压电俘能/储能系统的非线性动力学行为分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线供能是现代传感技术向微型化和集成电路化发展所需突破的“瓶颈”问题之一。在已有的几类无线供能技术中,压电俘能最具有发展前途,这是因为压电材料天然的力电耦合效应,可以实现力学量与电学量之间相互转换,并且其在转换过程中的电能损耗极小。本论文针对压电俘能技术这个多学科交叉问题,开展了大量的压电俘能/储能系统的非线性耦合作用及关键动力学行为研究,从整体角度对压电俘能器进行了全局优化,取得一系列创新性成果,具体体现在:
     1.跨越结构分析与电路设计等多个学科建立了关于压电俘能/储能系统的非线性耦合作用模型,重点研究了压电结构在非线性电路开、闭路交替作用下的动力学性能,揭示了多时间尺度之间的相互作用规律以及电路影响压电结构动力特性的作用机制,从而实现了压电俘能器的整体分析和全局优化。
     2.揭示了外载型式和环境温度对压电俘能器性能的影响机制,提出了频率控制与温度补偿策略,使得压电俘能器具备环境适应能力。尤其是为了让俘能器能从多频环境振动中更有效地提取能量,我们提出了具有变频功能的压电俘能结构,分析结果显示:这种压电结构从易变环境振动中所提取的能量可以达到没有变频功能压电结构所获能量的数倍之多。另外,我们还通过增设温度补偿层消除了压电俘能器由温度变化所引起的频率漂移,计算结果表明通过适当设计器件层与补偿层的厚度比就可以消除频率漂移,从而保证了俘能结构的温度稳定性。
     3.研究了在共振状态下工作的压电俘能器非线性特征,揭示了输出电流和功率密度在共振附近的多值与跳跃本质,确定了外载与外负载等对压电俘能器非线性性态的影响规律。
     4.研究了压电结构表面电极对器件整体性能的影响机理,提出了两种新颖的电极优化设计方案,明显降低了电极边缘的应力和电场集中现象,从而大大提高了压电俘能器安全可靠性。
     本文突破了多个在压电俘能技术综合分析和实际应用中的重点难点问题,开创性地提出了多种性能远超传统俘能器件的新型压电俘能器模型,得到了一系列适用于不同俘能器模型的优化方法和结论。这些成果不仅对压电俘能器整体性能的提升具有重要的指导意义,同时开展这样的研究还可以进一步地促进学科的交叉与渗透。
The wireless power supply technology for the development of micromation and integration of new generation sensor technology is bottleneck that needs to break though. Among all kinds of energy harvesters, the piezoelectric energy is the most promised one because the piezoelectric materials are natural candidates for converting mechanical energy into electric energy with low loss in the energy converting process. This paper puts up a mount of study on the nonlinear dynamic behaviors and relative integrated optimization on the piezoelectric energy harvesting/storing system, obtains a lot of innovative results. Specific contents are as follows:
     (1) This paper establishes a novel intermittent nonlinear coupling model of piezoelectric energy harvesting/storage system spaning structure analysis and electrics circuit design fields. The dynamics performance of the harvesting structure under the turning of the open and close circuit conditions is calfully analysed. The multi-time scale interaction mechanisms and the mechanism of how the circuit influence the dynamic characteristic of harvesting structure is analysed, the integral analysis and optimization of piezoelectric energy harvester is then realized.
     (2) The machanism of how the load mode and temperature influence the performances of piezoelectric harvester is studied, and an appropriate frequency adjusting and temperature compensating strategy to enhance the environmental adaptability of piezoelectric energy harvester is developed, which gives the energy harvester better adapbility on enenvironment influence. In order to strength the interaction between the energy hatvester and the environment with varying frequency, two novel approaches for designing piezoelectric harvesters with adjustable and broad operating frequency-band are presented. Numerical results show that the harvesting efficiency of these devices is several times higher than the harvesters without frequency adjusting function. On the other side, temperature-induce d frequency shift in a thickness mode bulk piezoelectric device with a layer of another material for temperature compensation is analysed. It is shown that with a proper design of the compensation layer the temperature sensitivity can be reduced or made zero.
