麦秸刨花板施胶方法和工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦秸刨花板是近年来新型刨花板产品,具有环保、环境友好、资源综合利用等特点,发展潜力巨大。但是,麦秸刨花板施胶技术与木材刨花板有很大差别,如何解决麦秸刨花板施胶关键技术一直是个难题。本文通过对麦秸刨花板施胶中气流式雾化施胶、高压无气式雾化施胶、离心式雾化施胶方法的研究,以及施胶量、胶滴性质、板的强度、吸水厚度膨胀率等工艺参数进行系统研究,得出以下结论:
     1.综述了国内外刨花板发展现况和我国刨花板产业发展优势,分析了刨花板工业化生产中施胶技术难点,指出施胶量过大是亟待解决的关键技术问题。通过雾化施胶影响因素的理论分析和评价方法的研究,总结出胶滴平均粒径、雾化角、胶滴粒径分布系数三个参数来评价和衡量胶粘剂雾化效果。
     2.通过气流式雾化施胶方法研究,对两流体内混型、两流体外混型、三流体混合型三种结构的喷嘴进行雾化特性试验,结果表明:
     (1)两流体内混型喷嘴的胶滴平均粒径较小,雾化角相对较大,胶滴粒径分布系数较小,粒径分布比较均匀,且能量消耗也较小。胶滴平均粒径随着液相压力、液孔直径、气孔直径和混合孔直径的增大而增大,随着气相压力和气液压力比的增大而减小;胶滴平均粒径的范围在20~110μm,变化范围较大,对胶滴平均粒径的影响按大小依次为气相压力、气液压力比和液孔直径;雾化角随着液相压力、气孔直径和混合孔直径的增大而减小,随着液孔直径、气相压力和气液压力比的增大而增大;雾化角的变化范围在33°~41°,变化范围较小,控制参数和结构参数对雾化角的影响比较接近,影响不明显;喷嘴的胶滴粒径分布系数在1.2~1.8。
     (2)两流体外混型喷嘴的胶滴平均粒径稍大,雾化角相对稍小,胶滴粒径分布系数较大,雾化性能一般,且能量消耗较大。胶滴平均粒径变化规律基本等同两流体内混型喷嘴,胶滴平均粒径的范围在30~120μm,变化范围较大,对胶滴平均粒径的影响按大小依次为气相压力、气液压力比和液孔直径;雾化角变化规律基本等同两流体内混型喷嘴,变化范围在31°~38°,变化范围较小,喷嘴的胶滴粒径分布系数均小于1.4,粒径的分布均匀性较好。
     (3)三流体混合型气流式喷嘴的雾化效果介于两流体外混型和两流体内混型之间,喷嘴的消耗能量要大。胶滴平均粒径随着液相压力、液孔直径、气孔直径和混合孔直径的增大而增大,随着二次气相压力和二次气液压力比的增大而减小;胶滴平均粒径的范围在15~130μm,变化范围较大,对胶滴平均粒径的影响按大小依次为液孔直径、一次气相压力和两次气液压力比;雾化角随着液相压力、气孔直径和混合孔直径的增大而减小,随着液孔直径、气相压力和气液压力比的增大而增大;雾化角的变化范围在30°~45°,变化范围较大,控制参数和结构参数对雾化角的影响比较接近,影响不明显。喷嘴的胶滴粒径分布系数在1~1.5,粒径的分布均匀性一般。
     3.通过高压无气式雾化施胶方法研究,对高压无气式和辅助空气式两种结构的喷嘴进行雾化特性试验,结果表明:高压无气式喷嘴雾化的胶滴平均粒径在70~110μm,增加辅助空气后,胶滴平均粒径的变化范围增大,可达到20~110μm。胶滴平均粒径随着液相压力的增大而减小,随着液孔直径的增大而增大。在相同液压条件下,通过辅助空气的二次雾化后,胶滴平均粒径变小,雾化效果更好。
     4.通过离心式雾化施胶方法研究,对电动离心式雾化喷嘴进行雾化特性试验,结果表明:胶滴平均粒径随着分散盘转速的增加而减小,变化范围在50~120μm,变化范围一般;胶滴平均粒径随着液相压力增大而增大,变化范围在70~100μm ,变化范围较小;分散盘转速对胶滴平均粒径的影响较大,喷嘴雾化面积随着液相压力和分散盘转速的增大而增大,雾化直径的变化范围在1200~1700mm,变化范围较大。
     5.通过上述三种雾化施胶方法的研究,确定了四组不同胶滴平均粒径,研究了施胶量、胶滴平均粒径等主要工艺参数对麦秸刨花板物理力学性能的影响关系,结果表明:施胶量的变化对麦秸刨花板的静曲强度、弹性模量、内结合强度、吸水厚度膨胀率有显著影响,对内结合强度的影响极其显著;施胶量相同情况下,胶滴平均粒径对内结合强度、弹性模量和吸水厚度膨胀率有显著影响。因此,可以在保证板材物理力学性能满足国家标准的前提下,选取最佳的胶滴平均粒径,优化施胶技术与工艺,进一步降低刨花板的施胶量,减小秸秆刨花板的生产成本。
     6.通过雾化施胶方法的理论分析和试验研究,在此基础上,开发了农作物秸秆刨花板用异氰酸酯胶施胶试验系统和专用设备。试验结果表明,新开发的MDI施胶系统和专用设备适用于秸秆刨花板的施胶工艺,实验样板达到国家相关标准。
A series of researches have been engaged in gluing method and technology of wheat straw particleboard. And many results and conclusions have been obtained.
