咪唑啉与聚合物缓蚀剂在电解电容器用铝箔直流腐蚀过程中的扩面增容作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成了油酸咪唑啉、丙烯酸咪唑啉以及聚丙烯酸钠三种化合物。并通过红外谱图对其进行了结构表征,分别用失重法、Tafle曲线、交流阻抗等方法研究了油酸咪唑啉、丙烯酸咪唑啉、聚乙二醇和聚丙烯酸钠对2.0 mol/L的HCl溶液中铝箔的缓蚀作用,并通过比电容测定和扫描电镜研究了将其添加到扩孔腐蚀液中对铝箔比电容的影响。结果表明:本实验条件下单一盐酸腐蚀液中直流腐蚀过程的最佳电化学腐蚀参数为:铝箔在1.5mol/L的NaOH溶液中碱洗30s后,在2.0 mol/L的HCl溶液中进行直流腐蚀扩面,控制电流密度在0.2 A/cm2,腐蚀温度为55℃,腐蚀时间为150s。在2.0mol/L的HCl溶液中,油酸咪唑啉和丙烯酸咪唑啉对铝箔均属于阴极抑制型缓蚀剂,而聚乙二醇和聚丙烯酸钠属于混合型缓蚀剂。在铝箔腐蚀液中分别加入0.4 g/L油酸咪唑啉和0.6 g/L丙烯酸咪唑啉缓蚀剂后,使铝箔比电容从690.45μF/cm2分别增至887.35μF / cm2和901.12μF / cm2,提高约25%。使出现最大比电容的腐蚀时间从150 s延迟至210 s左右。分别加入1.5g/L聚乙二醇和2.5g/L聚丙烯酸钠,可使铝箔的最高比电容分别增至986.11μF/cm2和1101.91μF/cm2。在腐蚀液中分别加入这四种缓蚀剂后,使铝箔蚀孔分布更均匀、蚀孔密度增加,同时失重相对减少,质量保持率提高,有利于铝箔的深加工与使用。
The oleic acid imidazoline ,acrylic acid imidazoline and sodium polyacrylate were synthesized and their structures were characterized by IR spectrum. The compounds included oleic acid imidazoline ,acrylic acid imidazoline ,polyethylene glycol and sodium polyacrylate’s corrosion inhibition behaviors for aluminium foil in 2. 0 mol /L HCl solution were studied by gravimetric measurements, potentiodynamic polarization curves and EIS. The compounds’influences on specific capacitance of electron aluminium foil during DC etching were investigated by capacitance measuring instrument and SEM. We made some conclusions through experiment:When single HCl etching solution existed, the best experimental condition of DC etching process was that: the aluminum foil was washed in 1.5mol / L NaOH solution about 30s, etched in 2.0 mol / L HCl solution , current density controled at 0.2 A/cm2, corrosion temperature was 55℃, corrosion time was 150s.The two imidazoline compounds were both cathodic corrosion inhibitors and the two polymers were both mixed inhibitor for aluminium foil in 2.0 mol/L HCl solution. When the concentration of oleic acid imidazoline and acrylic acid imidazoline in etching solution reached 0.4 g/L and 0.6g / L, value of specific capacitance of the aluminum foil increased from 690.45μF/cm2 to 887.35μF / cm2 and 901.12μF / cm2 separately, increase amplitude reached 25%. Etching time when maximum value of specific capacitance appeared delayed from 150 s to about 210s. When the concentration of polyethylene glycol and sodium polyacrylate in etching solution reached 1.5g / L and 2.5g / L,the value separately increased to 986.11μF/cm2 and 1101.91μF/cm2 .When the four compounds were added , weight loss relatively decreased, tunnel density increased and well distributed, weight maintenance rate was improved .All of these were beneficial to deep processing and using of aluminum foil.