     (3) The nonlinear behavior distinction of piezoelectric energy harvester near resonance is studied, multi-valuedness and jump phenomena at resonance region of the output power are found, the influence of the driving force and circuit load to the nonlinear region which gives an important guidance of device design are analyzed.
     (4) The machanism of how the electrode on the surface of piezoelectric structure influce its integral performance is studied. Two noval methods for the electrode optimization are developed, the stress concentration effect near the edge of an electrode has been reduced, and the reliability of the piezoelectric harvester is enhanced a lot.
     This paper breakthroughs several key and/or difficult problems in the analysis and design of piezoelectric energy harvesting device, develops a variety of new type of piezoelectric energy harvesters with much better performance than the traditional one. Several research blanks of the international community in this field are filled, a series of valuable methods and conclusions suit to different harvesting model are obtained. These achievements have instructional significance to enhance the integral performance of the piezoelectric energy harvester. By conducting this kind of study, the cross and penetration of sentific subjects can be further promoted.
引文
[1]Akyildiz I F,Su W,Sankarasubramaniam Y,et al.Wireless sensor networks:a survey[J].Computer Networks,2002,38(4):393-422.
    [2]崔莉,鞠海玲,苗勇,et al.无线传感器网络研究进展[J].计算机研究与发展,2005,42(001):163-174.
    [3]Mainwaring A,Culler D,Polastre J,et al.Wireless sensor networks for habitat monitoring[J].Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications,2002:88-97.
    [4]Xu N,Rangwala S,Chintalapudi K K,et al.A wireless sensor network For structural monitoring[J].Proceedings of the 2nd international conference on Embedded networked sensor systems,2004:13-24.
    [5]Davis W R,Zhang N,Camera K,et al.A design environment for high throughput,low power dedicated signal processing systems[J].2001:545-548.
    [6]Chandrakasan A,Amirtharajah R,Goodman J,et al.Trends in low power digital signal processing[J].1998:604-607.
    [7]Liao W H,Wang D H,Huang S L.Wireless Monitoring of Cable Tension of Cable-Stayed Bridges Using PVDF Piezoelectric Films[J].Journal of Intelligent Material Systems and Structures,2001,12(5):331-339.
    [8]鲁开智,陶国才.临时心脏起搏器的应用[J].中华麻醉学杂志,2005(11):879-880.
    [9]Billinghurst M,Starner T.Wearable devices:new ways to manage information[J].Computer,1999,32(1):57-64.
    [10]Joseph A D.Energy harvesting projects[J].IEEE Pervasive Computing,2005,4:69-71.
    [11]Paradiso J A,Starner T.Energy scavenging for mobile and wireless electronics[J].IEEE Pervasive Computing,2005,4(1):18-27.
    [12]Lal A,Duggirala R,Li H.Pervasive power:A radioisotope-powered piezoelectric generator[J]. IEEE Pervasive Computing, 2005, 4: 53—61.
    [13] Roundy S, P W, Rabaey J. A study of low lever vibrations as a power source for wireless sensor nodes[J]. Computer Communications, 2003, 26: 1131 — 1144.
    [14] Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics[J].Micro, IEEE, 2001, 21(3): 30-42.
    [15] Starner T. Human-powered wearable computing[J]. IBM System Journal, 1996, 35:618.
    [16] Stordeur M, Stark I. Low power thermoelectric generator-self-sufficient energy supplyfor micro systems[J]. Thermoelectrics, 1997. Proceedings ICT'97. XVI International Conference on, 1997: 575—577.
    [17] Mehra A, Zhang X, Ayon A A, et al. A six-wafer combustion system for a silicon micro gas turbineengine[J]. Microelectromechanical Systems, Journal of, 2000,9(4): 517-527.
    [18] Sim W Y, Kim G Y, Yang S S. Fabrication of micro power source (MPS) using a micro directmethanol fuel cell (μDMFC) for the medical application[J]. Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference on, 2001: 341—344.