     1. After describing and analyzing the current development of wheat straw particleboard at home and aboard and advantages in domestic particleboard industry, some technical difficulties in its gluing step of production have been pointed out, which says over-gluing is the vital as well as urgent technical problem. At the same time, researches on theoryanalysis and assessed method about the influential factors in resin spray contributes that resin spray can be assessed by three parameters—the average resin droplet diameter,atomizationangle and the resin droplet distribution.
     2. After the researches on air-atomizing gluing, including the atomizing characteristic tests on three types of nozzles, which are external mixed two-fluid nozzle,internal mixedtwo-fluid nozzle and mixed triple-fluid nozzle, following conclusions havebeen drawn.
     (1) The average resin droplet diameter of internal mixed two-fluid nozzle increases with growing of liquid pressure and enlarging of the diameter of liquid, gas outlet, and mixed outlet but decreases with the increasing of the ratio of gas pressure to liquid pressure.The average resin droplet diameters has a wide range , from 20 to 110μm, which is greatlyinfluenced by liquid pressure, then liquid-gas pressure and then diameterof liquid outlet. While atomization angle will becomes lower if liquid pressure,air outletdiameter and mixed outlet diameter increases, but becomes higher if the diameter of liquid outlet, liquid pressureand the pressure ratio of liquid to gas increases. However, it has a narrow range just between 33 degree to 41 degree, and the parameters of controls and structural have the similar but not obvious effects on it. The resin droplet distribution of this nozzle is between 1.2 and 1.8. All in all, the External mixed two-fluidnozzle has its resin droplets in comparatively small diameter, with comparatively atomizing angle, little coefficient of resin distribution, good atomizing effect, little consumption of energy, and well-distributed.
     (2) The feature of the average droplet diameter of external mixed two-fluid nozzle is basically similar to that of external mixed two-fold nozzle, which means that its averagediameter also has a large fluctuated size between 30 and 120μm, and is influenced in turnby gas pressure, the ratio of gas to liquid pressure and the diameter of liquid outlet. The atomization angle changes similarly as that of external mixed two-fluid nozzle does and the former has a narrow range between 31 degree and 38 degree. This nozzle has its droplet well-distributed, because its distribution coefficients are no more than 1.4. In total, Internal mixed two-fluid nozzle has comparatively large diameter atomizing droplet with a small angle degree, large coefficient in distribution. Ithas an ordinary atomizing effect but relatively high energy consumption.
     (3) The average resin droplet diameter made by mixed triple-fluid nozzle increases as liquid pressure, the diameter of outlet of liquid, gas and mixed one increase, but decreases as the ratio of twice gas pressure to twice liquid pressure increases, which changes from 15μm to 130μm. This wide range is mainly influenced by the diameter of liquid outlet, once liquid pressure and the ratio of twice liquid pressure to gas pressure in the decreasingorder. The atomization angle decreases when liquid pressure, gas outletdiameter and mixeddiameter increase, but decreases when liquid outlet diameter, gas pressure and the ratio ofgas to liquid pressure increase. The range of atomizing angle is wide, between 30 degree and 45 degree, which is influenced by the parameters of controls and structural similarly but not obviously. The droplet distribution is ordinary with the coefficient of this nozzlefrom 1 to 1.5. Totally speaking, the atomizing effect of Mixed triple-fluid nozzle is betweenthe two above but the energy consumption is the highest of those three types.
