正丙醇溶液辉光放电等离子体电解及固相产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体的应用涉及物理、化学、工程等各个领域,长期以来一直是众多理论和实验研究的课题。辉光放电是产生低温等离子体的重要来源,在材料的表面改性、制氢、诱发或增强化学反应、直接或间接生成新物质、沉积碳膜等方面有着重要的应用,但辉光放电的电解机理和等离子体的具体化学行为还不是很清楚。本论文以正丙醇溶液为研究对象,对辉光放电等离子体电解(glow discharge plasma electrolysis,GDPE)过程进行分析。
     辉光放电电解过程能够产生稳定的等离子体。正丙醇溶液的GDPE电流电压特性曲线与水溶液、甲醇溶液和乙醇溶液GDPE电流电压特性曲线的相似。
     正丙醇溶液GDPE过程中电子是引发正丙醇分子等离子体化学反应的主要高能粒子,正丙醇分子在等离子体场内与高能粒子碰撞激发,产生大量活性粒子,各种活性粒子进一步反应生成各种产物。利用光发射光谱对正丙醇溶液GDPE过程进行分析:(1)研究正丙醇溶液GDPE过程活性物种的分布情况。(2)分析等离子体场内测得的活性物种的来源,产生过程及电子参数。
     通过气相色谱和气质联用仪分析正丙醇溶液GDPE阴极和阳极放电产物,研究发现:不同电压下,放电极性对正丙醇溶液GDPE产物无明显影响,主要差别在于阴极放电有固相产物生成,而阳极放电过程中未出现固相产物。当正丙醇的浓度低于75%时未出现苯、甲苯和固相产物。结合分子键能理论对电解主要产物进行分析。
     与甲醇和乙醇溶液GDPE产物比较可以发现:不同低碳醇GDPE气相主要产物都是H2、CO、CO2和烷烃。随着醇碳链的增长,溶液中逐渐出现了固相产物。本论文利用X射线光电子能谱、激光拉曼光谱和傅里叶红外光谱对正丙醇溶液中出现的固相产物进行分析,研究不同放电条件对固相产物的影响,结果发现固相产物的生成量随着正丙醇溶液浓度、放电电压和放电时间的增加而增加。放电电压和放电时间影响固相产物中sp2、sp3杂化碳的相对含量。
Study on the application of plasmas involved in the fields of physics, chemistry and engineering is always an important topic for theoretical and experimental research. Being one of the important resources of cold plasmas, the glow discharge plays a significant role in urface modification of traditional materials, hydrogen production, induced or enhanced chemical reactions, directly or indirectly generate new material, deposited carbon film and so on. Because of the vagueness on plasmas chemical process and the specific chemical behavior of plasma in applications mentioned above, glow discharge plasma electrolysis(GDPE) on 1-propanol solutions were studied in this paper.
     The big volume and steady glow discharge plasmas were produced during GDPE on 1-propanol solutions. The characteristic curves of the voltage and current of GDPE on lower alcohols solutions were similar with that of GDPE on the aqueous solutions.
     Electrons were demonstrated as the most important radicals to trigger the plasma chemical reactions of 1-propanol during GDPE. Molecules of 1-propanol were bombed and excited in glow discharge plasmas and at the interface between plasmas and solutions and produced a lot of active radicals. The processes of GDPE on 1-propanol solutions were investigated by optical emission spectroscopy(OES). The source, energy level transition process and attribution of active species in the plasma field were investigated. The excitation energy of reactive species was related to their lowest excitation energy, the concentration of the electrolyte solutions had little influence on the composition of the plasma active species. The excited order of the plasma active species depended on the energy that the orbit transition of the species needed. The active species in the plasma field were found to undergo dissociation, ionization and excitation.
     The products of cathode and anode were detected by GC and GC/MS System, solid products were not found in anode GDPE. The main products of 1-propanol were similar with the products in different concentration of 1-propanol. Benzene, toluene and solid products were not appeared when the concentration of 1-propanol below 75%. The main products were analyzed using the molecular bonding energy theory.
     The differences of GDPE products among methanol, ethanol and 1-propanol solution were analyzed. The main products of gas were Hydrogen, Carbon monoxide, Carbon dioxide and alkanes. Solid products of the GDPE on 1-propanol solution were studied. The composition and structure were characterized by X-ray photo electron spectroscopy, Raman spectrometry and Fourier transformation infrared pecrtrometry. The relative content of sp2, sp3 hybrid carbon in solid products were influenced by discharge voltage and discharge time.
