基于压电材料的振动能量回收电路及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能量回收技术是无线传感技术向微型化和实用化发展的关键技术之一。在已有的几类能量回收技术中,基于压电材料的振动能量回收技术最具有发展前途,这是因为其具有较高的能量密度,结构简单易于系统集成,特别适合在MEMS方面的应用。本文从压电能量回收装置的基本架构出发,主要对能量回收接口技术进行了深入研究,提出了两个新的高效接口电路技术,并在振动控制和无线传感技术两方面进行了应用研究。论文的主要工作和创新性成果如下:
     (1)从压电材料内部能量传递过程分析,结合压电本构方程和结构振动的基本理论给出了压电悬臂梁结构能量回收系统的输出功率的计算分析模型,简要分析了悬臂梁结构、环境振动情况对输出电能的影响。
     (2)提出了增强型同步开关回收技术(ESSH技术),其可以对压电材料产生的电能进行高效的回收。这种接口电路不仅与标准接口相比回收功率提高了300%(提高倍数会随着应用更低损耗的电感而提高),同时克服了原有串联同步开关电感方法回收功率随负载变化而变化的缺点。同时这种技术己经由低功耗的控制电路(控制电路功耗仅为0.121mW)实现,相比原先的能量自给的串联同步开关电感回收技术,在某些激振较大的场合更具优势。由于这个新接口技术(ESSH)可以实现能量自给,非常适合在远距离、外界能量供给受限制的场合的应用,如自供电的智能微系统(如无线传感网络节点)。另外,作为ESSH能量高效回收技术的一个工程应用,研制出了基于压电能量回收的结构振动与噪声控制装置。实验表明减振效果可以达到-5dB。
     (3)针对压电能量回收装置可能会工作在宽频带振动环境下或者一阶振动环境中有干扰的情况,提出了一个多模态振动能量回收的策略,即自适应ESSH技术。同时这种技术己经由低功耗的控制电路(控制电路功耗仅为0.328mW)实现。另外作为一个工程应用,其也可以实现能量自给的多模态振动控制。
     (4)对能量回收技术在振动控制中的应用进行了深入研究。首先研究和设计了一个基于电压同步开关阻尼技术(SSDV技术)低功耗的振动控制系统,其利用能量回收技术从压电片回收能量给半主动振动控制系统供电。与原先能量自给的SSDI控制系统相比,基于SSDV技术的振动控制系统可以使减振效果得到极大的提高。通过实验验证,最终实现了能量自给的振动控制系统。另外,基于自感知原理,即利用自感知技术对压电元件的信号进行提取,设计了一个基于自感知原理的无需外界能量的振动控制系统(控制电路功耗仅为0.322mW)。实验表明,实现了对悬臂梁一阶模态的振动控制,获得了-7.89dB的控制效果。
     (5)设计了一种基于振动能量回收的无线传感器,其中,包括能量回收单元与低功耗无线传感器单元。首先,优化的机械部分与能量回收接口电路提高了能量回收的效率。其次,无线传感器的设计能够对目标施加的应力应变进行监测,同时,实现了传感器的低功耗与能量自给。通过实验验证了无线传感节点的低功耗特性和实时监测性能。
Energy harvesting is one of key technologies for the micromation and practical development of wireless sensor and communication node networks. Among all kinds of energy harvesters,the piezoelectric energy is the most promised one as they are high in energy densities and particularly attractive in MEMS for its relatively simple configuration. In order to improve power harvesting efficiency, two novel techniques for optimizing energy harvesting circuitry are investigated in the dissertation. In addition, two self-powered vibration damping system and a self-powered wireless sensor node for structural health monitor (SHM) are developed, which are the application of the piezoelectric energy harvesting.
     The main works and novel researched performed in this dissertation include:
     (1) Based on the constitutive equation of piezoelectric materials and the theory of mechanical vibration, the model of a cantilever bimorph with a proof mass attached to its end is established, which is used to determine the relationship between performance and physical and geometrical parameters.