    [19] Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems[J]. Sensors & Actuators: A. Physical, 1996, 52(1-3): 8—11.
    [20] Lee S S, White R M. Self-excited piezoelectric cantilever oscillators[J]. Sensors & Actuators: A. Physical, 1996, 52(1-3): 41—45.
    [21] Schmidt V H. Theoretical Electrical Power Output Per Unit Voume of PVF 2 and Mechanical-To-Electrical Conversion Efficiency as Functions of Frequency[J].Sixth IEEE International Symposium on Applications of Ferroelectrics. 1986:538-542.
    [22] Amirtharajah R, Chandrakasan A P, MIT C. Self-powered signal processing using vibration-based powergeneration[J]. Solid-State Circuits, IEEE Journal of, 1998,33(5): 687-695.
    [23] Meninger S, Mur-Miranda J O, Amirtharajah R, et al. Vibration-to-electric energy conversion[J].Very Large Scale Integration(VLSI) Systems,IEEE Transactions on,2001,9(1):64-76.
    [24]Yeh R,Hollar S,Pister K S.Single mask,large force,and large displacement electrostatic linear inchworm motors[J].Microelectromechanical Systems,Journal of,2002,11(4):330-336.
    [25]Lee A P,PISANO A P.Repetitive impact testing of micromechanical structures[J].Sensors and actuators.A,Physical,1993,39(1):73-82.
    [26]Roundy S,Wright P K.A piezoelectric vibration based generator for wireless electronics[J].Smart Mater.Struct.,2004,13:1131-1142.
    [27]Roundy S,Leland E S,Baker J.Improving power output for vibration-based energy scavengers[J].IEEE Pervasive Computing,2005,4:28-36.
    [28]Williams C B,Shearwood C,Harradine M A,et al.Development of an electromagnetic micro-generator[J].Circuits,Devices and Systems,IEE Proceedings-,2001,148(6):337-342.
    [29]Ching N N,Wong H Y,Li W J,et al.A laser-micromachined multi-modal resonating power transducer for wireless sensing systems[J].Sensors & Actuators:A.Physical,2002,97:685-690.
    [30]El-hami M,Glynne-Jones P,White N M,et al.Design and fabrication of a new vibration-based electromechanical power generator[J].Sensors & Actuators:A.Physical,2001,92(1-3):335-342.
    [31]Roundy S,Wright P K,Pister K S.Micro-Electrostatic Vibration-to-Electricity Converters[J].Fuel Cells(methanol),2002,220:22.
    [32]Miyazaki M,Tanaka H,Ono G,et al.Electric-energy generation using variable-capacitive resonator for power-free LSI:efficiency analysis and fundamental experiment[J].Low Power Electronics and Design,2003.ISLPED'03.Proceedings of the 2003 International Symposium on,2003:193-198.
    [33]张福学,王丽坤.现代压电学[M].2001.
    [34]孙慷,张福学.压电学[M].北京:国防工业出版社,1984.
    [35]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社, 1990.
    [36] Yang J S. An Introducton to the Theory of Piezoelectricity[M]. Springer, New York, 2005.
    
    [37] Tiersten H F. Linear Piezoelectric Plate Vibrations[M]. New York: Plenum, 1969.
    [38] Uffc S C 0 T I. IEEE Standard on Piezoelectricity[S]. USA, 1987.
    [39] Sodano H A, Inman D J, Park G. A Review of Power Harvesting from Vibration Using Piezoelectric Materials[J]. The Shock and Vibration Digest, 2004, 36(3):197.
    [40] Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003-2006)[J]. Smart materials and structures, 2007, 16(3): 1.
    [41] Mateu L, Moll F. Review of energy harvesting techniques and applications for microelectronics[J]. Proc. SPIE, 2005, 5837: 359-373.
    [42] Paradiso J A, Starner T. Energy scavenging for mobile and wireless eletronics[J].IEEE Pervasive Computing, 2005,4(1): 18—27.
