, A compact cubic anvil high pressure apparatus, Rev. Phys. Chem. Jpn. 1964, 34, 1-6.
    [53] A. Ohtani, A. Onodera, and N. Kawai, Pressure apparatus of split-octahedron type for x-ray diffraction studies, Rev. Sci. Instrum. 1979, 50, 308-315.
    [54] O. Shimomura, S. Yamaoka, T. Yagi, M. Wakatsuki, K. Tusji, O. Fukunaga, H. Kawamura, K. Aoki, and S. Akimoto, Materials Research Society Symposium Proceedings, 1984, 22, 17.
    [55] N. Kawai and S. Endo, The Generation of Ultrahigh Hydrostatic Pressures by a Split Sphere Apparatus, Rev. Sci. Instrum. 1970, 41, 1178-1181.
    [56] H. G. Drichamer and A. S. Balchan, in Modern Very High Pressure Techniques, edited by R. H. Wentorf. Jr. Butterworths, Washington, DC,1962, pp: 25.
    [57] E. A. Perez-Albuerne, K. F. Forsgren, and H. G. Drichamer, Apparatus for X-Ray Measurements at Very High Pressure, Rev. Sci. Instrum. 1964, 35, 29-33.
    [58] D. W. Pipkorn, C. K. Edge, P. Debrunner, G. DePasquali, H. G. Drichamer, H. Frauenfelder, M?ssbauer Effect in Iron under Very High Pressure, Phys. Rev. 1964, 135, A1604-1612.
    [59] H. G. Drichamer, Revised Calibration for High Pressure Optical Bomb, Rev. Sci. Instrum. 1961, 32, 212-213.
    [60] H. G. Drichamer, in Solid State Physics, edited by F. Seitz and D. Turnbull, Academic, New York, 1965, Vol. 17, pp: 1
    [61] H. G. Drichamer, in Solid State Physics, edited by F. Seitz and D. Turnbull, Academic, New York, 1966, Vol. 19, pp: 135
    [62] M. Ito, J. Hori, H. Kurisaki, H. Okada, A. J. Perez Kuroki, N. Ogita, M. Udagawa, H. Fujii, F. Nakamura, T. Fujita, and T. Suzuki, Pressure-Induced Superconductor-Insulator Transition in the Spinel Compound CuRh2S4, Phys. Rev. Lett. 2003, 91, 077001.
    [63] K. Shimizu, K. Amaya, N. Suzuki, Pressure-induced Superconductivity in Elemental Materials, J. Phys. Soc. Jpn. 2005, 74, 1345-1357.
    [64] Murase S, Yanagisawa M, Sasaki S, Development of low-temperature and high-pressure Brillouin scattering spectroscopy and its application to the solid I form of hydrogen sulphide. J. Phys.: Condens Matter, 2002, 14, 11537-11541.
    [65] V. Z. Turkevich, Phase Diagrams and Synthesis of Diamond, High Pressure Research, 2002 , 22, 525-529.
    [66] Chang-Sheng Zha, William A. Bassett, Internal resistive heating in diamond anvil cell for in situ x-ray diffraction and Raman scattering, Rev. Sci. Instrum.2003, 74, 1255-1262.
    [67] A. Van Valkburg, Conference Internationale Sur-ies-Hautes Pressions, Le- Creusot, Saone-et-Loire, France, 1965.
    [68] R. A. Forman, G. J. Piermarini, J. D. Barnet, S. Block, Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence, Science,1972, 176, 284-285.
    [69] J. D. Barnet, S. Block and G. J. Piermarini, An Optical Fluorescence System for Quantitative Pressure Measurement in the Diamond-Anvil Cell, Rev. Sci. Instrum. 1973, 44, 1-9.
    [70] H. K. Mao and P. M. Bell, High-pressure physics: the 1-megabar mark on the ruby R1 static pressure scale, Science, 1976, 191, 851-852.
    [71] H. K. Mao and P. M. Bell, Design and varieties of the megabar. Cell, in Carnegie Institution of Washington Year Book 1978, 77 , 904-908.