     (2) A new technique for optimizing energy harvesting circuitry called enhanced synchronized switch harvesting (ESSH) is presented. Compared with the standard technique of energy harvesting, the new technique dramatically increases the harvested power by almost 300% at resonance frequencies in the same vibration condition (the gain also can be greatly increased using low losses components), and also ensures an optimal harvested power whatever the load connected to the microgenerator. Furthermore, the new technique (ESSH) in the paper can be truly self-powered, a self-powered circuit which implements the technique (ESSH) is proposed. In addition, the overall power consumption for the control circuitry is relatively constant (only about 121μW), which shows more attractive especially in the high excitation. Because the new technique (ESSH) in the paper can be truly self-powered, no external power supply is needed, making the system suitable for more application fields, especially in remote operation. Besides, a self-powered vibration damping system is proposed as the application of the ESSH technique. Experimental results show that a vibration damping of about -5 dB is achieved as a result of energy harvesting, in good agreement with the theory.
     (3) Another novel technique for optimizing energy harvesting circuitry called adaptive ESSH approach is presented. This technique is based on a control law which deals with the energy harvesting under multimode vibration. Compared with the ESSH technique of energy harvesting, the new technique improve efficiency harvesting efficiency when the piezoelectric energy harvester is excited under two-mode vibration. Furthermore, the new technique (adaptive ESSH) in the paper can be truly self-powered, a self-powered circuit which implements the technique (adaptive ESSH) is proposed. In addition, the overall power consumption for the control circuitry is relatively constant (only about 329μW). Besides, a self-powered multimode vibration damping system is proposed as the application of the adaptive ESSH technique.
     (4) A vibration damping system powered by harvested energy with implementation of the so called SSDV (Synchronized Switch Damping on Voltage Source) technique is designed and investigated. By supplying the energy collected from the piezoelectric materials to the switching circuit, a new low-power device using the SSDV technique is proposed. Compared with the original self-powered SSDI (synchronized switch damping on inductor), such a device can significantly improve its performance of vibration control. Its effectiveness in the single-mode resonant damping of a composite beam is validated by the experimental results. Besides, a self-powered self-sensing vibration damping system with implementation of the SSDI technique is designed and investigated. Its effectiveness in the single-mode resonant damping of a steel beam is validated by the experimental results. The experimental results show that -7.89dB attenuation for the first mode was achieved. The total power dissipation of the control circuit is only 0.322mW.
     (5) A wireless sensor based on the energy harvesting from vibrations is designed, which is composed of energy harvesting module and low-power wireless sensor module. Firstly, the structure and electrical interface of energy harvesting module are optimized to enhance the efficiency of transforming mechanical energy to electrical energy. Secondly, a balance technique is introduced during the design of the wireless sensor module, which can not only monitor the real-time structural strain but also be low-powered and meet the need of self-powered sensor node. Finally, an experiment is carried out to test the wireless sensor, which shows its good stability and reliability.
引文
[1] Romer K. and Mattern F. The design space of wireless sensor networks. IEEE Wireless Communications, 2004, 11(6): 54–61.
    [2] Paradiso J. A. and Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 2005, 4(1):18–27
    [3] Sodano H. A., Inman D. J. and Park G.. A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest, 2004, 36(3): 197-205.
    [4]马勇.基于非线性开关的能量回收系统的研究, [硕士学位论文].南京:南京航空航天大学, 2008.
    [5] Hande A. Indoor solar energy harvesting for sensor network router nodes. Microprocess and Microsystem, 2007, 31(2):420-432.
    [6]方科,李欣欣,杨志刚等.压电式能量获取装置的研究现状.传感器与微系统, 2006, 25(10): 7-15.
    [7] Roundy S., Wright P. K. and Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 2003, 26(11): 1131-1144.
    [8] Stanton S. R. and Sodano H. A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Material and Structure, 2007, 16(3):1-21.
    [9] Glynne-Jones P., Tudor M. J., Beeby S. P. and White N. M. An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors Actuators A, 2004, 110(1-3):344–349
    [10] Cao X., Chiang W. J., King Y. C., et al. Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System. IEEE Transactions on Power Electronics, 2007, 22(2): 679-685.
    [11] Mitcheson P. D., Miao P., Stark B. H., et al. MEMS electrostatic micro-power generator for low frequency operation. Sensors Actuators A, 2004, 115:523–529
    [12] Qiu, J. and Haraguchi, M. Vibration control of a plate using a self-sensing piezoelectric actuator and an adaptive control approach. Journal of Intelligent Material System and Structure, 2006, 17(8-9):661-669.