引文
[1] Chen F. F., Chang J. P. Lectures notes on principles of plasma processing[M]. Kluwer Academic, New York, 2003:1-3,79,151-164
    [2]赵化侨.等离子体化学与工艺[M].中国科学技术大学, 1998:1-2,108-116
    [3]金佑民,樊友二.低温等离子体物理基础[M].北京:清华大学出版社, 1983:1-15
    [4]许根慧,姜恩,盛京.等离子体技术与应用[M].化学工业出版社, 2006:1,11,17,25-26
    [5]宋仁峰.等离子体化学中的诊断技术[J].化工科技, 2002, 10 (2):54-58
    [6]江南,陶晓风,凌一鸣.无声放电等离子体的光谱诊断[J].真空科学与技术, 2000, 20 (2) :108-110
    [7]徐学基.气体放电物理[M].复旦大学出版社, 1996:7-9,309-323
    [8] Gao J. Z. A novel technique for wastewater treatment by contact glow-discharge electrolysis[J]. Pakistan Journal of Biological Sciences, 2006, 9(2):323-329
    [9] Polyakov O. V., Badalyan A. M., Bakhturova L. F. The water degradation yield and spatial distribution of primary radicals in the near-discharge volume of an electrolytic cathode[J]. High Energy Chemistry, 2002, 36(4): 280-284
    [10] Mollah M.Y.A., Schennach R., Patscheider J., et al. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management[J]. Journal of Hazardous Materials B79, 2000: 301-320
    [11]张永金,张波兰.棉纤维活性染料无盐染色理论研究进展[J].印染, 2001, 27(8): 47-49
    [12]王建晨,王翔,马琳.纤维素纤维的阳离子化改性及其染色性能的研究[J].天津纺织工学院学报, 1994, (131): 6-12
    [13] Hickling A., Ingram M. D. Contact glow-discharge electrolysis[J]. Transactions of the Faraday Society, 1964: 783-793
    [14] Liu Y. J., Jiang X. Z. Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution[J]. Environmantal Science Technology, 2005, 39: 8512-8517
    [15] Susanta K. S., Singh R., Srivastava A. K. A Study on the origin of nonfaradaic behavior of anodic contact glow discharge electrolysis[J]. Journal of the Electrochemical Society, 1998, 145(7): 2209-2213
    [16] Suanta K. S., Singh O. P. Contact glow discharge electrolysis: a study of its onset and location[J]. Journal of Electroanalytical Chemistry, 1991, 369: 189-197
    [17]蒲陆梅.博士学位论文[D].兰州:西北师范大学, 2005: 36-53
    [18]莫玉琴.硕士学位论文[D].兰州:西北师范大学, 2005: 32-40
    [19] Gai K., Dong Y. J. Liquid phase auramine oxidation induced by plasma with glow discharge electrolysis[J]. Plasma Sources Science and Technology, 2005, 14(3): 589-593
    [20]严宗诚.硕士学位论文[D].广州:华南理工大学, 2004. 32-40
    [21] Sunka P., Babicky V., Clupek M., et al. Generation of chemically active species by electrical discharges in water[J]. Plasma Sources Science and Technology, 1999, 8: 258-265
    [22]卢新培,潘垣.水中放电等离子体特性的理论研究[J].应用基础与工程科学学报, 2000, 8(3): 300-315
    [23]孙亚兵,任兆杏,何于江.低温等离子体技术在三废处理中的应用与研究[J].环境保护学, 1997, 23(5): 45-48
    [24]李胜利,李劲.用高压脉冲放电等离子体处理印染废水的研究[J].中国环境科学, 1996, 16(1): 73-76
    [25]郭香会,李劲,叶齐政,等.脉冲放电等离子体处理硝基苯废水的实验研究[J].高电压技术, 2001, 27(3): 42-44
    [26]陈银生,张新胜,袁渭康.高压脉冲放电低温等离子体法降解废水中4-氯酚[J].华东理工大学学报, 2002, 28(3): 232-244
    [27] Sugiarto A. T., Masayuki S. Pulsed plasma processing of organic compounds in queous solution[J]. Thin Solid Films, 2001, 386: 295-299
    [28] Joshi A. A., Locke B. R., Arce P., et al. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solutions[J]. Journal of Hazardous Materials, 1995, 41: 3-30
    [29]吴向阳,仰榴青,储金宇,等.低温等离子体处理废液技术[J].化工环保, 2002, 22 (2): 111-114
    [30]高锦章,俞洁,李岩,等.辉光放电等离子体技术处理印染废水的研究[J].环境化学, 2005, 24(2): 183-185
