半固态铝合金浆料制备过程的多尺度模拟及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半固态成形技术(Semi-Solid Metal Process,简称SSM)以其高效、高性能、低成本、节能环保等突出特点受到人们的广泛关注。金属半固态成形技术的工艺路线包括流变成形与触变成形,其中触变成形的方法发展较为成熟,工业化程度高,而浆料制备是触变成形的关键,近液相线铸造技术是获得半固态浆料的简单高效的方法之一。实际上,不是所有的合金都适于近液相线铸造,而且不同工艺参数所得到的浆料的性能也不相同。为了获得具有良好半固态成形性能和使用性能的合金,人们需要进行大量的实验研究,浪费了大量的人力物力,因此通过计算机模拟进行半固态合金设计就成为目前人们关注的课题。本文在国家自然科学基金的资助下,对半固态铝合金的浆料制备过程进行了多尺度模拟及优化设计,提出了用多尺度模拟进行半固态合金设计及制备工艺优化的方法。
     本文针对半连续铸造过程的特点,建立了描述金属凝固过程的传热、传质以及液固相变的形核与长大模型。通过固相率变化将介观尺度和宏观尺度计算进行耦合,实现合金凝固组织演变的多尺度模拟,并对ZL201合金和A356合金的微观组织进行了多尺度模拟,模拟所得晶粒大小和晶粒形貌与实验结果吻合,说明本文所建立的模型是正确的。
     对ZL201合金的半连续铸造过程的温度场进行了模拟,得到了不同的浇注温度、铸造速度、冷却强度下的温度场。对铸造速度为2.0mm/s、冷却水的换热系数为1000W/(m2·K)、浇注温度为922K条件下ZL201合金的微观组织演变过程进行了模拟,得到了晶粒的长大方式和长大过程、晶粒周围的溶质浓度变化规律,模拟结果与Dustin-Kurz、Rappaz-Thevoz和Kanetkar-Stefanescu模型吻合。
     对铸造速度为2.0mm/s、冷却水的换热系数为1000 W/(m2·K)、浇注温度高于液相线5K条件下Al-7wt%Si、Al-10wt%Si合金相的演变过程进行了模拟。初始阶段,结晶核心呈枝晶形状生长,并不断向液相排出溶质,导致枝晶边界的溶质浓度较高。随着温度的降低,枝晶边界形成共晶组织,Al-7wt%Si合金的共晶组织呈弥散分布;Al-10wt%Si合金的共晶组织沿着晶界连续分布,同时晶界内也存在大量灰色的共晶相;Al-10wt%Si合金中的共晶组织比Al-7wt%Si的共晶组织多。目前,在半固态成形研究领域尚未见到有关合金相演变过程多尺度模拟的文献报道。
     本文提出了一个半固态合金组织评价的量化标准,为半固态合金设计及其制备工艺优化提供了参考依据。对不同合金成分的铝铜合金在不同的铸造速度、浇注温度、冷却水的换热系数条件下的微观组织进行了模拟,将得到的11组平均晶粒尺寸、平均晶粒圆度模拟结果用本文所提出的标准进行了衡量,得到了适合半固态加工的最佳合金成分及其成形工艺条件:合金成分为Al-8wt%Cu、浇注温度为922K、冷却水换热系数为1000W/(m2·K)、铸造速度为2.0mm/s。对不同合金成分的铝硅合金在不同的铸造速度、浇注温度、冷却水的换热系数条件下的微观组织进行了模拟,将得到的6组平均晶粒尺寸、平均晶粒圆度模拟结果用本文所提出的标准进行了衡量,得到了适合半固态加工的最佳合金成分及其成形工艺条件:Al-7wt%Si在浇注温度为896K、冷却水换热系数为1000W/(m2·K)、铸造速度为2.0mm/s条件下的微观组织最佳。
Semi-solid metal process including rheocasting and thixoforming has been paid much attention because of its fine characteristics such as high efficiency, high performance, low cost, energy conservation and environmental protection etc. Thereinto, thixoforming has well developed and widely applied in industry. Near liquidus casting is a simple and efficient technique to make semisolid slurry for thixoforming. In fact, not all alloys are suitable for semisolid metal forming. In addition, different technical parameters will lead to the different performance of slurry. In order to achieve fine performance for forming and application, a lot of experiments have been made in the past near 40 years, which wasted much manpower and resource. Therefore, computer simulation became a way to study the semi-solid metal forming. In the aid of the National Natural Science Foundation of China, this paper studied the processing of semi-solid slurry of aluminum alloys for thixoforming. A new method is presented in this paper for semi-solid alloy design and technique parameter optimization by multiscale simulation.
