表面纳米化对Zr-4合金腐蚀性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锆合金热中子吸收截面小,具有较好的耐腐蚀和高温力学性能,而广泛应用于核动力反应堆中作为燃料包壳材料和堆内结构材料。作为反应堆安全运行的第一道屏障,包壳的内壁受到裂变产物的侵蚀,外壁受到高温高压水的冲刷和腐蚀、中子辐照损伤及腐蚀吸氢都将导致包壳的力学性能下降。因此,提高包壳材料的耐腐蚀性能是首要任务。目前改善包壳的水侧耐蚀性能主要途径有:成分调整、组织控制和表面处理。
     本文通过对表面纳米组织以及普通粗晶组织Zr-4合金在高压釜中673k/10.3MPa条件下进行腐蚀试验,并对基体以及不同腐蚀时间的氧化膜进行透射电镜、扫描电镜以及X射线衍射观察与分析,主要得出以下结论:
     1、经高速喷丸处理后的Zr-4合金,通过TEM观察研究可知其平均晶粒尺寸随深度呈梯度变化。所得到的样品按平均晶粒尺寸的大小可分为三层:表层是平均晶粒尺寸为几纳米至十几纳米纳米组织结构比较致密和完整的的纳米层,其次为晶粒尺寸为几百纳米的过渡层,最后是靠近心部的组织仍保留原来粗晶组织结构的基体层。
     2、高压喷丸技术使Zr-4合金表面自纳米化的晶粒细化机理是:在不断加载的情况下,不同取向的孪晶之间的相互交截作用以及高密度位错的运动是导致晶粒细化并获得纳米晶体的主要原因。
     3、42天腐蚀试验后的TEM观察表明,普通粗晶Zr-4合金中ω-Zr层处的腐蚀程度比较严重,而纳米组织Zr-4合金中ω-Zr层处的腐蚀情况比较轻微,只有晶界附近被氧化。
     4、表面纳米化Zr-4合金的腐蚀幂函数n值比普通Zr-4合金的n值小,说明纳米组织Zr-4合金的腐蚀产物更具有保护性,其抗腐蚀性能优于普通Zr-4合金。
     5、表面纳米组织Zr-4合金的腐蚀速率转变时间为100天,而普通粗晶Zr-4合金的转变时间为42天左右,这表明纳米化Zr-4合金的腐蚀产物更具有保护性。
     6、利用X射线衍射(XRD)方法计算分析氧化膜内的应力大小得出表面纳米化Zr-4合金氧化膜内存在较大微观应力,而高的压应力有利于t-ZrO_2相的稳定,延缓相变的进行,从而降低腐蚀速率。
     实验数据表明,纳米组织Zr-4合金的腐蚀性能比粗晶组织Zr-4合金又更加优异的抗腐蚀性能。但是,影响表面纳米化Zr-4合金的腐蚀性能的因素不仅仅包括晶粒尺度,还包括合金成分、热处理工艺方法、表面状态、反应堆水化学、水冷却剂温度、辐照效应等等。而上述因素中的任何一个因素发生变化,都会导致材料腐蚀性能的改变。因此应全方位综合考虑这些因素的影响,从而全面认识锆合金的腐蚀性能与机制。
Zirconium alloys are widely used as fuel claddings and internals in water-cooled nuclear reactors, due to its low thermal neutron capture cross-section, reasonable mechanical properties and adequate corrosion resistance in high temperature water. As the first safety barrier in reactors, fuel claddings are attacked by radioactive fission products and high temperature water. Waterside corrosion resistance becomes a key issue to be improved by composition adjustment, structure modification and surface treatment.
     In this paper, the matrixes and the oxide films of surface nano-structure (SNS)Zircaloy-4 alloy, as well as the coarse-grain structure(CGS) Zircaloy-4 alloy have been analyzed by means of TEM, SEM and XRD. Corrosion experience were operated in autoclave under the condition of 673k/10.3MPa. We draw conclusions as following:
     1、After high speed shot-peening(HSSP) processing, nano-structure (ns) layer was successfully obtained on the surface of Zircaloy-4.The final structure was characterized by nano-structure grains layer, ultrafine grains structure layer and basal coarse-grains structure. The mean grain sizes of them were several nano-meters, hundreds nano-meters and gradually to several micrometers respectively.