    [43] Gonzalez, Jose L, Antonio R, Francesc M. A prospect on the use of piezoelectric effect to supply power to wearable electronic devices[J]. 2001,1: 202-207.
    [44] Hausler E, Stein E. Implantable Physiological Power Supply with PVDF Film[J].Ferroelectrics, 1984, 60: 277-282.
    [45] Ramsay M J, Clark W W. Piezoelectric energy harvesting for bio-MEMS applications[J]. Proceedings of SPIE, 2001,4332: 429.
    
    [46] Kendall C. Parastic power collection in shoes mounted devices[D]. MIT, 1998.
    [47] Shenck N S. A Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe[D]. Masters of Science Thesis Proposal, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1999.
    [48] Shenck N S. Piezoelectric shoe power: two approaches[J]. IEEE Computer Society,Internet Page Article, 2002.
    [49] Paradiso J A. Systems for Human-Powered Mobile Computing[C]. Design Automation Conference, 2006 43rd ACM/IEEE. 2006: 645-650.
    [50] Umeda M, Nakamura K, Ueha S. Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator[J]. JPN J Appl Phys Part 1, Regul Rap Short Note Rev Rap, 1996, 35(5): 3267—3273.
    [51] Umeda M, Nakamura K, Ueha S. Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration[J]. Jpn. J. Appl. Phys, 1997,36(5B):3147-3151.
    
    [52] Kimura M. Piezoelectric generation device[P]. US Patent: 5801475.
    [53] Rastegar J, Haarhoff D, Pereira C, et al. Piezoelectric-based energy-harvesting power sources for gun-fired munitions[J]. Proceedings of SPIE, 2006, 6174:61740W.
    [54] Clark W, Ramsay M J. Smart material transducer as power sources for MEMS devices[J]. 2000.
    [55] Han J, von J A, Le T, et al. Novel power conditioning circuits for piezoelectric micropower generators[J]. 2004, 3: 1541 —15463.
    [56] Elvin N G, Elvin A A, Spector M. A self-powered mechanical strain energy sensor[J]. Smart Materials & Structures, 2001,10: 293-299.
    [57] Elvin N G, Elvin A A, Spector M. Implantable bone strain telemetry system and method: US, 6034296[P].
    [58] Priya S. Modeling of electric energy harvesting using piezoelectric windmill[J].Applied Physics Letters, 2005, 87(18): 184101.
    [59] Churchill D L, Hamel M J, Townsend C P, et al. Strain energy harvesting for wireless sensor networks[J]. Smart Structures and Materials, 2003, 5055: 319-327.
    [60] Duggirala R J, Li H, Lai A. An autonomous self-powered acoustic transmitter using radioactive thin films[J]. Ultrasonics Symposium, 2004 IEEE, 2004, 2:1328-1321.
    [61] Glynne-Jones P, Beeby S P, White N M. Towards a piezoelectric vibration-powered microgenerator[J]. 2001,148(2): 68-72.
    [62] Lee B S, He J J, Wu W J, et al. MEMS generator of power harvesting by vibrations using piezoelectric cantilever beam with digitate electrode[J]. Proceedings of SPIE,2006,6169:61690B.
    [63] Sodano H A, Magliula E A, Park G, et al. Electric power generation from piezoelectric materials[J]. The 13th International Conference on Adaptive Structures and Technologies, 7-9 October, 2002.
    [64] Sodano H A, Park G, Leo D J, et al. Use of piezoelectric energy harvesting devices for charging batteries[J]. Smart Structures and Materials, 2003, 5050: 101-108.
    [65] Wang X, Song J, Liu J, et al. Direct-Current Nanogenerator Driven by Ultrasonic Waves[J]. Science, 2007, 316(5821): 102.
    [66] Wang Z L, Song J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J]. Science, 2006, 312(5771): 242-246.
    [67] Cho Y S, Pak Y E, H C, et al. Five-port equivalent electric circuit of piezoelectric bimorph beam[J]. Sensors Actuators, 2000, 84: 140—148.