    [31] Meguru T., Masakazu I. Plasma induced degradation of chlorophenols in an aqueous solution[J]. Thin Solid Films, 1998, 316: 123-127
    [32] Tezuka M., Iwasaki M. Liquid phase reactions induced by gaseous plasma decomposition of benzoic acids in aqueous solution[J]. Plasmas and Ions, 1999, 1: 23-26
    [33] Tezuka M., Iwasaki M. Plasma induced degradation of aniline in aqueous solution[J]. Thin Solid Films, 2001, 386: 204-207
    [34]严宗诚,陈砺,王红林.液下辉光放电等离子体重整低碳醇水溶液制氢[J].化工学报, 2006, 57(6): 1432-1437
    [35] Yan Z. C., Chen L., Wang H. L. Experimental Study of Plasma Under liquid Electrolysis in Hydrogen Generation[J].过程工程学报, 2006, 6(3): 396-401
    [36] Susanta K. S., Singh R., Srivastava A. K. Chemical effects of anodic contact glow discharge electrolysis in aqueous formic acid solutions: Formation of oxalic acid[J]. Indian Journal of Chemistry, 1995, 34A: 459-461
    [37] Susanta K. S., Urvashi S., Nira M. A study on acrylamide polymerization by anodic contact glow-discharge electrolysis: A novel tool[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39: 1584-1588
    [38] Tezuka M., Iwasaki M. Aromatic cyanation in contact glow discharge electrolysis of acetonitrile[J]. Thin Solid Films, 2002, 407: 169-173
    [39] Namba Y. Attempt to grow diamond phase carbon films from an organic solution[J]. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 1992, 10(5): 3368-3370
    [40] Wang H., Shen M. R., Ning Z. Y., et al. Deposition of unhydrogenated diamond-like amorphous carbon films by electrolysis of organic solutions[J]. Thin Solid Films, 1997, 293: 87-90
    [41] Fu Q., Jiu J. T., Cao C. B., et al. Electrodeposition of carbon films from various organic liquids[J]. Surface Coatings and Technology, 2000, 124: 196-200
    [42]酒金婷,付强,汪浩,等.液相电沉积类金刚石薄膜的相关物理化学问题[J].无机材料学报, 2002, 17(3): 571-578
    [43]黄丽娜,江河清,张治军,等.乙腈中电化学法制备类金刚石薄膜[J].化学研究, 2004, 15(3): 9-11
    [44]杜景永,张贵锋,李国卿,等.不锈钢上液相电沉积类金刚石薄膜[J].电化学. 2007, 13(1): 58-62
    [45]杜景永,张贵锋,何洋洋,等.液相法电沉积类金刚石薄膜的表面形貌研究[J].电显微学报, 2007, 26(1): 19-23
    [46]万家亮,唐咏秋.电感耦合等离子体光谱分析[M].科学出版社, 1989:25-32
    [47]张锐,黄碧霞,何友昭.原子光谱分析[M].中国科学技术大学出版社, 1991:3
    [48]徐秋心.实用发射光谱分析[M].四川科学技术出版社, 1993. 136-253
    [49]陆胜勇,屠听,严建华,等.大气压直流氩等离子体光谱诊断研究[J].光谱学与光潜分析, 2006, 26(10):1785-1789
    [50] Kirsch B., Hanamura S., Winefordner J. D. Diagnostical measurements in a single electrode atmospheric pressure microwave plasma[J]. Spectrochimca Acta, 1984, 39B:955-958
    [51] Grien H. R. Plasma Spectroscopy[M]. New York:McGraw-Hill, 1964: 755-758
    [52]营井秀朗.离子体电子工程学[M].科学出版社, 2002: 55-158
    [53] Rose J.R.工业等离子体工程[M].科学出版社, 1998:13-19
    [54] Chen F. F.离子体物理学导论[M].人民教育出版社, 1980: 25-140
    [55]江南,王汪,凌一鸣.螺旋波等离子体的实验研究[J].真空科学与技术, 2000, 20(3):207-209
    [56]王平,杨银堂,徐新艳,等.应用于超大规模集成电路工艺的高密度等离子体源研究进展[J].真空科学与技术, 2002, 22(4):274-281
    [57] Hsu W. L.,MeMaster M. C.Molecular beam mass spectrometry studies of chemical vapor deposition of diamond[J], Japanese Journal Applied Chemistry, 1994,33:2231-2239
    [58]刘佳宏.三级差分抽气分子束质谱装置的研制及氧、氢等离子体的分子束质谱诊断[D].大连理工大学, 2000:36-50
    [59] Knuth E. L. Composition distortion in MS sampling[J]. Combustion and Flame, 1995, 103(3):171-180