    [72] G. J. Piermarini, S. Block, and J. S. Barnet, Hydrostatic limits in liquids and solids to 100 kbar, J. Appl. Phys. 1973, 44, 5377-5382.
    [73] H. K. Mao, A. Mao and P. M. Bell, Abstract of the 8th AIRAPT Conference, Uppsala, edited by C. M. Beckman, T. Johannisson and L. Tegner (ISBN, Swedan), Vol. II, pp: 453.
    [74] D. H. Liebenberg, A new hydrostatic medium for diamond anvil cells to 300 kbar pressure, Phys. Lett. A. 1979, 73, 74-76.
    [75] R. L. Mills, D. H. Liebenberg, J. C. Bronson, and L. C. Schmidt, Procedure for loading diamond cells with high-pressure gas, Rev. Sci. Instrum. 1980, 51, 891-895.
    [76] J. M. Besson, J. P. Pinceaux, Melting of Helium at Room Temperature and High PressureScience, 1979, 206, 1073-1075.
    [77] J. A. Schouten, N. J. Trappeniers, and L. C. van den Bergh, Method for the preparation of protective coatings by low-temperature metal–organicchemical vapor deposition (MOCVD), Rev. Sci. Instrum. 1983, 59, 1209-1214.
    [78] G. J. Piermarini, S. Block, Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale,Rev. Sci. Instrum. 1975, 46, 973-979.
    [79] W. A. Bassett, T. Takahashi, P. W. Stook, X-Ray Diffraction and Optical Observations on Crystalline Solids up to 300 kbar, Rev. Sci. Instrum. 1967, 38, 37-42.
    [80] W. A. Bassett, T. Takahashi, in Advances in High Pressure Research, edited by R. H. Wentorf, Jr. Academic, New York, 1974, Vol. 4, pp:165.
    [81] A. Jayaraman, Pressure-Induced Electronic Collapse and Semiconductor-to- Metal Transition in EuO, Phys. Rev. Lett. 1972, 29, 1674-1676.
    [82] L. Merrill, W. A. Bassett, Miniature diamond anvil pressure cell for single crystal x-ray diffraction studies, Rev. Sci. Instrum. 1974, 45, 290-294.
    [83] G. Huber, K. Syassen, W. B. Holzapfel, Pressure dependence of 4f levels in europium pentaphosphate up to 400 kbar, Phys. Rev. B, 1977, 15, 5123-5128.
    [84] Dion L. Heinz and Jeffery S. Sweney, A laser heating system that stabilizes and controls the temperature: Diamond anvil cell applications, Rev. Sci. Instrum. 1991, 62, 1568-1575.
    [85] Guoyin Shen, Mark L. Rivers, Yanbin Wang, and Stephen R.sutton, Laser heated diamond cell system at the Advanced Photon Source for in situ x-ray measurements at high pressure and temperature, Rev. Sci. instrum, 2001, 72 , 1273-1282.
    [86] R. Boehler and A. Chopeas, in High Pressure Research: Application to earth and planetary Sciences, edited by Y. Syono and M. H. Manghnani , AGU, Washington , DC, 1992, pp:55.
    [87] 程光煦. 拉曼 布里渊散射—原理及应用 [M]. 北京:科学出版社, 2001: 576-677.
    [88] T. Blachowicz, R. Bukowski, Z. Kleszczewsk, Fabry-Perot Interferometer in Brillouin Scattering Experiments, Rev. Sci. Instrum., 1996, 67, 4057-4060.
    [89] C. H. Whitfield, E. M. Brody, Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell, Rev. Sci. Instrum, 1976, 47, 942-947.
    [90] H. Z. Cummins, P. E. Schoen, Laser Handbook, North-Holland: Amsterdam, 1972, V2, 1029.
    [91] R. J. Pressley, Handbook of Lasers with Selected Data on Optical Technology, Cleveland, OH: The Chemical Rubber Company, 1971, 478.
    [92] Rado G T, Theory of Ferromagnetic Resonance and Static Magnetization in Ultrathin Crystals, Phys. Rev. B, 1982, 26, 295-304; Erratum: Theory of Ferromagnetic Resonance and Static Magnetization in Ultrathin Crystals, Phys. Rev. B, 1985, 32, 6061.