     3. After carrying more researches on the gluing method which uses high pressure and airless, and atomizing characteristic tests on airless nozzle and airless with air-aidednozzle, brief conclusions are as follows: As for airless spray type, it can spray resin intodroplets with the diameter of 70~110μm, whose size can be increased to 20~110μm by adding air-aided. Meanwhile the average droplets diameter will decrease with increasing liquid pressure but will increase because of enlarging the diameter of liquid outlet. Furthermore, in the same liquid pressure, if it can be atomized by air-aided again, the diameter of dropletwill be smaller. Therefore an excellent effect will be achieved.
     4. After doing researches on the centrifugal atomizing method and atomizing characteristic tests on electric-centrifugal atomizing nozzles, the results are as follows: The average resin droplets ordinarily ranging from 50μm to 120μm, becomes smaller as the increasing of the centrifugal speed, while becomes larger as the increasing of liquid pressure, which has a narrow diameter from 70μm to 100μm. However, the centrifugal speed contributes more. As for the diameter of nozzle's atomizing circle, which ranges widely from 1,200mm to 1,700mm, can be increased by increasing the liquid pressure or the centrifugal speed.
     5. After researches on the method of resin spray all above, four groups with different average diameters of droplets are classified and relations between major technological parameters like resin content, the average diameter of droplets and the physical functionof strawboard are analyzed. They all show that using different resin content will makes a big difference to the bending strength, elastic modulus, internal bond strength and determinationof thickness swelling rate of water absorption of strawboard, especially to internal bond strength. Therefore, after satisfying national standards, choosing the best average diameter and optimizing gluing technology can decrease the amount of glueusingin particleboardproduction as well as the cost of it.
     6. Based on the analysis in theory and researches on tests, an experimental system and a set of particular instruments that uses the glue consisting of isocyanate for strawboardgluing are finally exploited. And the result shows that the MDI gluing system and the setof particular instruments are well fitted for strawboard gluing technology, as the sample has meet national standards.
引文
[1]王恺.木材工业实用大全(刨花板卷)[M].北京:中国林业出版社,1998.
    [2]费本华,张伟.木质新材料对木工机械发展的影响[J].世界林业研究,2006,19(6):33-36.
    [3]费本华,王晓军,李剑泉.面向循环经济的林业装备绿色制造模式[J].木材加工机械,2008,19(2):28-35.
    [4]陆仁书.刨花板制造学(第二版)[M].北京:中国林业出版社,1994.
    [5] Lucille Leonhardy.Growth of composite board industry evident at Pullman symposium[J]. Panel World.1995,36(4):26-29.
    [6] Zhi-Ming Liu,Feng-Hu Wang,Xiang-Ming Wang.Spectroscopic Analysis of the Interface for Wheat Straw Specimen Glued with PMDI[J].Wood and Fiber Science,2007,39(1):109-119.
    [7] Markessini,E.,Roffael,E.,Rigal,L.Panels from annual plant fibers bonded with urea-formaldehyde resins[R] . 31st international particleboard/composite materials symposium,Pullman,WA,147-160.
    [8] Hague,J.,Mclauchin,A.,Quinney,R.Agri-materials for panel products: a materials assessment of their viability[R].32nd international particleboard/ composite materials symposium,Pullman,WA,151-159.
    [9] Sauter,L.Developing composites from wheat straw [R]. 30th international particleboard/composite materials symposium,Pullman,WA,197-214.
    [10]向仕龙.非木材植物人造板(第二版)[M].北京:中国林业出版社,2008.
    [11]王戈,刘振国,张冬梅,等.麦秸特性与麦秸刨花板生产工艺及设备[J].林产工业,2000,27(2):33-35.
    [12]刘志明.麦秆表面特性及麦秆刨花板胶接机理的研究[M].哈尔滨:东北林业大学出版社,2006.
    [13] Wasylciw,W.Methods of Straw fiber processing.C.Alberta Research Council,ed,2002.
    [14]国家林业局.中国林业与生态建设状况公报[N].2008.1.22,人民日报第7版.