    [13] Arms S. W., Townsend C. P., Churchill D. L., et al. Power management for energy harvesting wireless sensors Proc. Smart Structures and Materials Conf. Proc. SPIE, 2005, 5763 267–275
    [14] Poulin G., Sarraute E. and Costa F. Generation of electrical energy for portable devicescomparative study of an electromagnetic and a piezoelectric system. Sensors and Actuators A: Physical, 2004, 116: 461-471.
    [15] Joseph A. D. Energy harvesting projects. IEEE Pervasive Computing, 2005, 4: 69-71.
    [16] Roundy S. and P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Structures and Materials, 2004, 13(5):1131-1142.
    [17] Roundy S, Leland E. S., Baker J. Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing, 2005, 4: 28-36.
    [18]甘霖,李伟,杨灿军等.PowerMEMS研究现状及展望.机床与液压,2004,(9)-5—54
    [19]杜小振.环境振动驱动微型压电发电装置的关键技术研究, [博士学位论文].大连:大连理工大学, 2008.
    [20] White N. M., Glynne-Jones P. and Beeby S. P. A novel thick-film piezoelectric micro- generator technical note Smart Structures and Materials, 2001, 10:850–852
    [21] White N. M., Glynne-Jones P., Beeby S. P., et al. Design and modeling of a vibration-powered micro-generator Measurement and Control, 2001, 34:267–271
    [22] Zelenka J. Piezoelectric Resonators and their Applications (Amsterdam: Elsevier) 1986
    [23] Ramsay M. J. and Clark W. W. Piezoelectric energy harvesting for bio MEMS applications Proc. SPIE, 2001, 4332:429–38
    [25]袁江波,谢涛,单小彪等.压电俘能技术研究现状综述.振动与冲击, 2009, 28(10):36-42
    [26] Lee B. S., He J. J., Wu W. J., et al. MEMS generator of power harvesting by vibrations using p iezoelectric cantilever beam with digitate electrode Proc. Smart Structures and Materials Conf.; Proc. SPIE, 2006, 6169 61690B.
    [27] Lee C. S., Joo J., Han S., et al. Multifunctional transducer using poly(vinylidene fluoride) active layer and highly conducting poly (3,4-ethylenedioxythiophene) electrode: actuator and generator. Applied Physics Letter 2004, 85: 1841-1844.
    [28] Lee C. S., Joo J., Han S., et al. Poly(vinylidene fluoride) transducers with highly conducting poly (3,4-ethylenedioxythiophene) electrodes Proc. Int. Conf. on Science and Technology of Synthetic Metals, 2005, 152: 49-52.
    [29] Badel A., Benayad A., Lefeuvre E., et al. Single crystals and nonlinear process for outstanding vibration powered electrical generators. IEEE Trans, on UFFC, 2006, 53(4): 673-684.
    [30] Mohammadi F., Khan A., Cass R. B. Power generation from piezoelectric lead zirconate titanate fiber composites Proc. Materials Research Symp, 2003: 736 - 739.
    [31] Churchill D. L., Hamel M. J., Townsend C. P., et al. Strain energy harvesting for wireless sensor networks Proc. Smart Struct. and Mater. Conf.; Proc. SPIE, 2003, 5055 319-327
    [32] Sodano H. A., Inman D. J. and Park G. Comparison of piezoelectric energy harvesting devices for recharging batteries Journal of Intelligent Material Systems and Structures. 2005, 16:799-807
    [33] Baker J., Roundy S., Wright P. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks Proc. 3 rd Int. Energy Conversion Engineering Conf. ( San Francisco, CA, Aug. ) , 2005:959 - 970.
    [34] Yang J., Zhou H., Hu Y., et al. Performance of a p iezoelectric harvester in thickness stretch mode of a p late. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52:1872 - 1878.
    [35] Richards C. D., Anderson M. J., Bahr D. F., et al. Efficiency of energy conversion for devices containing a piezoelectric component. Journal of Micromechanics and Microengineering, 2004, 14: 717 - 721.