引文
[1]杨宏,毛卫民.铝电解电容器铝箔的研究现状和技术发展[J].材料导报,2005,19(9):1-4
    [2]孔祥鹏.中国铝箔市场的供需形势[J].轻合金加工技术,2003,31(6):7-13
    [3]高亢之.电解电容器用铝箔概述[J].轻合金加工技术,2000,28(11):9-15
    [4] Conducting Kudoh, Y. Tsuchiya, S. et al. Aluminum solid electrolytic capacitor with an electro polymer elcetorlyte[J].Syntheitc Metals.1991,41 (3):1133-1136
    [5]陈金菊,冯哲圣,郭红蕾等.铝电解电容器用不同工艺腐蚀箔的对比研究[J].功能材料,2005,36(10):1521-1523
    [6]杨邦朝,冯哲圣,徐永兴.全球电极箔产业现状及发展趋势[J].新材料产业,2002,(2):1-4
    [7]陈卫东,张红卫,顾义明.铝电解电容器的现状与发展趋势[J].电子元件与材料,2004,23(9):46-48
    [8]白木,周洁.铝电解电容器的技术与市场[J].铝加工,2004,(2):54-56
    [9]高亢之.电解电容器负(阴)极用铝箔的制造技术[J].铝合金加工技术,2001,29(4):1-6
    [10]毛卫民,何业东.国产电解电容器用铝箔的发展与展望[J].世界有色金属,2004,(8):23-26
    [11]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社.2001
    [12]冯哲圣,陈金菊,徐蓓娜等,铝电解电容器技术现状及未来发展趋势[J].电子元件与材料,2001,20(5):30-31
    [13]陈国光,曹婉真.电解电容器[M].西安:西安交通大学出版社,1993
    [14]阎康平.电容器高纯铝箔的侵蚀机理及工程化研究[D].成都:四川大学,1999
    [15]肖占文.电容器铝箔交流腐蚀扩面机理研究[D].成都:电子科技大学,1999
    [16] Yamamoto H, Fukuda M, Isa I, et al. Electrolytic capacitor employing polypyrrole as solid electrolyte[J]. Molecular Crystals and Liquid Crystals,1993,227:255-259
    [17]潘复生,张静等.铝箔材料[M].化学工业出版社,2005
    [18]冯哲圣,杨邦朝,李建军.日本铝电极箔制造技术研究的新进展[J].电子元件与材料,2001,20 (2): 23-26
    [19] Oh H-J Jeong Y,Suh S-J,et al.Electrochemical characteristics of alumina dielectriclayers[J] .Jounral of Physics and Chemistry of Solids,2003,64:2219-2225
    [20]季锐.铝电解电容器的基本概念与应用(1)[J].电子元器件应用,2002,4(6):54-58
    [21]季锐.铝电解电容器的基本概念与应用(2)[J].电子元器件应用,2002,4(7):52-54
    [22]季锐.铝电解电容器的基本概念与应用(3)[J].电子元器件应用,2002,4(8):54-58
    [23]孔祥鹏.中国铝箔市场的供需形势[J].轻合金加工技术,2003, 31 (6):7-13
    [24]凌亚标,尚振山,张声鹏.提高电解电容器用铝箔质量初探[J].轻合金加工技术,1999,27(7):27-32
    [25]王文生.高频低阻抗片式固体电解电容器的进展[J].电子元件与材料1998,17(2):16-18
    [26]李云卿.我国铝箔工业发展情况及有关产业政策分析[J].中国金属通报,2006,(23):2-6
    [27]王银华,杜国栋,许金强,等.中高压铝电解电容器阳极箔研究进展[J].电子元件与材料, 2006,25(6) :1-5
    [28]蔡健,王百红,梁慧强等.电解铝液生产电解电容器负极箔的关健技术[J].轻合金加工技术,2004,23(9):17-19
    [29]初丛海,铝电解电容器负极用素铝箔的质量控制[J].轻合金加工技术,2005,33(6):23-25
    [30] ShimizuK, Kobayashi K, Thompson G E, et al. A novel technique for ready determination of cathodic activity of intermetallic compounds during corrosion of aluminum[J]. Corros Sci,1993, 34(9):1475-1477
    [31] Mcaferty E .A surface charge model of corrosion pit initiation and of protection by surface alloying[J]. J Elecrtochem Soc,1999,146(8):286-289
    [32] SJ/T 11140-1997,铝电解电容器用电极箔[S]
    [33] W.J.Lorenz,F.Mansfeld,proc.6thESIC,UnivFerrera,1985:23-40
    [34] Hackerman N.Review of corrosion inhibition science and technology[J].Material Performance.1990,29(2):44-47
    [35]张天胜.缓蚀剂[M].北京:化学工业出版社,2002
    [36]林海潮.缓蚀剂研究的进展[J].腐蚀科学与防护技术,1997,9(4):308-312
    [37]腐蚀电化学[M],胡茂圃.北京:冶金工业出版社,1991
    [38]王慧龙,郑家燊.环境友好缓蚀剂的研究进展[J].腐蚀科学与防护技术,2002,14(5):275-279
    [39]何新快,陈白珍等.缓蚀剂的研究现状与展望[J].材料保护,2003,36(8):1-4