    [15]胡广斌,肖小兵.我国刨花板生产概况及近期发展态势[J].中国人造板,2007,14(2):1-4.
    [16]于文吉,马红霞,王天佑,等.农作物秸秆人造板发展现状与应用前景[J].木材工业,2005,19(4):5-8.
    [17]周定国.我国刨花板工业的创新展望[J].木材工业,2006,20(2):30-34.
    [18]国家发展和改革委员.国家发展和改革委员会关于印发可再生能源发展“十一五”规划的通知[R].发改能源[2008]第610号.
    [19]杨正东,李刚,田力学.浅谈我国刨花板生产现状及发展[J].人造板通讯,2005,12(4):15-17.
    [20]陈楚.阳光下的奥运—北京市发改委奥运项目办公室刘京生处长访谈[J].北京规划建设,2004,(3):174-175.
    [21]王皓波,陈迅.2010年上海世博会主要收入分析与预测[J].上海管理科学,2005(1):10-12.
    [22]张伟,曲闻远,金征.降低刨花板生产施胶量的技术[J].木材加工机械,2006,17(6):47-48.
    [23]李建章,李文军,周文瑞,等.脲醛树脂固化机理及其应用[J].北京林业大学学报,2007,29(4):90-94.
    [24]张伟,费本华,姜忠斌.刨花板施胶技术应用研究[J].木材加工机械,2008,19(6):24-27.
    [25]路健,傅万四,张伟.国外人造板机械发展状况与技术特点[J].木材加工机械,2003,14(5):1-7.
    [26]华毓坤.人造板工艺学[M].北京:中国林业出版社,2002.
    [27]施昌彦.动态称重测力技术的现状和发展趋势[J].计量学报,2001,22(3):201-205.
    [28] Marian,J.E.Adhesive and adhesion problems in particleboard production[J].Forest Prod.J.1958,8(6):172-176.
    [29] Nicolas Boquillon, Gerard Elbez,Uwe Schonfeld.Properties of wheat straw particleboards bonded with different types of resin[J].Journal of Wood Science,2004,50(3):230-235.
    [30] Groves,K.A new method for measuring resin distribution in OSB[J].DOC.w1481. Forintek Canada Corp.,Vancouver,BC,Canada.1998.
    [31] Youngquist,J.A.,G.C. Myers,L.L.Murmanis.Resin distribution in hardboard--evaluated by internal bond strength and fluorescence microscopy[J].Wood and Fiber Sci.,1987,19(2):215-224.
    [32] Wood,W.M.L.,M. Steel,P.Norton-berry.Spray drying process with spinning atomizer[P].United States Patent 5279708.1994.
    [33] Streicher,R.P.,C.M. Reh,R.Key-Schwartz,etal.Determination of airborne isocyanate exposure.HHS National Inst.for Occupational. 1994.
    [34] Shi,S.Q.,D.J. Gardner.Dynamic adhesive wettability of wood[J].Wood and Fiber Sci.2001,33(1):58-68.
    [35] Smith,G.D.A laboratory technique for coating strands with resin droplets of controlled size and spacing[J].Forest Prod.J.2003,53(7/8):70-76.
    [36] Saunders,H.G.,F.A.Kamke.Quantifying emulsified wax distribution on wood flakes[J].Forest Prod.J. 1996,46(3):56-62.
    [37] Ryley, D.J.Analysis of a polydisperse aqueous spray from a high-speed spinning disk atomizer[J]. Br.J.Appl.Phys.1959,10(4):180-186.
    [38] Panshin,A.J.,C.de Zeeuw.Textbook of Wood Tech.Structure, Identification,Properties and Uses of the Commercial Woods of the United States and Canada.McGraw-Hill,New York.1980,722 pp.
    [39] Loxton,C.,A.Thumm, W.J.Grigsby,etal.Resin distribution in medium densityfiberboard.Quantification of UF resin distribution on blowline-and dry-blended MDF fiber and panels[J].Wood and Fiber Science.2003,35(3):370-380.
    [40] Karoly,W.J.,J.J.Flatley,R.D.Stevenson,etal.Airborne concentrations of methylene diphenyl diisocyanate (MDI) in North American wood mills during the manufacturing of oriented strand board (OSB)[J].J.Occup.Environ.Hyg.2004,1(12):789-798.