     In the paper, theoretical models for the thermal field, concentration field, nucleation and growth of liquid-solid phase transformation were established concerning the semicontinuous casting process. The change of solid fraction was used to couple calculations on macroscale with mesoscale. The solidification microstructures of ZL201 and A356 alloys were simulated by multiscale simulation method under different conditions. The simulated morphology and size of the grains are consistent with the experimental results, which verifies that the established models are correct.
     The thermal field for ZL201 alloy in the process of semicontinuous casting was made under different pouring temperature, casting velocity and cooling intensity. The microstructural evolution of ZL201 was simulated for the casting at velocity 2.0 mm/s, pouring temperature 922K and the heat exchanging coefficient 1000 W/(m2.K). The manner of grain growth and the evolvement of solute concentration field were gained by multiscal simulation. The simulated results are consistent with that of Dustin-Kurz, Rappaz-Thevoz and Kanetkar-Stefanescu model.
     The phase evolvement in Al-7wt%Si and Al-10wt%Si were simulated under the conditions that casting velocity is 2.0 mm/s, pouring temperature is 5K above liquidus, the heat exchanging coefficient of cooling water is 1000 W/(m2K). The grain grows dendritically in the process of solidification. The concentration around the dendrite turns high because of the solute discharged from the growing grain. Eutectic phase comes into being around the dendrite with the decrease of temperature. The eutectic phase is dispersedly distributed in Al-7wt%Si, but continuously distributed along grain boundary in Al-10wt%Si. The eutectic phase in Al-10wt%Si was much more than that in Al-7wt%Si. Up to now, the multiscale simulation of the evolution of alloy phases has not been reported by other researchers in the field of semi-solid metal forming.
     This paper presented a standard formula for evaluating the microstructures of semi-solid alloys. It provides a reference to the semi-solid alloy design and process optimization. The microstructures of Al-Cu alloy for different solute concentration was simulated at different pouring temperature, casting velocity and the heat exchanging coefficient of cooling water. The results of average grain size and roundness was evaluated by the presented standard formula. The best alloy suitable for semi-solid forming is Al-8wt%Cu and the corresponding processing parameters are that casting velocity is 2.0 mm/s, pouring temperature is 922K, the heat exchanging coefficient of cooling water is 1000 W/(m2K). The microstructures of Al-Si alloy for different solute was simulated at different pouring temperature, casting velocity and the heat exchanging coefficient. The results of average grain size and roundness was also evaluated by the presented formula. The best alloy suitable for semi-solid forming is Al-7wt%Si and the corresponding processing parameters are that casting velocity is 2.0 mm/s, pouring temperature is 896K, the heat exchanging coefficient of cooling water is 1000 W/(m2.K).
引文
1. Spencer D B, Flemings M C. Rheocasting [J], Mater. Sci. Eng,1976,25:103-107.
    2. Flemings M C. Behavior of metal alloys in the semisolid state [J], Metal Trans.,1991,22: 957-981.
    3. Kirkwood D H, Kapranos P. Proc. of the 4th Int. Conf. on Semi-Solid Processing of Alloys and Composites [C], Sheffield:University of Sheffield,1996.
    4.杨卯生,毛卫民,钟雪友.半固态合金成形的技术现状与展望[J],包头钢铁学院学报,2001,20(2):187-194.
    5.丁志勇.半固态铝合金触变成形的成形特性及数学模型的研究[D],北京:北京有色金属研究总院,2002.