    [93] H. K. Mao, P. M. Bell, Experiments for in Situ High-Pressure Light- Scattering Measurement, Carnegie Inst Washington Yearb, 1980, 79, 411-415.
    [94] L. Merrill, W. A. Bassett. Miniature diamond anvil pressure cell for single crystal x-ray diffraction studies, Rev. Sci. Instrum, 1974, 45, 290-294.
    [95] A. G.. Every, General, Closed-form Expressions for Acoustic Waves in Cubic Crystals, Phys. Rev. Lett, 1979, 42, 1065-1068.
    [96] H. Shimizu, S. Sasaki, High-pressure Brillouin Studies and Elastic Properties of Single-crystal Hydrogen Sulfide Grown in a Diamond Cell, Science, 1992, 257, 514-516.
    [97] A. Polian, Brillouin Scattering at High Pressure: an Overview, J. Raman Spectrosc, 2003, 34, 633-637.
    [98] H. Shimizu, H. Tashiro, T. Kume, S. Sasaki, High-Pressure Elastic Properties of Solid Argon to 70 GPa, Phys. Rev. Lett, 2001, 86, 4568-4571.
    [99] H. Shimizu, N. Nakashima, S. Sasaki, High-pressure Brillouin scattering and elastic properties of liquid and solid methane, Phys. Rev. B, 1995, 53, 111-115.
    [100] H. Shimizu, H. Imaeda, T. Kume, S. Sasaki, High-pressure elastic properties of liquid and solid neon to 7 GPa, Phys. Rev. B, 2005, 71, 014108.
    [101] A. Polian, Grimaditch M, Brillouin scattering from H2O: Liquid, ice VI, and ice VII, Phys. Rev. B, 1983, 27, 6409-6412.
    [102] M. Grimsditch, S. Popova, A. Polian, Test of the equation of state of water up to freezing at 100 and 200 °C, J. Chem. Phys, 1996, 105, 8801-8803.
    [103] M. Gauthier, Ph. Pruzan, J. C. Chervin, A. Polian, Brillouin study of liquid and solid ammonia up to 20 GPa, Solid State Commun, 1988, 68, 149-153.
    [104] J. R. Sandercock, Light Scattering in Solids, Paris: Flammarion, 1971, 9.
    [105] J. R.Sandercock, Light Scattering in Solids III, Berlin: Springer, 1982, 173.
    [106] H. K. Mao, P. M. Bell, J. W. Shaner, D. J. Steinberg, Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 1978, 49, 3276-3283.
    [107] D. D. Ragan, R. Gustavsen, D. Schiferl, Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K, J. Appl. Phys. 1992, 72, 5539-5544.
    [108] J. Yen, M. Nicol, Temperature dependence of the ruby luminescence method for measuring high pressures, J. Appl. Phys. 1992, 72, 5535-5538.
    [109] H. K. Mao, L. C. Chen, R. J. Hemley, A. P. Jephcoat, Y. Wu, Stability and equation of state of CaSiO3-perovskite to 134GPa, J. Geophys. Res. 1989, 94, 17889-17894.
    [110] R. J. Nelmes, P. D. Hatton, M. I. McMahon, R. O. Piltz, J. Crain, R. J. Cernik, G. Bushnell-Wye, Angle-dispersive powder-diffraction techniques for crystal structure refinement at high pressure, Rev. Sci. Instrum. 1992, 63, 1039-1042.
    [111] W.F. Kuhs, J. L. Finney, C. Vettier, D.V. Bliss. Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction, J. Chem. Phys. 1984, 81, 3612-3623.
    [112] B. Kamb, in physics and Chemistry of Ice, edited by E. Whalley, S. J. Jones, and L. W. Gold, Royal Society Canada, Ottawa, 1973, pp: 28.
    [113] S. Block, C. W. Weir, G. J. Piermarini, High-Pressure Single-Crystal Studies of Ice VI, Science. 1965, 148, 947-948.
    [114] P. V. Hobbs, Ice Physics, Clarendon, Oxford, 1974, Chap. 1.