    [60]刘鑫.介质阻挡微放电中氮等离子体分子束质谱及发射光谱的诊断研究[D].大连理工大学, 2008:38-60
    [61] Rego C. A.,Tsang R. S. Gas-phase composition measurements during chlorine assisted chemical vapor deposition of dimond:a molecular beam mass spectrometric study[J]. Applied Physics, 1996,79:7264-7273
    [62] Tsang R. S., Rego C. A., May P. W., et al. Examination of the effects of nitrogen on the CVD diamond growth mechanism using in situ molecular beam mass spectrometry[J]. Diamond and related Materials, 1997, 6:247-254
    [63] FujinT. Mass spectrometric studies of the neutral and ionic products in a methane/oxygen microwave discharge plasma[J]. Physics and Chemistry B, 1993, 97:11380-11384
    [64] FujinT., Shouji K. Identification of intermediate radiate in the CH4microwave plasma by the Li attachment method[J]. Physical Review A, 1992, 46:3555-3557
    [65] Muraoka K., Uchino K., Bowden M. D. Diagnostics of low density glow discharge plasma using Thomson scattering[J]. Plasma Physics and Controlled Fusion, 1998, 40: 1221-1239
    [66]武汉大学化学系.仪器分析[M].高等教育出版社, 2001: 20-58
    [67]王建棋,吴文辉,冯大明.电子能谱学引论[M].国防工业出版社, 1992: 45-108
    [68]白春礼.扫描隧道显微技术及应用[M].上海:科技出版社, 1991: 234-256
    [69]严宗诚.博士学位论文[D].广州:华南理工大学, 2007:35-58
    [70]严宗诚,陈砺,王红林.液下辉光放电等离子体重整低碳醇水溶液制氢[J].化工学报, 2006, 57(6):1432-1437
    [71] Futamura S., Kabashima H. Steam reforming of aliphatic hydrocarbons with nonthermal plasma[J]. IEEE Transactions on Industry Applications, 2004, 40(6):1459
    [72] Kabashima H., Einaga H., futamura S. Hydrogen generation from water,methane,and methanol with nonthermal plasma[J]. IEEE Transactions on Industry Applications, 2003, 39(2):340
    [73]李慧青,邹吉军,张月萍,等.电晕放电等离子体甲醇分解制氢[J].化工学报, 2004, 55(12):1989
    [74] Yanguas-Gil A., Hueso J. L., Caballero A., et al. Reforming of ethanol in a microwave surface-wave plasma discharge[J]. Applied Physics Letters, 2004, 85(18): 4004-4006
    [75] Matsuura H., Tanikawa T., Takaba H., et al. Direct hydrogen production from alcohol using pulse-electron emission in an unsymmetrical electric field[J]. Applied Surface Science, 2004, 229: 63-66
    [76] Campbell S. A., Cunnane V. J., Schiffrin D. J. Cathodic contact glow discharge electrolysis under reduced pressure[J]. Journal of Electroanalytical Society, 1992, 325:257-268
    [77] Hickling A., Newns G. R. Glow-discharge electrolysis: Part V the contact glow-discharge electrolysis of liquid ammonia[J]. Chemical Society, 1961:5186-5191
    [78]卫立夏,杨斌,王晶,等.正丙醇和异丙醇真空紫外光电离质谱研究[J].物理化学学报, 2006, 22(8): 987-992
    [79] Zhou W. D., Yuan Y., Zhang J. S. Photodissociation dynamics of 1-propanol and 2-propanol at 193.3 nm[J]. Journal of Chemical Physics, 2003, 119(14): 7179-7187
    [80]周卫东,张劲松.正丙醇和异正丙醇的紫外光解动力学[J].化学物理学报, 2002, 15(3): 233-236
    [81] Thomas M. K., Hatherly P. A., Codling K., et al. Soft x-ray ionization and fragmentation of n- and iso-propanol[J]. Physics B: Atomic, Molecular, and Optical Physics, 1998, 31: 3407-3418
    [82]罗渝然.化学键能数据手册[M].北京:科学出版社, 2005: 55, 195-197
    [83] Gao J. Z., Wang X. Y., Hu Z. A., et al. A review on chemical effects in aqueous solution induced by plasma with glow discharge[J]. Plasma Science and Technology, 2001, 3(3):765-774