    6.谢水生.金属半固态加工技术的发展及应用[C],2007年中国压铸、挤压铸造、半固态加工学术年会专刊,2007:20-28.
    7. Gabathuler J P, Buxmann K. Process for producing a liquid-solid metal alloy phase for further processing as material in the thixotropoc state [P], US Patent,5186236,1993.
    8. Blazek K E, Kelly J E, Pottore S.The development of a continuous rheocaster for ferrous and high melting point alloys [J]. ISIJ International,1995,35(6):813-818.
    9. Hans J H. Semi-solid processing of alloys and compositions [J], Foundry Management Technology,1998,9:50-54.
    10.管仁国,马伟民等.金属半固态成形理论与技术[M].北京:冶金工业出版社,2005.
    11.徐骏,田战峰,曾怡丹.铝合金半固态加工技术的应用研究[J],2007年中国压铸、挤压铸造、半固态加工学术年会专刊,2007:334-338.
    12. Suery M, Martin C L, Salvo L. Overview of the rheological behaviour of globular and dendritic slurries Picspac[C], Sheffield:University of Sheffield,1996,19-29.
    13. Young K P, Kyonka C P, Courtois J A. Fine grained metal composition [P], US Patent, No.4415374,1983.
    14.刘丹,崔健忠.无搅拌制浆新技术-液相线铸造[J],铸造技术,1998(6):44-46.
    15.崔建忠,路贵民,刘丹等.半固态浆料制备技术的新近展[J],哈尔滨工业大学学报,2000,32(4):110-113.
    16.路贵民,董杰,崔建中.半固态浆制备新技术-液相线半连续铸造[J],特种铸造及有色合金(论文集),2001,221-223.
    17. Xia K, Tausig G. Liquidus casting of a wrought Al alloy 2618 for thixo-forming [J], Materials Science and Engineering,1998, (246A):1-10.
    18. Lu G M, Cui J Z, Dong J. Continuous casting of Al alloy 7075 for semi-solid forming. Proceedings of the 6th International Conference on Semi-solid of Alloys and Compositions [C], Italy:Turin,2000:373-377.
    19. Liu D, Cui J Z. No stirring technology of slurry making-liquidus casting [J], Foundry Technology,1998,6:44-45.
    20.王平,刘静,崔建忠.A356铝合金近液相线半连续铸造工艺试验研究[J],2003,31(4):12-15.
    21.路贵民,董杰,石路等.液相线半连续铸造7075铝合金半固态组织演变[J],东北大学学报,2002,23(2):148-151.
    22.路贵民,董杰,崔建忠.7075铝合金近液相线半连续铸造组织及形成机理[J],金属学报,2001,37(10):1045-1048.
    23.路贵民,董杰,崔建忠.7075合金液相线半连续铸造与二次加热的合金组织[J],中国有色金属学报,2001,11(2):211-215.
    24.路贵民,董杰,谷晓峰等.7075铝合金液相线铸造过程中的形核[J],东北大学学报(自然科学版),2002,23(1):38-40.
    25.王平,康皓,路贵民,崔建忠.ZL201合金液相线铸造组织与成形性能[J],材料科学与工程学报,2006,24(2):183-186.
    26.王平,史立峰,路贵民.ZL201铝合金近液相线半连续铸造组织研究[J],轻合金加工技术,2005,33(6):5-7.
    27.王平,路贵民,崔建忠.近液相线半连续铸造A356铝合金显微组织[J],金属学报,2002,(4):389-392.
    28.董杰,路贵民,任栖峰等.356铝合金液相线半连续铸造组织的研究[J],东北大学学报,2002,23(3):259-262.
    29.董杰,路贵民,崔建忠.356铝合金凝固形核过程及液相线半连续铸造组织的研究[J],铸造,2002,50(12):720-723.
    30.王平,路贵民,崔建忠.液相线铸造A356铝合金显微组织[J],有色金属,2001,53(4):4-7
    31.王平,路贵民,崔建忠.近液相线半连续铸造A356铝合金显微组织[J],金属学报,2002,38(4):389-392.