    [36] Cho J., Anderson M., Richards R., et al. Optimization of electromechanical coupling for a thin-film PZT membrane: I. modeling Journal of Micromechanics and Microengineering, 2005, 15 1797–803
    [37] Cho J., Anderson M., Richards R., et al. Optimization of electromechanical coupling for a thin-film PZT membrane: II. experiment Journal of Micromechanics and Microengineering, 2005, 15 1804–9
    [38] Johnson T. J., Charnegie D., Clark W. W., et al. Energy harvesting from mechanical vibrations using piezoelectric cantilever beams Proc. Smart Structures and Materials Conf.; Proc. SPIE, 2006, 6169 61690D
    [39] Sodano H. A., Park G. and Inman D. J. Estimation of electric charge output for piezoelectric energy harvesting. Strain, 2004, 40:49-58
    [40] Ng T. H., Liao W. H. Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. Journal of Intelligent Material Systems and Structures, 2005, 16: 785-797.
    [41] Jiang S., Li X., Guo S., et al. Performance of a piezoelectric bimorph for scavenging vibration energy Smart Materials and Structure, 2005, 14: 769-774.
    [42] Anderson T. A. and Sexton D. W. A vibration energy harvesting sensor platform for increased industrial efficiency Proc. Smart Structures and Materials Conf.; Proc. SPIE, 2006, 6174 61741Y
    [43] Mateu L., Moll F. Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. Intell.Mater. Syst. Struct, 2005, 16: 835-845.
    [44] Platt S. R., Farritor S., Haider H. On low-frequency electric power generation with PZT ceramics IEEE /ASME Trans. Mechatronics, 2005, 10: 240-252.
    [45]程光明,庞建志,唐可洪,等.压电陶瓷发电能力测试系统的研制.吉林大学学报, 2007, 37(2) : 367 - 371.
    [46]阚君武,唐可洪,王淑云,等.压电悬臂梁发电装置的建模与仿真分析.光学精密工程, 2008, 16 (1) : 71 - 76.
    [47]袁江波,单小彪,谢涛,等.悬臂梁单晶压电发电机的实验.光学精密工程, 2009, 17 (5) : 1072 - 1077.
    [48]贺学锋,温志渝,温中泉等.振动式压电发电机的理论模型与实验.纳米技术与精密工程, 2007, 5(4) : 307– 310。
    [49]李艳宁,李雯,任平等.压电微悬臂梁振动能量采集器谐振频率和功率的研究.天津大学学报, 2009, 42(4) : 373 - 376.
    [50]魏双会,褚金奎,杜小振.压电发电器建模研究.传感器与微系统, 2008, 27(6):27-30
    [51] Xie T., Yuan J., Li Z. Modeling and experiment of a self-powered piezoelectric sensor. 2008, 5th International Symposlum on Instrumentation Science and Technology. Shengyang, china, 2008, 860 - 865.
    [52]胡洪平,高发荣,薛欢,等.低频螺旋状压电俘能器结构性能分析.固体力学学报, 2007, 28 (1): 87 - 92.
    [53] Ericka M., Vasic D., Costa F., et al. Energy harvesting from vibration using a piezoelectric membrane. Physique. Coll, 2005, 128: 187 -193.
    [54] Kim S., William W. C. and Wang Q. Piezoelectric energy harvesting with a clamped circular plate: analysis. Journal of Intelligent Material Systems and Structures, 2005, 16: 847-854
    [55] Kim S., Clark W. W. and Wang Q. M. Piezoelectric energy harvesting with a clamped circular plate: experimental study Journal of Intelligent Material Systems and Structures, 2005, 16: 855–863
    [56]Kim H. W., Batra A., Priya S., et al. Energy harvesting using a piezoelectric cymbal transducer in dynamic environment. Japan Journal of Applied Physics, 2004, 43 (6): 178 - 183.
    [57]曾平,刘艳涛,吴博达,等.一种新型压电式无线发射装置吉林大学学报(增刊) , 2006, 36 (2) : 78 - 82.
    [58]陈子光,胡元太,杨嘉实.基于扭转模态的角振动压电俘能器研究.应用数学与力学, 2007: 28 (6): 693 - 699.
    [59] Cornwell P.J., Goethal J., Kowko J., et al. Enhancing Power Harvesting using a Tuned Auxiliary Structure. Journal of Intelligent Material Systems and Structures, 2005, 16: 825-834
    [60] Roundy S., Zhang Y. Toward self-tuning adaptive vibration based micro-generators. Smart Materials, 2005, Nano-and Micro-Smart Systems (Sydney, Dec).
    [61] Williams C. B., Yates R. B. Analysis of a micro-electric generator formicrosystems Transducers 95 /Eurosensors IX, 1995,1: 369 - 372.