    [84] Polyakov O. V., Badalyan A. M., Bakhturova L. F. The water degradation yield and spatial distribution of primary rRadicals in the near-discharge volume of an electrolytic cathode[J]. High Energy Chemistry, 2002, 36(4):280-284
    [85] Susanta K. S., Palit S. R. Studies in galvanoluminescence: Chemical effects of cathode glow[J]. Indian Chemical Society, 1975, 52:91-97
    [86] Hiroki A., Pimblott S. M., LaVerne J. A. Hydrogen peroxide production in the radiolysis of water with high radical scavenger concentrations[J]. Physics and Chemistry A, 2002, 106:9352-9358
    [87] Michael J. K., Locke B. R. Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge[J]. Industrial and Engineering Chemistry Research, 2005, 44:4243-4248
    [88] Grymonpre D. R., Sharma A. K., Finney W. C., et al. The role of Fenton’s reacation in aqueous phase pulsed streamer corona reactors[J]. Chemical Engineering Journal, 2001, 82:189-207
    [89] Grymonpre D. R., Sharma A. K., Finney W. C., et al. Suspended activated carbon particles and ozone formation in aqueous-phase pulsed corona discharge reactors[J]. Industrial Engineering Chemistry Research, 2003, 42:5117-5134
    [90] Sawada K., Fujimoto T. Effective ionization and dissociation rate coefficients of molecular hydrogen in plasma [J]. Journal of Applied Physics, 1995, 78: 2913-2924
    [91] Chen C. K., Wei T. C., Collins L. R. Modelling the discharge region of a microwave generated hydrogen plasma [J]. Journal of Physics D: Appliled Physics, 1999, 32: 688-698
    [92] Penetrante B. M., Bardsley J. N., Hsiao M. C. Kinetic analysis of non-thermal plasmas used for pollution control [J]. Japanese Journal of Applied Physics, 1997, 36: 5007-5017
    [93] Aleixandre C. G., Sanchez O., Castro A., et al. Influence of oxygen on the nucleation and growth of diamond films[J]. Journal of Appied Physics, 1993, 74(6):3752-3757
    [94]朱正和.原子分子反应静力学[M].北京:科学出版社, 1996:35-100
    [95]王加扣.螺旋波激发氢等离子体光谱诊断[D].四川大学硕士学位论文, 2004:27-46
    [96]胡森.在直流放电等离子体中甲烷转化为碳二烃的研究[D].西北大学硕士学位论文, 2005:29-40
    [97]赫兹堡.分子结构和分子光谱第一卷双原子分子光谱[M].北京:科学出版社, 1983:412
    [98] Thomas M. K., Hatherly P. A., Codling K., et al. Soft x-ray ionization and fragmentation of n-propanol and iso-propanol[J]. Journal of Physics B: Atomic Molecular and Optical Physics, 1998, 31: 3407-3418
    [100] Wang J. T., Wasmus S., Savinell R. F.. Evaluation of Ethanol, 1-Propanol, and 2-Propanol in a Direct Oxidation Polymer-Electrolyte Fuel Cell[J]. Journal Electrochemical Society, 1995, 142(12): 4218-4224
    [101] Lamy C., Lima A. Recent advances in the development of direct alcohol fuel cells (DAFC)[J]. Journal of Power Sources, 2002, 105: 283-296
    [102] Lamy C., Belgsir E. M., Leger J. M. Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell(DAFC)[J]. Journal of Applied Electrochemistry, 2001, 31: 799-809
    [103]李刘合,张海泉,崔旭明,等. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节[J].物理学报, 2001, 50(8): 1549-1554
    [104] Leung T. Y., Man W. F. , Lim P. K., et al. [J ]. Journal of Non-Crys-talline Solids , 1999, 254 (123) : 156-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700