    32.王平,刘静,路贵民等.A356铝合金液相线铸造形核规律[J],材料工程,2002,10:23-25.
    33.王平,路贵民,崔建忠.液相线铸造A356铝合金显微组织[J],有色金属,2001,53(4):4-6.
    34.乐启炽,欧鹏,吴跃东等.AZ91D镁合金近液相线铸造研究[J],金属学报,2002,38(2):219-224.
    35.乐启炽,欧鹏,崔建忠等.镁合金半固态制浆新工艺[J],东北大学学报(自然科学版),2002,23(4):371-374.
    36.王开.AZ91D镁合金半固态高压铸造成形JH70型摩托车发电机支架零件的研究[D],重庆大学,2003:4-5.
    37.杨全,张真.金属凝固与铸造过程数值模拟[M],杭州:浙江大学出版社,1996年,165-186.
    38. Pehlke R D. Computer simulation of solidification [J], Monograph Published by AFS, 1976:232.
    39.大中逸雄著,许云祥译.计算机传热凝固解析入门[M],机械工业出版社,1986.
    40.王同敏.金属凝固过程微观模拟研究[D],大连:大连理工大学材料工程系,2000.
    41.张毅.铸造工艺CAD及其应用[M],机械工业出版社,1994.
    42.陈海清,李华基,曹阳.熔体凝固过程数值模拟[M],重庆大学出版社,1991.
    43. Oldfield W. A quatitative approach to casting solidification [J], ASM Trans,1966,59(2): 945-960.
    44.李依依,李殿中,朱苗勇.金属材料制备工艺的计算机模拟[M],北京:科学出版社,2006.
    45.于艳梅,吕衣礼,张振忠等.相场法凝固组织模拟的研究进展[J],铸造,2000,49(9):507-511.
    46. Spittle J A, Brown S G R. Computer simulation of the effects of alloy variables on the grain structures of castings [J], Acta Metall.,1989,37(7):1803-1810.
    47. Spittle J A, Brown S G R. Computer simulation of the influence of processing conditions onas-cast grain structures [J], J.Mater. Sci.,1989,24(5):1777-1781.
    48. Zhu P P, Smith R W. Dynamic simulation of crystal growth by monte-carlo method [J], Acta Metall,1992,40(12):3369-3379.
    49.王海南.热型连铸过程微观组织的计算机模拟[D],甘肃工业大学,2001.
    50. Neumann J V. Theory of self-reproducing automata [M], Urbana:University of Illinois Press,1966
    51.陈晋.基于胞元自动机方法的凝固过程微观组织数值模拟[D],大连:大连理工大学材料工程系,2000.
    52. Rappaz M, Gandin Ch-A. Probabilistic modeling of microstructures formation in solidification progress [J], Acta Metall.,1993,41(2):345-360.
    53.康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术[M],北京:科学出版社,2004.
    54. Gandin Ch-A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes [J], Acta Metall.,1994, 42(7):2233-2246.
    55. Brown S G R. A 3-dimensional cellular automaton model of free dendritic growth [J], Scripta Metallurgica et Materialia,1995,32(2):241-246.
    56. Gandin Ch-A, Rappaz M, Tintillier R. Three-dimensional simulation of the grain formation in inveament casting [J], Metall. Trans.1994,25(3):629-635.
    57. Rappaz M, Gandin Ch-A, Desbiolles J L, Ph.Thevoz.Prediction of grain structures in various solidification processes [J], Metall Trans,1996,27A(3):695-705.
    58. Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys [J], Acta Mater.,1999,47(17):4253-4262.
    59. Nastac L, Stefanescu D M. Stochastic modelling of microstructures formation in solidification processes [J], Modelling Simul. Mater. Sci.Eng.,1997(5):391-420.
    60. Brown S G R. Simulation of diffusional composition growth using the cellular automaton finite difference (CAFD) method [J], Journal of materials science,1998,33:4769-4773.
    61. Jarvis D J, Brown S G R. Modelling of non-equilibrium solidification in ternary alloys comparison of 1D,2D, and 3D cellular automaton-finite difference simulations [J], Material Science and Technology,2000,16:1420-1424.