    [40] Ele-Etre A Y.Natural honey as corrosion inhibitor for metals and alloys I Copper in netural aqueous solutions [J].Corrosion Science, 1998,40(11):1845-1850
    [41] Audrey,E.M.;Daniel,J.E.;Yan,M.The synthesis of amino iminoethane nitriles, 5-amino tetrazoles,N-cyanoguaidines and N-hydroxy guanidines from amino–imino methane sulfonic acids[J].Synthese Commum,1990,20(2):217
    [42] P J HaneockH,A Hancock.A review of recent studies of the role of zinc as an inhibitor of hot corrosion from molten su1phates[J].Materials Science and Engineering A,1989,120:313-316
    [43] Abdel-aal M S,Ahmedz A,Hassan M S.Inhibiting and accderatingeffects ofsome quinolines on the corrosion of zinc and some binary zinc alloys in HCl solution[J].Journal Apply Electrochemical,1992,22:1104-1109
    [44] Modestov D,Zhou G D,Wu Y T, et al.Study of the electrochemical formation of Cu (I) BTA films on copper electrodes and the mechanism of copper corrosion inhibition in aqueous chloride benzotriazole solutions[J].Corrosion Science,1994,36(5):1931-1946
    [45] Brunoro G,FrignaniA,Colledan A.Orgnic films protection of copper and bronze against acid corrosion[J].Corrosion Science,2003,45(10):2219-2231
    [46] M N H Moussa,F I M Taha,M M AGouda,G M Singab.The effect of some hydrezine derivatives on the corrosion of Al in HCl solution[J].Corrosion Science,1976,16(6):379
    [47] F Tirbonodand,C Fiaud.Inhibition of the corrosion of aluminum alloys by organic dyes[J].Corrosion Science.1978,18:139
    [48]帅长庚,邓淑珍.盐酸介质中脂肪胺类化合物对铝材的缓蚀作用[J].材料保护,2001,34:4-8
    [49] Nathan C.C Edited.Corrosion Inhibitors[M].NACE Houston,1981,156-172
    [50] A Y EI-Etre.Inhibition of aluminum corrosion using opuntia extract[J].Corrosion Science,2003,45:2485-2491
    [51] Gregory O Avwirl,F O Igho.Inhibitive action of Vemonia amygdalina on the corrosion of aluminium alloys in acidic media[J].Materials Letters,2003,57:3705-3710
    [52]铝及铝合金用盐酸缓蚀剂[J].防腐蚀(中文版),2004,(11):29-30
    [53] H Konno,S Kobayashi,H Takahashi,M Nagayama.The hydration of barrier oxide films on aluminium and its inhibition by chromate and phosphate ions[J].Corrosion Science,1982,22:913-917
    [54]李广超,陆长青,杨文忠,等.硫脲及其衍生物的缓蚀行为研究进展[J].腐蚀科学与防护技术,2001,13:169-173
    [55]周欣欣.烷基吡啶盐对铝的缓蚀作用[J].材料保护,1994,l2:27-31
    [56] M Abdallah.Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution[J].Corrosion Science, 2004,46:1981-1987
    [57]焦祝庆,王玉宝,李杰兰,等.盐酸介质中铝缓蚀剂的研制与评价[J].材料保护,2003,36(5):59-60
    [58]袁郎白,李向红,木冠南.正丁胺和硝酸钠对铝的缓蚀协同效应[J].清洗世界,2004,20(7):6-8
    [59]叶英杰.添加剂作用下电容器用铝箔交流腐蚀研究[D].合肥:合肥工业大学,2004
    [60]李学良,潘旭.脂肪胺类化合物对电解电容器用铝箔的作用[J].河南化工,2005,22(10):25-26
    [61]李军.缓蚀剂对提高铝箔比容的影响[J].安徽化工,2005,(5):32-33
    [62]闫康平,王建中,严季新.中高压电容器铝箔扩孔液中缓蚀剂的作用[J].电子元件与材料, 2001,20(6):6-7
    [63]冯哲圣,肖占文,杨邦朝.铝箔交流扩面腐蚀中SO42-缓蚀机理的研究[J].电子元件与材料,2003,23(2):70-74