    [41] Kamke,F.A.,C.A. Lenth,H.G. Saunders.Measurement of resin and wax distribution on wood flakes.Forest Prod.J.1996,46(6):63-68.
    [42] Brochman,J.,C.Edwardson,R.Shmulsky.Influence of resin type and flake thickness on properties of OSB[J].Forest Prod.J.2004,54(3):51-55.
    [43] Chris Skinner,Joe Marcinko,Jan PR Lauwers.Paper for“Adhesives 2000”section FPS 2000 Meeting Lake Tahoe[R].
    [44] Chris Phanopoulos,Christel Van Den Bosch,Ann Engelen,etal.Presentation to Industrial Uses of Wheat[J],Actin,Cambridge,22nd March 2000.
    [45]仲斯选.对在人造板材生产中应用微机控制的思考与实践[J].木材加工机械,1996,(2):11-13.
    [46]曹民干.喷涂技术与设备[J].化学建材,1996,12(3):109-110.
    [47]朱丽松,曹金才.高压无气喷涂设备及其发展[J].造船技术,1997,8(12):31-33.
    [48]傅万四.人造板调供胶应用技术研究[J].木材加工机械,2003,14(5):21-23.
    [49]孙玲芳,严椿绶.刨花板调控胶自动控制系统的研究[J].南京林业大学学报,1997,21(3):29-33.
    [50]南生春,傅万四.PLC在人造板调供胶控制中的应用[J].木材加工机械,2003,14(6):18-20.
    [51]林铭,谢拥群,曾钦志,等.定向刨花板拌胶机的现状与技术改进[J].林业机械与木工设备,2004,32(7):10-12.
    [52]魏起华,谢拥群,林铭,等.新型定向结构板拌胶机的发展[J].林业机械与木工设备,2005,33(9):4-6.
    [53]杨琼,施金国.刨花板调供胶系统工艺控制探讨[J].林业机械与木工设备.2007,35(5):48-50.
    [54]李道育,岳群飞,刘群,等.对我国人造板机械行业发展的回顾和思考[J].人造板通讯,2002,9(6):3-5.
    [55] Mantanis,G.,and Berns,J.Strawboards bonded with urea formaldehyde resins[R].35th international particleboard/composite materials symposium,Pullman,WA,137-144.
    [56]李凯夫,彭万喜.国内外秸秆制人造板的研究现状与趋势[J].世界林业研究,2004,17(2):34-36.
    [57]易平,唐召群.国外农作物秸秆人造板工业化生产发展近况[J].人造板通讯,2001,8(11):9-11.
    [58]周定国,梅长彤.面向21世纪的农作物秸秆材料工业[J].南京林业大学学报,2000,24(5):1-4.
    [59]吉晓莉,陈家炎,赵云惠.内混式空气雾化喷嘴的研究[J].武汉工业大学报,1998,20(3):47-49.
    [60]郑凤山,马心.农作物秸秆板工业在国内外的发展近况[J].林产工业,2003,30(6):3-6.
    [61]莫金海,邹云屏,何少佳.刨花板调控胶自动控制系统的分析与设计[J].木材工业,2006,20(3):10-13.
    [62]谢敏芳,谢拥群.刨花表面胶液分布对定向刨花板力学性能的影响[J].木材工业,2007,21(4):18-20.
    [63]唐永裕.刨花施胶量的测定与控制[J].木材加工机械,1990,7(2):31-34.
    [64]艾军,陆仁书.人造板用异氰酸酯胶粘剂的性质与应用[J].林产工业,2002,29(3):3-7.
    [65]胡广斌.我国稻草板发展的回顾和目前存在的问题[J].林产工业,2004,31(2):7-10.
    [66]姬正忠,张戈.我国秸秆人造板工业的现状及存在问题[J].人造板通讯,2004,11(10):31-33.
    [67]王伟宏,陆仁书.UF_MDI混合胶刨花板制造过程中施胶方式的探讨[J].林业科学,2005,41(2):123-128.
    [68]张德荣,林静,张双保.中国刨花板工业的回顾与展望[J].木材加工机械,2004,21(1):28-30.
    [69] Nukiyama S,Tanasawa Y.Experiments on the Atomization of Liquids in an Air Stream,Report 3:On the Droplet-Size Distribution in an Atomized Jet[J].Defense Resaerch Board,1939,5,62-67.