    62. Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites-A cellular automaton model [J], Int. J.Cast.Metals.Res.,2002(15):251-256.
    63. Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites-A cellular automaton model and its quantitative capabilities [J], Metal. Mater. Trans.,2003(34):367-382.
    64. Lee P D, Atwood R C, Dashwood R J, et al. Modeling of porosity formation in direct chill cast aluminum-magnesium alloys [J], Mat. Sci. and Eng. A,2002,328(1):213-222.
    65. Lee P D, Chirazi A, Atwood R C, et al. Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy [J], Mat. Sci.Eng.A,2004,365(1):57-65.
    66.李殿中,苏仕方,徐雪华等.镍基合金叶片凝固过程微观组织模拟及工艺优化研究[J],铸造,1997,(8):1-7.
    67.李殿中,杜强,胡志勇等.金属成形过程中组织演变的Cellualr Automaton模拟技术[J],金属学报,1999,35(1):1201-1205.
    68.李殿中.K417合金精铸叶片组织形成过程数值模拟与质量控制[D],哈尔滨工业大学,1998.
    69.许庆彦,柳百成.采用Cellular Automaton法模拟铝合金的微观组织[J],中国机械工程,2001,12(3):328-331.
    70.张林,王元明.Ni基耐热合金凝固过程的元胞自动机方法模拟[J],金属学报,2001,37(8):882-888.
    71. Zhu M F, Hong C P. A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys [J], ISIJ Int.,2001,41(5):436-445.
    72. Zhu M F, Hong C P. A three dimensional modified cellular automaton model for the prediction of solidification microstructures [J], ISIJ International,2002,42(5):520-526.
    73. Zhu M F, Kim J M, Hong C P. Modeling of globular and dendritic structures evolution in solidification of an A1-7mass%Si alloy [J], ISIJ Int.,2001,41(9):992-998.
    74. Zhu M F, Hong C P. Modeling of microstructures evolution in regular eutectic growth [J], Phy Rev B,2002,66:155428.
    75. Zhu M F, Hong C P. Modeling of irregular eutectic microstructures in solidification of Al-Si alloys [J], Metall Mater Trans,2004,35A (5):1555-1563.
    76. Zhu M F, Lee S Y, Hong C P. Modified cellular automaton model for prediction of dendritic growth with melt convection [J], Phys Rev E,2004,69,061610
    77. Zhu M F, Stefanescu D M. Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys [J], Acta materialia.,2007,55:1741-1755.
    78.单博炜,魏雷,林鑫等.采用元胞自动机法模拟凝固微观组织的研究进展[J],铸造,2006,55(5):439-443.
    79.丁恒敏.铸造合金的微观组织模拟[D],华中科技大学,2005.
    80. Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J], Mater. Sci. Eng.,1984,65(1):75-83.
    81. Rappaz M, Thevoz Ph. Solute Diffusion Model for Equiaxed Dendritic Growth [J], Acta Metall.,1987,35(7):1487-1497.
    82. Maxwell I, Hellawell A. Simple model for grain refinement during solidification [J], Acta Metallurgica 1975,23(2):229-237.
    83. Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification [J], Acta Metallurgica,1986,34(5):823-830.
    84.李强,李殿中,钱百年.元胞自动机方法模拟枝晶生长[J],物理学报,2004,53(10):3477-3481.
    85. Kumar M, Sasikumar R. Competition between nucleation and early growth of ferrite from austenite-studies using cellular automaton simulations [J], Acta mater.,1998,46(17): 6291-6303.
    86. Nastac L, Stefannescu D M. Macrotransport solidification kinetics modeling of equiaxed dendritic grown [J], Metall Matr Trans,1996,27A:4061-4074.
    87.谷晓峰.ZL201铝合金半固态组织与成形性研究[D],东北大学,2004.
    88. Chen C P, Tsao C Y A. Response of spray-deposited stirred-cast and conventional cast Pb-Sn alloys to deformation in semi-solid state [J], Journal of Material Science,1995,30: 4019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700