    [62] Wu W. J., Chen Y. Y., Lee B. S., et al. Tunable resonant frequency power harvesting devices Proc. Smart Structures and Materials Conf.; Proc. SPIE, 2006, 6169 61690A
    [63] Shahruz S. M. Design of mechanical bandpass filters for energy scavenging Jounal of Sound and Vibration, 2006, 292:987–98
    [64] Shahruz S. M. Limits of performance of mechanical band-pass filters used in energy scavenging Jounal of Sound and Vibration, 2006, 293:449–61
    [65] Rastegar J., Pereira C. and Nguyen H. L. Piezoelectric-based power sources for harvesting energy from platforms with low frequency vibration Proc. Smart Structures and Materials Conf.; Proc. SPIE, 2006, 6171 617101
    [66] Marinkovic B. and Koser H. Smart Sand—a wide bandwidth vibration energy harvesting platform Applied Physics Letters, 2009, 94, 103505:1-3
    [67]薛欢.压电俘能/储能系统的非线性动力学行为分析与优化[博士学位论文].武汉:华中科技大学, 2008.
    [68] Lefeuvre E., Sebald G., Guyomar D., et al. Materials, structures and power interfaces for efficient piezoelectric energy harvesting. Journal of Electroceram, 2007, 22(1-3): 171-179
    [69] Lefeuvre E., Badel A., Richard C., et al. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators A, 2006, 126(2): 405-416.
    [70] Han J., Von Jouanne A., Le T., et al. Novel power conditioning circuits for piezoelectric micro power generators. Proc. 19 th Ann. IEEE App lied Power Electronics Conf. And Exposition Conf, 2004, 1541 - 1546.
    [71] Ottman G.. K., Hoffmann H.F. and Lesieutre G. A.. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 2003, 18(2): 696-703.
    [72] Lesieutre G. A., Ottman G. K., Hofmann H. F. Damping as a result of piezoelectric energy harvesting. Jounal of Sound and Vibration, 2004, 269 (3): 991 - 1001.
    [73] Lefeuvre E., Audigier D., Richard C., et al. Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Transaction on Power Electronics, 2007, 22(5): 2018-2025.
    [74] Shenck N. S. and Paradiso J. A. Energy scavenging with shoe-mounted piezoelectrics IEEE Micro, 2001, 21:30–42
    [75] Ammar Y., Buhrig A., Marzencki M., et al. Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. Proc. 2005 Joint Conf. on SmartObjects and Ambient ibeuntelligence: Innovative Context2Aware Services: Usages and Technologies(Grenoble) , 2005, 287 - 292.
    [76] Lefeuvre E., Badel A., Richard C., et al. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 865-876.
    [77] Guyomar D., Badel A., Lefeuvre E., et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52:584–94
    [78] Badel A., Guyomar D., Lefeuvre E., et al. Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion. Journal of Intelligent Material Systems and Structures, 2005, 16: 889 - 901.
    [79] Lefeuvre E., Badel A., Benayad A., et al. A comparison between several approaches of piezoelectric energy harvesting. Physique Coll, 2005, 128: 177 - 186.
    [80] Taylor G. W., Burns J. R., Kammann S. M., et al. The energy harvesting eel: A small subsurface ocean/river power generator, IEEE J. Oceanic Engineer, 2001, 26(4):539–547.
    [81] lallart M., Garbuio L., Petit L., et al. Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008, 55(10):2119–2130.
    [82] Hu Y., Xue H., Hu T., et al. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2008, 55(l):148-160
    [83] Sodano H. A., Inman D. J., Park G.. Generation and storage of electricity from power harvesting devices. Intell. Mater. Syst. Struct, 2005, 16: 67 - 75.
    [83] Kymissis J., Kendall D., Paradiso J., et al. Parasitic power harvesting in shoes 2nd IEEE Int. Conf. on Wearable Computing (August), 1998, pp 132–136
    [84] Guan M., Liao W. H. On the energy storage devices in piezoelectric energy harvesting. Proc. Smart Structures and Materials Conf.; Proc. SPIE, 2006, 6169: 61690C.
    [85] Gonz′alez J. L., Rubio A. and Moll F. Human powered piezoelectric batteries to supply power to wearable electronic devices Int. J. Soc. Mater., 2002, Eng. Resources 10 34–40
    [86] Niu P., Chapman P., Riemer R., et al. Evaluation of motions and actuation methods forbiomechanical energy harvesting Proc. IEEE 35th Annual Power Electronics Specialists Conf. (Aachen),2004, pp 2100–6.