    [115] C. Weir, S. Block, G. Piermarini, Single-crystal X-ray diffraction at high. Pressures, J. Res. Natl. Bur. Stand. Sect. C, 1965, 69, 275-281.
    [116] A. Polian, M. Grimsditch, New high-ressure phase of H2O Ice X, Phys. Rev. Lett, 1984, 52, 1312-1314.
    [117] B. Kamb, W. C. Hamilton, S. J. Laplaca, A. Prakash, Ordered Proton Configuration in Ice II, from Single-Crystal Neutron Diffraction, J. Chem. Phys. 1971, 55, 1934-1945.
    [118] G. J. Wilson, R. K. Chan, D. W. Davidson, E. Whalley, Dielectric Properties of Ices II, III, V, and VI, J. Chem. Phys. 1965, 43, 2384-2391.
    [119] J. D. Londono, W. F. Kuhs, J. L. Finney, Neutron diffraction studies of ices III and IX on under-pressure and recovered samples, J. Chem. Phys. 1993, 98, 4878-4888.
    [120] W. C. Hamilton, B. Kamb, S. J. Laplaca, A. Prakash, in Phusics of Ice, edited by N.Riehl, B.Bullemer, and H. Englehardt, Plenum, New York, 1969, pp:44.
    [121] P.V. Hobbs, Ice Physics, Clarendon, Oxford, 1974.
    [122] O. Mishima, L. D. Calvert, E. Whalley, Melting ice" I at 77K and 10 kbar:a new method of making amorphous solids, Nature, 1984, 310, 393-395; An apparently first-order transition between two amorphous phases of ice induced by pressure, Nature, 1985, 314, 76-78.
    [123] S. J. LaPlaca, W. C. Hamilton, B. Kamb, A. Praksh, On a nearly proton- ordered structure for ice IX, J. Chem. Phys. 1971, 58, 567-580.
    [124] Y. Q. Cai, H.-K. Mao, P. C. Chow, J. S. Tse, Y. Ma, S. Patchkovskii, J. F. Shu, V. Struzhkin, R. J. Hemley, H. Ishii, C. C. Chen, I. Jarrige, C. T. Chen, S. R. Shieh, E. P. Huang, C. C. Kao,. Ordering of Hydrogen Bonds in High-Pressure Low-Temperature H2O, Phys. Rev. Lett. 2005, 94, 025502.
    [125] O. Mishima, H. E. Stanley, The relationship between liquid, supercooled and glassy water, Nature. 1998, 396, 329-335.
    [126] O. Mishima, H. E. Stanley, Decompression-induced melting of ice IV and the liquid-liquid transition in water, Nature, 1998, 392, 164-168.
    [127] Angell, C. A. in Water: A Comprehensive Treatise, Vol. 7, edited by F.Franks, Plenum, New York,1982.
    [128] Debenedetti, P. G. Metastable Liquids, Princeton Univ. Press, 1996.
    [129] J. T.Fourkas, D.Kivelson, U.Mohanty, K. A. Nelson, Supercooled Liquids: Advances and Novel Applications, ACS Books, Washington DC, 1997.
    [130] J. N. Glosli, F. H. Ree. Liquid-Liquid Phase Transformation in Carbon, Phys. Rev. Lett. 1999, 82, 4659-4662.
    [131] Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata,K. Funakoshi. A first-order liquid–liquid phase transition in phosphorus, Nature. 2000, 403, 170-173.
    [132] E. F. Burton, W. F. Oliver, The crystal structure of ice at low temperatures, Proc. R. Soc. Lond. A 1936, 153, 166-172.
    [133] Heide, H.-G. Observations on ice layers. Ultramicroscopy, 1984, 14,271-278.
    [134] E. G. Ponyatovskii, V. V. Sinitsyn, T. A. Pozdnyakova, JEPT Lett. 1994, 60, 360.
    [135] C. T. Moynihan, Res. Soc. Symp. Proc. 1997, 455, 411-425.
    [136] P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, C. Angell, Effect of Hydrogen Bonds on the Thermodynamic Behavior of Liquid Water, Phys. Rev. Lett. 1994, 73, 1632-1635.