     2、The grain refinement mechanism during HSSP treatments proposed as follow: the peening loads will generate dislocations and eventually result in plastic deformation by twining in the surface layer of the material. Under repeated peening loads, grain refinement occurs in the random orientation twining grains through necking and closing off of small lengths of twins, as well as the movement of high-density faults . With the increase of peening time, ns layer will be developed and its thickness increases too.
     3、The TEM show that, after 42 days' corrosion period, the corrosion only occurred on the grain boundary inω-Zr layer of SNS Zicaloy-4,while the CGS Zicaloy-4 corrosion seriously.
     4、The corrosion power function n of SNS Zicaloy-4 is much smaller than that of CGS Zicaloy-4, which indicates that the SNS Zicaloy-4 is much more protected.
     5、The transition time of corrosion rate of SNS Zicaloy-4 is about 100 days, however, the CGS Zicaloy-4 occurs at about 42 days, which mean that corrosion process of the former is lag behind than the latter.
     6、The XRD analysis shows that the value of stress in the oxide film of SNS Zicaloy-4 is higher than that of CGS Zicaloy-4, which is helpful to maintain the tetragonal zirconia, so to low down the corrosion rate.
     Experimental evidences indicated that the ns Zircaloy-4 has better corrosion resistant property. Not only the grain refinement can influence the corrosion resistance of Zircaloy-4, but also the alloy composition, heat treatment technique, the surface condition, chemistry of reactor coolant, temperature of reactor coolant , irradiation effects and so on. Ether of them changes, the corrosion property is change. Therefore, in order to have a comprehensive knowledge about the corrosion properties of Zircaloy-4, synthetically consideration of these factors are necessary.
引文
[1]《稀有金属材料加工手册》编写组,稀有金属材料加工手册,1984年,冶金该有出版社,97-160
    [2]赵文金,核用高性能锆合金的研究[J],稀有金属快报,2004,23(5),15-30
    [3]黄强,耐腐蚀性能研究综述[J],核动力工程,1996,17(3),263-267
    [4]IAEA -TECDOC- 996,Waterside corrosion of zirconium alloys in nuclear power plants[C],IAEA,Vienna,1998
    [5]Godlewski J,Gros J P,Lambertin M,et.al,9~(th)Int.Conf.Zr Nucl.Ind.,Nov.1990,Kobe,Japan:ASTM-STP 1132.Philadelphia,PA:Am.Soc.Test.Mat.,1991,416-436
    [6]杨文斗编著,反应堆材料学,北京,原子能出版社,2000,56-89
    [7]陈鹤鸣,马春来等编著,核反应堆材料腐蚀及其防护,北京,原子能出版社,1984
    [8]Cox B,et al.,Mechanisms of LiOH Degradation and H3BO3 Repair of ZrO2 Films[C],Zirconium in the Nuclear Industry,Eleventh International Symposium.ASTM STP 1295 in:Bradley E R and Sabol G P Eds.American Society for Testing and Material,PA,1996,114-136
    [9]Ramasubramanian N,et al,Aqueous Chemistry of Lithium Hydroxide and Boric Acid and Corrosion of Zircaloy-4 and Zr-2.5Nb Alloy[C],Zirconium in the Nuclear Industry,Eleventh International Symposium,ASTM STP 1245,in:Bradley E R and Grade A M Eds.American Society for Testing and Material,PA,1994,378-399
    [10]许并社等,纳米材料及应用技术[J],化学工业出版社,2004
    [11]张立德等,纳米材料科学[M],沈阳,辽宁出版社,1994.4
    [12]张立德等,开拓原子和物质的中间领域—纳米微粒与纳米固体[J],物理,1992,21(3),167-172
    [13]姚建敏,王华,纳米材料的发展及其在工业催化中的应用[J],河北化工,2007,30(5),28-33
    [14]张立德,纳米材料的研究现状和发展趋势[J],现代科学仪器,1998(1-2),272-279
    [15]严东升,冯端,我国纳米材料的研究进展[J],中国科学院院刊,1997,12(5),364-366
    [16]Lu K,Lu J,Surface nanocrystallization(SNC)of metallic materials—presentation of the concept behind a new approach[J],Mater.Sci.Tech,1999,15,193-197