    [87] Renaud M., Sterken T., Fiorini P., et al. Scavenging energy from human body: design of a piezoelectric transducer Proc. 13th Int. Conf. on Solid-State Sensors and Actuators and Microsystems (Seoul, June), 2005, pp 784–7
    [88] Platt S. R., Farritor S., Haider H. On low-frequency electric power generation with PZT ceramics IEEE /ASME Trans. Mechatronics, 2005, 10: 240 - 52.
    [89]陈虹,贾晨,刘鸣.植入关节内压电陶瓷供能研究.压电与声光, 2008: 30 (1): 96 - 99.
    [90] Sohn J. W., Choi S. B. and Lee D. Y. An investigation on piezoelectric energy harvesting for MEMS power sources. Journal of Mechanical Engineering Science, 2005, 219 429–36
    [91] Feenstraa J., Granstroma J. and Sodano H. Energy harvesting through a backpack employing a mechanically amplied piezoelectric stack. Mechanical Systems and Signal Processing, 2008, 22: 721–734.
    [92] Rome. L. C., Flynn L., Goldman Evan M., et al. Generating electricity while walking with loads. Science, 2005, 309(5741): 1725-1728.
    [93] Galhardi M. A., Guilherme T. H. and Junior V. L. A review of power harvesting on mechanical vibration using piezoelectric materials and applications. 7th Brazilian Conference on Dynamics, Control and Applications. FCT-Unesp at Presidente Prudente, SP, Brazil., 2008, 1-9.
    [94] Priya S. Modeling of electric energy harvesting using piezoelectric windmill. Applied Physics Letter, 2005, 87 (18) 4101.
    [95]伍晓明,方华军,林建辉等.用于振动能量收集的MEMS压电悬臂梁.功能材料与器件学报, 2008, 14(2): 467- 471.
    [96]沈修成,方华斌,王亚军等.基于MEMS的压电微能量采集器的电路研究与测试.传感技术学报, 2008, 21(4): 395- 397.
    [97]张杨键,伞海生. MEMS复合式振动能量采集器.光学精密工程, 2009, 17(6):1262-1266
    [98] Elvin N.G., Elvin A. A. and Spector M. A. Self-powered mechanical strain energy sensor. Smart Materials and Structures, 2001, 10(2): 293–299.
    [99]陶宝祺.智能材料结构.北京:国防工业出版社, 1997: 57-62.
    [100] Kenji Uchino. Ferroelectric Devices[M]. New York NY, U.S.A, Marcel Dekker, 1999.
    [101]孙康,张学福.压电学.北京:国防工业出版社,1986:46~272.
    [102]胡海岩.机械振动基础.北京:北京航空航天大学出版社, 2005.
    [103]胡海岩.机械振动与冲击.南京:航空工业出版社, 1998.
    [104]蔡怀崇,闵行材料力学.西安:西安交通大学出版社, 2004.
    [105] Badel A., Sebald G., Guyomar D., et al. Wide band semi-active piezoelectric vibration control by synchronized switching on adaptive continuous voltage sources, Journal of the Acoustical Society of America, 2006, 119(5):2815-2825.
    [106] Shen H., Ji H.L., Qiu J.H., et al. A semi-passive vibration damping system powered by harvested energy. International Journal of Applied Electromagnetics and Mechanics, 2009, 31(4): 219–233
    [107] Ji H.L., Qiu J.H., Badel A. , et al. Multimodal vibration control using a synchronized switch based on a displacement switching threshold, Smart Materials and Structures. 2009, 18(3), 035016, pp. 1-8.
    [108] PIC16F688 Data Sheet. Microchip Technology Inc., 2004.
    [109]张明峰. PIC单片机入门与实战.北京:北京航空航天大学出版社, 2004: 48-69.
    [110]陈新建,邵少雄,葛长虹. PIC系列单片机程序设计与开发应用.北京:北京航空航天大学出版社, 2007
    [111] Garcia E., Dosch K, Inman D.J., The application of smart structures to the vibration suppression problem, Journal of Intelligent Material Systems and Structures, 1992, 3(4): 659-667.