    [137] S. S. Borick, P. G. Debenedetti, S. Sastry, the Phase Behavior of Supercooled Water, J. Phys. Chem, 1995, 99, 3781-3793.
    [138] C. F. Tejero, M. Baus, Liquid polymorphism of simple fluids within a van der Waals theory, Phys. Rev. E, 1998, 57, 4821-4823.
    [139] T. Loerting, C. Salzmann, I. Kohl, E. Mayer, A. Hallbrucker, A second distinct structural state of high-density amorphous ice at 77 K and 1 bar, Phys. Chem. Chem. Phys, 2001, 3, 5355-5357.
    [140] M. M. Koza, B. Geil, K. Winkel, C. Ko¨hler, F. Czeschka, M. Scheuermann, H. Schober, T. Hansen, Nature of Amorphous Polymorphism of Water, Phys. Rev. Lett., 2005, 94, 125506.
    [141] I. Brovchenko, A. Geiger, A. Oleinikova,Multiple liquid–liquid transitions in supercooled water,J. Chem. Phy,2003, 118, 9473-9476.
    [142] T. Loerting, W. Schustereder, K. Winkel, C. G. Salzmann, I. Kohl, E. Mayer, Amorphous Ice Stepwise Formation of Very-High-Density Amorphous Ice from Low-Density Amorphous Ice at 125 K, Phys. Rev. Lett. 2006, 96, 025702.
    [143] I. Brovchenkoa, A. Oleinikova, Four phases of amorphous water Simulations versus experiment, J. Chem. Phys, 2006, 124, 164505.
    [144] M. R. Frank, Y. W. Fei, J. Z. Hu, Constraining the Equation of State of Fluid H2O to 80 GPa Using the Melting Curve, Bulk Modulus, and ThermalExpansivity of Ice VII, Geochim Cosmochim Acta, 2004, 68, 2781-2790.
    [145] F. Datchi, P. Loubeyre, L. R. Extended, Accurate Determination of the Melting Curves of Argon, Helium, Ice (H2O), and Hydrogen (H2), Phys. Rev. B, 2000, 61, 6535-6546.
    [146] G. S. Kell, E. Whalley, Reanalysis of the density of liquid water in the range 0–150 °C and 0–1 kbar, J. Chem. Phys. 1975, 62, 3496-3503.
    [147] G. S. Kell, G. E. McLaurin, and E. Whalley, Proc. R. Soc. London Ser. A 1978, 360, 389-402.
    [148] P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, Refractive index of water and steam as function of. wavelength, temperature and density, J. Chem. Ref. Data 1990, 18, 677-717.
    [149] K. Vedam, P. Limsuwan, Piezo- and elasto-optic properties of liquids under high pressure. I. Refractive index vs pressure and strain, J. Chem. Phys. 1978, 69, 4762-4771.
    [150] A. Saul and W. Wagner, J. Phys. Chem. Ref. Data, 1989, 18, 1537-1564.
    [151] A. M.Saitta, F. Datchi, Structure and phase diagram of high-density water The role of interstitial molecules, Phys. Rev. E, 2003, 67, 020201.
    [152] Ph. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L . A. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson, A. Nilsson, The Structure of the First Coordination Shell in Liquid Water----Science, 2004, 304, 995-999.
    [153] J. Xu, M. H. Manghnani, Brillouin-scattering studies of a sodium silicate glass in solid and melt conditions at temperatures up to 1000 °C, Phys. Rev. B, 1992, 45, 640-645.
    [154] J. Xu, M. H. Manghnani, P. Richet, Brillouin-scattering studies of K2Si4O9 glass and melt up to 1000 °C, Phys. Rev. B, 1992, 46, 9213-9215.
    [155] J. F. Lin, B. Militzer, V. V. Struzhkin, E. Gregoryanz,R. J. Hemley, H. K.Mao, High Pressure-Temperature Raman Measurements of H2O Melting to 22 GPa and 900K, J. Chem. Phys, 2004, 121, 8423-8427.
    [156] B. Schwager, L. Chudinovskikh, A. Gavriliuk, R. Boehler, Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell, J. Phys.: Condens. Matter, 2004, 16, S1177–S1179.