    [17]李瑛,王福会,表面纳米化对金属材料电化学腐蚀行为的影响[J],腐蚀与防护,2003,24(1),6-12
    [18]Gleiter H,Nanocrystalline materials[J],Prog Mater.Sci.,1988,33(4),223-351
    [19]Suryanarayana C,Mechanical alloying and milling.Progress in Materials Science[J],Int.Mater.Rev.,1995,40(2),41-54
    [20]K Lu,Nanocrystalline metals crystallized from amorphous solids:Nanocrystallization,structure,and properties[J],Mater.Sci.Eng.,R16(1996),161-221
    [21]W P Tong,N R Tao,Z B Wang,et al,Nitriding Iron at Lower Temperatures[J],Science,2003,299,686-688
    [22]Morris D G,Mechanical Behaviour of Nanostructured Materials[C],Trans.Tech.Publications Ltd.,Switzerland,1998,70
    [23]McFadden S X,Mishra R S,Valiev R Z,et al,Low-temperature superplasticity in nanostructured nickel and metalalloys[J],Nature 398,1999,298,684-686
    [24]L Lu,M L Sui,K Lu,Superplastic Extensibility of Nanocrystalline Copper at Room Temperature[J],Science,2000,287,1463-1466
    [25]张喜燕,李聪,刘年富等,纳米结构锆合金组织氧化膜结构演变的XRD分析,核动力工程[J],2007,28(6),71-75
    [26]Liu G,Lu J,Lu K,Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J],Mater Sci.Eng.,2000(1),282,91-95
    [27]Liu G,Wang S C,Lou X F et al.Low carbon steel with nanostructured surface layer induced by high-energy shot peening,Mater Sci.[J].2001,44(8-9),1791-1795
    [28]Zhang xi-yan,Wu xiao-lei,Xia bao-yu et al.Step Structure in Cold-Rolled Deformed Nanocrystalline Nickel,Chinese Physics Letters[J],2005,22(9),2335-2338
    [29]黄睿,张静武,缑慧阳等,冷轧15钢高压再结晶组织的TEM分析[J],物理测试,2006,24(3),1-4
    [30]Venable J A,In:Reed-Hill R E,Hirth J P,Rogers H C,et al,Deformation Twinning[C],London:Gordon and Breach Sci.Pub,1963,77
    [31]Roland T,Retraint D,Lu K,et al.Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability,Mater Sci.Eng.:A[J],2007,445-446,281-288
    [32]Mullner P,Solenthaler C,On the effect of deformation twinning on defect densities,Mater Sci.Eng.A [J],1997,230(1-2),107-115
    [33]Balani K,Agarwal A,Seal S,et al,Transmission electron microscopy of cold sprayed 1100 aluminum coating[J],Scripta Materialia,2005,53(7),845-850
    [34]Zhang Xi-yan,Wu Xiao-lei,Zuo Ru-lin et al,Microstructure evolution of nanocrystalline nickel after cold-rolled deformation[J],The Chinese Journal of Nonferrous Metals,2005,15(1010),1609-1611
    [35]X Wu,N R Tao,Y Hong,et.al,γ→ε martensite transformation and twinning deformation in fcc cobalt during surface mechanical attrition treatment[J],Mater Sci.,2005,52(7),547-551
    [36]WiezorekJ M K,Zhang X D,Fraser H L,In:Soboyejo W O,Srivatsan T S,Fraser H L,editors.Deformation and fracture of ordered intermetallic materials Ⅲ[C],Warrendale(USA),MS(1996),77
    [37]Wiezorek M K,Zhang X D,Fraser HL,et.al,Activation of slip in lamellae of α_2-Ti_3Al in TiAl alloys[J],Phil Mag.A,1998,78(1),217-238
    [38]朱玉涛,张喜燕,叶林凤,Zr-4合金表面变形纳米结构TEM研究[J],稀有金属材料科学与工程,已录用
    [39]Moseley P T,Hudson B,Phase Microscopy in the Corrosion Zircaloy-4 by Hot Water(350℃)[J],Journal of Nuclear Material,1981,99,340-344
    [40]Foord D T,Newcomb S B,The Formation of ω-Zr During the oxidation of Zircaloy-4,proceedings of the 52~(nd)Meeting of the Electron Microscopy Society of America,New Orleans,1994,668-669
    [41]Gosmain L,Valot C,Ciosmak D,et.al,Study of stress effects in the oxidation of Zircaloy-4[J],Solid State Ionics,2001,141-142,633-640