    [112] Giurgiutiu V., Review of Smart-materials Actuation Solutions for Aeroelastic and Vibration Control, Journal of Intelligent Material Systems and Structures, 2000, 11(7): 525-544.
    [113] Hagood N.W., von Flotow A., Damping of structural vibrations with piezoelectric material and passive electrical networks, Journal of sound and vibration, 1991, 146(2): 243-268.
    [114] Clark W. W. Semi-active vibration control with piezoelectric materials as variable stiffness actuators. In: Proc SPIE, Smart Structures and Materials. San Diego, CA, 1999, 3672: 123~130
    [115] Clark W. W., State-switched piezoelectric systems for vibration control, In: Proc AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf and Exhibit. St. Louis, MO, 1999,4:2623-2629.
    [116] Richard C., Guyomar D., Audigier D., et al., Semi-passive damping using continuous switching of a piezoelectric device, Proceedings of SPIE Smart Structure and Materials Conference, Passive Damping and Isolation, San Diego, 3672, 1999, 104-111.
    [117] Richard C., Guyomar D., Audigier, et al. Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor. Proc. SPIE SSMat. Conf., Passive Damping and Isolation, 2000, 3989: 288.
    [118]赵永春.基于压电材料的悬臂梁振动半主动控制研究, [硕士学位论文].南京:南京航空航天大学, 2009.3.
    [119]季宏丽,裘进浩,赵永春,朱孔军, TMS320F2812的悬臂梁振动半主动控制,光学精密工程,2009,17(1):126- 131.
    [120] Lefeuvre E., Guyomar D., Petit L., et al. Semi-passive structural damping by synchronized switching on voltage sources, Journal of Intelligent Material System and Structure, 2006, 17(8-9) 653-660.
    [121] Badel A., Sebald G., Guyomar D., et al. Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping, Journal of the Acoustical Society of America, 2006, 119(5): 2815-2825,
    [122] Petit L., Lefeuvre E., Richard C., et al. A broadband semi-passive piezoelectric technique for structural damping, Proceedings of SPIE International Symposium on Smart Structure Materials: Damping and Isolation, San Diego CA, 2004, Vol. 5386, pp. 414-425.
    [123] Faiz A., Guyomar D., Petit L., et al. Wave transmission reduction by a piezoelectric semi-passive technique, Sensors and Actuators A, 2006, 128(2):230-237.
    [124] Niederberger D., Morari M., An autonomous shunt circuit for vibration damping, Smart Material and Structure, 2006, 15:359-364.
    [125] Lallart M., Lefeuvre E., Richard C., et al. Self-powered circuit for broadband, multimodal piezoelectric vibration control, Sensors and Actuators A, 2007, 143:377-382.
    [126] Richard C., Guyomar D., Lefeuvre E. Self-powered electronic breaker with automatic switching by detecting maxima or minima of potential difference between its power electrodes, Patent # PCT/FR2005/003000, 2007,publication number: WO/2007/063194.
    [127] Yabu T., Onoda J. Non-power-supply semi-active vibration suppression with piezoelectric actuator, Proceedings of the JSASS/JSME Structures Conference, 2005,Vol. 47, pp. 48-50.
    [128] Ji H.L., Qiu J.H. Zhu and K.J., Vibration control of a composite beam using self-sensing semi-active approach, Chinese Journal of Mechanical Engineering (English edition) (accepted)
    [129] Ji H.L., Qiu J.H., Badel A., et al. Semi-active vibration control of a composite beam using adaptive SSDV approach, Journal of Intelligent Material Systems and Structures, 2009, 20(3):401-412.
    [130]汪建民,主编,PSpice电路设计与应用,国防工业出版社2007.9
    [131]袁慎芳,结构健康监控,北京,国防工业出版社,2007
    [132]张爱国,陈忠会,马书尧,用边界无法进行等强度梁的形状优化,河北工业大学学报,1997, 26(1):76- 86.
    [133]陶宝祺,王妮,电阻应变式传感器,北京,国防工业出版社,1993,8.
    [134] INA333 Data Sheet. Texas Instrucment, 2008.
    [135] nRF2402 Data Sheet. Nordic Semiconductor, 2006.3
    [136] nRF2401 Data Sheet. Nordic Semiconductor, 2006.3
    [137]丰立东.基于同步电荷提取方法的能量回收技术研究, [硕士学位论文].南京:南京航空航天大学, 2010.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700