    [70] Rizk N K,Lefebvre A H. Drop-Size Distribution Characteristics of Spill-Reture Atomizers[J]. AIAA J.of Propulsion and Power,1985,1(3):16-22.
    [71]陈斌,郭烈锦,张西民,等.喷嘴雾化特性实验研究[J].工程热物理学报,2001,22(2):237-240.
    [72]邓东,周华,杨华勇.新型细水雾灭火喷嘴的仿真及试验[J].机械工程学报,2006,42(12):122-127.
    [73]范明豪,周华,朱畅,等.细水雾灭火喷嘴的雾化特性测量[J].浙江大学学报(工学版),2005,39(9):1431-1434.
    [74]廖义德,邱鸿利,李壮云.双层高压细水雾灭火喷嘴雾化特性实验研究[J].武汉化工学院学报,2003,25(2):49-51.
    [75]田春霞,仇性启,崔运静.喷嘴雾化技术进展[J].工业加热,2005,34(4):4-6.
    [76]曹建明.喷雾学研究的国际进展[J].长安大学学报(自然科学版),2005,25(1):82-86.
    [77]刘乃玲.压力式细雾喷嘴雾化特性的研究[J].同济大学学报(自然科学版),2005,33(12):1677-1679.
    [78]国家质量监督检验检疫总局.GB18580-2001室内建筑装饰装修材料人造板及其制品中甲醛释放限量[S].北京:中国标准出版社,2002.
    [79] California Environmental Protection Agency.Proposed airborne toxic control measure to reduce formaldehyde emission from composite wood products[R].2007.
    [80] California Air Resources Board(CARB).Final regulation order on airborne toxiccontrol measure to reduce formaldehyde emissions from composite wood products[R].2008.
    [81] Deppe H.-J. Ernst K. Isocyanate als Span platten bind emittel[J]. Holz als Roh- und Werkstoff,1971,29(2):45-50.
    [82]王恺.木材工业实用大全(胶粘剂卷)[M].北京:中国林业出版社,1996.
    [83]花军.麦秆刨花板加工工艺理论的研究[M].哈尔滨:东北林业大学出版社,2000.
    [84] Arthur H Lefebvre . Gas Turbine Combustion[J] . HEMISPHERE PUBLISHING CORPORATION,1983.
    [85]金如山.航空燃气轮机燃烧室[M].北京:宇航出版社,1985.
    [86]王喜忠,等.喷雾干燥(第二版)[M].北京:化学工业出版社,2003.
    [87]刘文广.喷雾干燥实用技术大全[M].北京:中国轻工业出版社,2001.
    [88]杨立军,等.两相流乳化型细水雾喷嘴雾化特性研究[J].北京航空航天大学学报,2002,28(4):413-416.
    [89]甘晓华.航空燃气轮机喷油喷嘴技术[J].北京:国防工业出版社,2006.
    [90]曾卓雄,姜培正,等.喷嘴雾化粒径的实验研究[J].西安交通大学学报,2000,34(4)75-77.
    [91]孔珑.两相流体力学[M].北京:高等教育出版社,2000.
    [92]吴德铭,郜冶.实用计算流体力学基础[M].哈尔滨:哈尔滨工程大学出版社,2006.
    [93]曹建明.喷雾学[M].北京:机械工业出版社,2005:150-156.
    [94]杨立军,葛明和,张向阳,等.喷口长度对离心喷嘴雾化特性的影响[J].推进技术,2005,26(3):209-214.
    [95]杨建辉,樊未军,杨茂林.离心式喷嘴雾化参数的计算[J].航空动力学报,2003,18(6):799-802.
    [96]李清廉,田章福,姚世强,等.结构参数变化对内混式喷嘴雾化性能的影响作用[J].工程热物理学报,2005,26(1):151-154.
    [97]工业喷雾激光粒度分析仪使用说明书.济南微纳仪器有限公司,2005.
    [98]华东.异氰酸酯在麦秸刨花板制造中的作用研究[J].南京林业大学学报,2001,22(5):19-21.
    [99] GB/T 4897.1~4897.7-2003,刨花板[S].北京,中华人民共和国国家质量监督检验检疫总局,2003.
    [100] GB/T 17657-1999,人造板及饰面人造板理化性能试验方法[S].北京:中国质量技术监督局,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700