    [42]Donald R,Knittel,Zirconium:A Corrosion-Resistant Material for Industrial Applications[J],Chem Eng.,1980,87(11),95-96
    [43]王善作,锆化合物—化工百科全书,北京,化学工业出版社,1993,780
    [44]Moseley P T,Hudson B,On the extent of ordering in stabilized zirconia[J],Journal of Solid State Chemistry,1976,19(4),383-389
    [45]Anada H,Takeda K,Microstructure of Oxides on Zircaloy-4,1.0Nb Zircaloy-4 and Zircaloy-2Formed in 10.3MPa Steam at 673K,Zircunium in the Nuclear Industry:Eleventh International Symposium,ASTM STP1295,1996,35-54
    [46]Bossis P,Lelievre G,Barb Bossiseris P,et.al,Multi-Scale Charaterization of the Metal-Oxide Interface of Zirconium Alloys,Zircunium in the Nuclear Industry:Twelfth International Symposium,ASTM STP1354,G.P Sabol and G.D.Morn,Eds.,American Society for Testing and Materials,West Conshohoken,PA,2000,918-945
    [47]Abriata J P,Garces J,Versaci R,The O-Zr(Oxygen-Zirconium)System[J],Bulletin of Alloy Phase Diagrams,1986,7(2),116-124
    [48]闫洪,窦明民,李和平,二相变增韧机理和应用[N],陶瓷学报.2000,21(1),46-50.
    [49]陈蓓,丁培道,程川,周泽华,ZrO2层状复合陶瓷的显微结构及晶体学位向关系,复合材料学报,2005,22(1),59-63
    [50]张喜燕,武小雷,左汝林等.变形过程中纳米金属镍的微结构演变,中国有色金属学报[J],2005,15,1607-1611
    [51]Mandelbrot B B,The Fractal Geometry of Nature[M].San Francisco(USA),Freeman,1983,1207-1210
    [52]杨书申,邵龙义,Matlab环境下图像分形维数的计算[J],中国矿业大学学报,2006,35(4),478-482
    [53]Schumacher M,Seawater Corrosion Handbook,New Jersey,Noyes Data Corporation,1979,374-387
    [54]边丽,翁永基,许述剑,基于分形动力学过程的腐蚀预测模型[J],化学通报,2006,69(3),207-210
    [55]周邦新,李强,姚美意等,锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化[J],核动力工程,2005,26(4),364-371
    [56]Bouvier P,Godlewski J,Lucazeau G,A Raman study of the nanocrystallite size effecton the pressure-temperature phase diagram ofzirconia grown by zirconium-based alloys oxidation[J],Journal of Nuclear Materials,2002,300,118-126
    [57]刘文庆,李强,周邦新,锆锡合金腐蚀转折机理的讨论[J],稀有金属材料与工程,2001,30(2),81-84
    [58]Godlewski J,Bouvier P,Lucazeau G,et.al,Stress distribution measured by Raman spectroscopy in Zirconia films formed by oxidation of Zr-based alloys,Zirconium in the Nuclear Industry:Twelfth International symposium,ASTM STP1354,G.P.Sabol and G.D.Moan,Eds,American Society for Testing and Materials,West Conshohocken,PA,2000,877-900
    [59]Hyun Seon Hong,Seon Jin kim,Kyung Sub Lee,Long-term oxidation characteristics of oxygen-added modified Zircaloy-4 in 360℃ water,Journal of Nuclear Materials,1999,273,177-181
    [60]刘文庆,李强,周邦新等,水化学对Zr-4合金氧化膜/基体界面处压应力的影响[J],稀有金属材料与工程,2004,33(10),1112-1115
    [61]邵淑英,范正修,范瑞英,薄膜应力研究,激光与光电子学进[J],2005,42(1),22-27
    [62]Barberis P,Zirconia powders and Zircaloy oxide film:tetragonal phase evolution during 400℃autoclave test[J],Journal of Nuclear Materials,1995,226,34-43
    [63]Bradhurst D H,Heuer P M,The influence of oxide stress on the breakaway oxidation of zircaloy-2[J], Journal of Nuclear Materials, 1970, 37(1), 35-47
    [64] David G, Geschier R, Roy C, Etude de la croissance de l'oxyde sur le zirconium et le zircaloy-2 [J], Journal of Nuclear Materials, 1971,38(2), 329-339
    [65] Garvie R C, Chan S K, Stability limits in the monoclinic-tetragonal transformations of zirconia[J], Physica B+C,1988,150(1-2), 203-211
    [66] Livage J, Doi K, Mazieres C, nature and thermal evolution of amorphous hydrated zirconium oxide, J. Amer. Ceram. Soc, 1968,51, 349-53
    
    [67] Osendi. M, Moya J.S, Am J. Ceram.Soc, 1985,68 (3) :135.