    [157] A.F. Goncharov, N. Goldman, L. E. Fried, J. C. Crowhurst, I-Feng W. Kuo, C. J. Mundy, J. M. Zaug. Dynamic Ionization of Water under Extreme Conditions, Phys. Rev. Lett, 2005, 94, 125508.
    [158] A. Belonoshko, S. K. Saxena, Geochim. Cosmochim. Acta, 1991, 55, 381.
    [159] T, Holland, R. Powell, Contrib. Mineral. Petrol, 1991, 109, 265.
    [160] K. S. Pitzer, S. M. Sterner, Equations of state valid continuously from zero to extreme pressures for H2O and CO2, J. Chem. Phys, 1994, 101, 3111-3116.
    [161] A. D. Fortes, J. P. Brodholt, I. G. Wood, L. Vocadlo, Hydrogen bonding in solid ammonia from ab initio calculations, J. Chem. Phys, 2003, 118, 5987-5994.
    [162] M. Gauthier, Ph. Pruzan, J. C. Chervin, J. M. Besson, Raman scattering study of ammonia up to 75 GPa Evidence for bond symmetrization at 60 Gpa, Phys. Rev. B, 1988, 37, 2102-2115.
    [163] H. Yurtseven, H. Karacal?, Specific heat and frequency shifts for the translational modes in ammonia solid I close to phase transition, Spectrochimica Acta Part A, 2007, 67, 1060-1066.
    [164] R.L. Mills, D.H. Liebenberg, Ph. Pruzan, Phase diagram and transition properties of condensed ammonia to 10 kbar, J. Phys. Chem, 1982, 86, 5219-5222.
    [165] C. L. Nye, F. D. Medina, Volume dependence of the Raman frequencies in ammonia solid I, Phys. Rev. B, 1985, 32, 2510-2512.
    [166] R.C. Hanson, M. Jordan, Ultrahigh-pressure studies of ammonia, J. Phys.Chem, 1980, 84, 1173-1175.
    [167] T. Kume, M. Daimon, S. Sasaki, H. Shimizu, High-pressure elastic properties of liquid and solid ammonia, Phys. Rev. B, 1998, 57, 13347-13350.
    [168] K. R. Hirsch, W. B. Holzapfel, Symmetric hydrogen bonds in ice X, Phys. Lett. A, 1984, 101, 142-144.
    [169] K. R. Hirsch, W. B. Holzapfel, Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X, J. Chem. Phys, 1986, 84, 2771-2775.
    [170] J. S. Loveday, R. J. Nelmes, W. G. Marshall, J. M. Besson, S. Klotz, G. Hamel, Structure of deuterated phase-IV ammonia, Phys. Rev. Lett, 1996, 76, 74-77.
    [171] S. Klotz, M. Gauthier, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, R. M. Wilson, W. G. Marshall, Techniques for neutron diffraction on solidified gases to 10 GPa and above Applications to ND3 phase IV, Appl. Phys. Lett, 1995, 67, 1188-1190.
    [172] J. W. Otto, R. F. Porter, A. L. Ruoff, Equation of state of solid ammonia (NH3) to 56 GPa, J. Phys. Chem. Solids, 1989, 50, 171-175.
    [173] F. Datchi, S. Ninet, M. Gauthier, A. M. Saitta, B. Canny, F. Decremps, Solid ammonia at high pressure: A single-crystal x-ray diffraction study to 123 GPa, Phys. Rev. B, 2006, 73, 174111.
    [174] P. Lawaetz, Stability of the Wurtzite Structure, Phys. Rev. B 1972, 5, 4039-4045.
    [175] G. L. Clendenen, H. G. Drickamer, Effect of Pressure on the Volume and Lattice Parameters of Magnesium, Phys. Rev, 1964, 135, A1643-1645.
    [176] F. Ancilotto,G. L. Chiarotti, S. Scandolo, E. Tosatti, Dissociation of Methane into Hydrocarbons at Extreme(Planetary)Pressure and Temperature, Science, 1997, 275, 1288-1290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700