    [64] Chen W D,Zhang H W,Gu Y M.,et al. Current situation and development of Al electrolytic capacitors[J]. Electronic Components &Materials, 2004,23(9):46-48
    [65]邓福样,吴旨玉,阎康平等.前处理和侵蚀对阴极箔比电容的影响[J].电子元件与材料,2000,19(3) :31-33
    [66] Mohammed A. Amin, Sayed S. Abd El Rehim, Essam E.F. El Sherbini.AC and DC studies of the pitting corrosion of Al in perchlorate solutions[J]. Electrochimica Acta 51 (2006) 4754–4764
    [67]张三平,李跃喜,邹瑞海等.电解电容器铝箔纯交流腐蚀工艺影响因素的研究[J].中国腐蚀与防护学报,1996,16(2):133-139
    [68]王银华,杜国栋,许金强等.中高压铝电解电容器阳极箔研究进展[J].电子元件与材料,2006,25(6):1-5
    [69]吕战鹏.新型咪唑啉类缓蚀剂的合成,结构表征及缓蚀性能研究[J].油田化学.1994,11(2):163-167
    [70] Wang D X. Quantum chemical calculation chemical absorption energy of imidazoline and Fe atom [J]. New London, USA: Gordon Research Conferences,1998,7:52-58
    [71] Zheng J S and Zhao J G Control of corrosion by inhibitors in drilling muds containing high concentrations of H2S[J], Corrosion, 1993,49(2): 124-128
    [72]王大喜.新型咪唑啉化合物的合成及缓蚀性能测试[J]石油大学学报,2000,24(6):52-54
    [73]燕音,刘瑞泉,王献群等.咪唑啉季铵盐对Q235钢在盐酸溶液中的缓蚀性能[J].中国腐蚀与防护学报,2008,28(5):291-295
    [74]朱丽琴,刘瑞泉,王吉德等.席夫碱基咪唑啉化合物对A3钢在盐酸介质中缓蚀性能研究[J].中国腐蚀与防护学报,2006,26(6):336-341
    [75]邓福祥,田间,阎康平等.铝电解电容器阴极箔的后处理和稳定化处理[J].电子元件与材料,2002(8):5-7
    [76] Zhang X Y, Wang F P, He Y F,et al. Study of the inhibition mechanism of imidazoline amide on CO2 corrosion of Armcoiron[J]. Corrosion Science.2001,43(10):1417-1431
    [77]艾俊哲,梅平,郭兴蓬.NaCl水溶液中缓蚀剂控制电偶腐蚀的研究[J].中国腐蚀与防护学报, 2008,28(2):90-94
    [78]周欣,杨怀玉,蔡铎昌等.低碳钢在富含H2S乙醇胺溶液中的腐蚀及缓蚀剂抑制[J].中国腐蚀与防护学报, 2005,25(2):79-83
    [79]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2002: 175
    [80]顾仁敖,曹佩根,姚建林等.苯并三氮唑在铁电极上的光谱电化学研究[J].苏州大学学报. 1999,15(1): 59-62
    [81]姜德成,刘福国.新型三唑衍生物缓蚀剂在HCl中的缓蚀性能[J].中国腐蚀与防护学报, 2008,28(4):231-234
    [82]张秀娟,刘瑞泉,王献群.碱性介质中POTAS和PDTAS对铜的缓蚀作用[J].物理化学学报,2008,24(2):338-344
    [83]张天胜.缓蚀剂[M].北京:化学工业出版社,2001
    [84] Ren-gui Xiao,Kang-ping Yan,Ji-xin Yan,Jian-zhong Wang. Electrochemical etching model in aluminum foil for capacitor[J] .Corrosion Science,2008,10(2):1-8
    [85]刘伟,武玉民,段洪东.低分子量聚丙烯酸钠的合成研究[J].精细石油化工,1999,9(5):43-45
    [86]邱文革,常西亮.聚合物缓蚀剂研究进展[J].北京工业大学学报,2003,29(2):210-214
    [87]武成利,李寒旭.低分子量聚丙烯酸钠的合成研究及表征[J]. 2004, 24 (1): 71-74
    [88]夏笑虹.聚丙烯酸钠的阻垢、缓蚀机理研究[D].湖南:湖南大学,2001
    [89]邓姝皓.聚乙二醇的缓蚀、阻垢机理研究[D].湖南:中南工业大学,1999
    [90] Vrublevsky I, Parkoun V, Sokol V, et al. Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re–anodizing technique[J].Applied Surface Science,2004,236:270-277
    [91] Olaf Engler,Moo-Young Huh.Evolution of the cube texture in high purity aluminum capacitor foils by continuous recrystallization and subsequent grain growth[J] .Materials Science and Engineering , 1999 (A271): 371-381
    [92]关根功,汤浅真.材料技术(日)[J].1992,10:212
    [93]左宏,毛卫民.微量铅和铬酸盐对高压铝箔腐蚀行为的影响[J].材料科学与工程学报,2005,23(96):604-606
    [94]杨富国.铝电解电容器用阳极箔扩面腐蚀工艺研究[D].杭州:浙江大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700