    [68] Garzarolli F, Holzer R, Waterside corrosion performance of light water power reactor fuel[J] Nuclear Energy, 1992, 31(2), 65-85
    [69] Zhou Banxin, Jiang Yourong, Oxidation of Zircaloy-2 in Air from 500℃ to 800℃, High Temperature Corrosion and Protection[A].Proc. Inter. Sym.[C].Shenyang: Liaoning Science and Technology Publishing House, 1991, 121-124.
    [70] Godlewski J, How the Tetragonal Zirconia is Stabilized in the Oxide Scale That is Formed on a Zirconium Alloy Corroded at 400℃ in Steam[A].Zirconium in the Nuclear Industry[C].New York: ASTM STP 1245, A.M.Garde and E.R.Bradley, Eds ., 1994,663-686.
    [71] Aylin Yilmazbayhan, Else Breval, Arthur T, et.al, Comstock. Transmission electron microscopy examination of oxide layers formed on Zr alloys [J], Journal of Nuclear Materials, 2006,349 (3), 265-281
    [72] Jeong-Yong Park, Hyun-Gil Kim, Yong Hwan Jeong, et.al, Crystal structure and grain size of Zr oxide characterized by synchrotron radiation microdiffraction [J], Journal of Nuclear Materials, 2004,335 (3), 433-442
    [73] Evans H E, Hilton D A, Holm R A, et. al, The influence of a titanium nitride dispersion on the oxidation behavior of 20%Cr-25%Ni stainless steel [J], Electro chem. Soc, 1978, 12(6) (7),473-485
    [74] Cox B and Wu C, Transient effects of lithium hydroxide and boric acid on Zircaloy corrosion, Journal of Nuclear Materials, 1995,224(2), 169-178
    [75] Li Cong, Zuo Rulin, Li Zhongkui, Ying Shihao, Shen Baoluo, Transmission electron microscopy investigation of Zr_2(Fe,Ni) particlesincorporated in the oxide film formed on a Zirconium alloy[J], Thin Solid Films, 2004, 461 (2), 272- 276
    
    [76] Zhang X.Y., Shi M.H., Li .C, Liu N.F., Wei.Y.M. The influence of grain size on the corrosion resistanceof nanocrystalline zirconium metal[J],Sci.Eng.A.,2007 448(1-2),259-263
    [77]刘建路,张其春,林金晖,纳米粒子的平均晶粒尺寸和晶格畸变的同时测定[J],现在技术陶瓷,2002,1,34-38
    [78]陆金生,X射线衍射技术在纳米材料中的应用[J],现在科学仪器,2003,2,34-35
    [79]孙文华,魏铭鉴等,测定纳米晶粒尺寸的分峰法[J],武汉工业大学学报,1994,16(2),43-37
    [80]Snyder RL,Bunge HJ,Fiala J,Defect and Microstructure Analysis by Diffraction[M],America,Oxford University Press,1999,41-56
    [81]Ortiz M,Pochettino A A,Intergranular thermal stresses in zirconium-effects on X-rays macrostress measurements,Nucl.Mater[J],1996,229,65-72
    [82]Garzarolli F,Seidsl H,Tricot R,et.al,Oxide Growth Mechanismon Zircaloy[C].Zirconium in the Nuclear Industry,New York:1991,395-415
    [83]周邦新,改善锆合金耐腐蚀性能的概述,金属热处理学报[J],1997,18(9),8-14
    [84]Brett N H,Gonzalez M,Bouillot J,et al.Neutron and X-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo.Mater.Sci.[J],1984,19(4),1349-1358
    [85]Criado J M,Gonzalez M,Real C,Correlation between crystallite size and micro strains in materials subjected to tehermal and/or mechanical treatments.Mater Sci Lett[J],1986,(5),467-469
    [86]Sanchez-Soto P J,Macias M,Perez-Rodriguez J L,X-ray variance method to determine the crystallite size and lattice distortion of pyrophyllite after mechanical treatment,British ceramic,Transactions and journal[J],1992,91,15-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700