    [68] Ha S K. Analysis of the asymmetric triple-layered piezoelectric bimorph using equivalent circuit models[J]. J.Acoust.Am., 2001,110: 856-864.
    [69] Sherrit S, Wiederick H D, Mukherjee B K, et al. An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode[J]. Journal of Physics-London-D Applied Physics, 1997,30: 2354-2363.
    [70] Ebenezer D D. Three - port parameters and equivalent circuit of radially polarized piezoelectric ceramic cylinders of finite length[J]. The Journal of the Acoustical Society of America, 1996,99: 2908.
    [71] Shuyu L. Equivalent circuits and directivity patterns of air-coupled ultrasonic transducers[J]. The Journal of the Acoustical Society of America, 2001, 109: 949.
    [72] Koike Y, Tamura T, Ueha S. Electrical Equivalent Circuit of Loaded Thick Langevin Flexural Transducer[J]. Jpn. J. Appi. Phys. Vol, 1997, 36: 3121—3125.
    [73] Tanaka H, Aoyagi R. Analysis of Piezoelectric Bending Accelerometer Using the Equivalent Circuit[J]. Jpn. J. Appi. Phys. Vol, 1996, 35: 3035-3037.
    [74] Koike Y, Hirashima T, Sasaki Y. Analysis and design of AT-cut quartz resonators by three dimensional finite element method[J]. 1997,: 1101 — 1108.
    [75] Tanaka H, Aoyagi R. Analysis of Piezoelectric Bending Accelerometer Using the Equivalent Circuit[J]. Jpn. J. Appi. Phys. Vol, 1996, 35: 3035—3037.
    [76] Aoyagi R, Tanaka H. Equivalent Circuit Analysis of Piezoelectric Bending Vibrators[J]. Jpn. J. Appi. Phys. Vol, 1994,33(5B Pt 1): 3010-3014.
    [77] Shuyu L. Vibration Analysis and Frequency Equation for an Ultrasonic Transducer Consisting of a Longitudinal Vibrator and a Flexural Circular Plate[J]. ACUSTICA,1995,81:53-53.
    [78] Keawboonchuay C, Engel T G. Electrical power generation characteristics of piezoelectric generator under quasi-static and dynamic stress conditions[J]. IEEE Trans.on Plasma Science, 2003,50: 1377—1382.
    [79] Keawboonchuay C, Engel T G. Maximum power generation in a piezoelectric pulse generator[J]. IEEE Trans.on Plasma Science, 2003,31: 123—128.
    [80] Lu F, Lee H P, Lim S P. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications[J]. Smart Materials & Structures, 2004,13: 56—63.
    [81] Yang J S, Zhou H G, Hu Y T, et al. Performance of a piezoelectric harvester in thickness-stretch mode of a plate[J]. IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control, 2005,52(10): 1872—1876.
    [82] Jiang S N, Li X F, Guo S H, et al. A piezoelectric analysis of a vibrating ceramic bimorph for power harvesting[J]. Smart Materials & Structures, 2005, 14: 769—774.
    [83] Hu Y, Hu T, Jiang Q. On the interaction between the harvesting structure and the storage circuit of a piezoelectric energy harvester[J]. International Journal of Applied Electromagnetics and Mechanics, 2008,27(4): 297—309.
    [84] Hu Y, Hu T, Jiang Q. Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester[J]. Acta Mechanica Solida Sinica, 2007,20(004): 296—308.
    [85] Mohan N, Undeland T, Robbins W. Power Electronics: Converters, Applications and Design[M]. Wiley, 1995.
    [86] Ottman G K, Hofmann H F, Lesieutre G A. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode[J]. IEEE Transactions On Power Electronics,2003,18(2):696-703.
    [87]Ottman G K,Hofmann H F,Bhatt A C,et al.Adaptive piezoelectric energy harvesting circuit for wireless remote power supply[J].IEEE Transactions On Power Electronics,2002,17(5):669-676.
    [88]Lesieutre G A,Ottman G K,Hofmann H F.Damping as a result of piezoelectric energy harvesting[J].J.Sound and vibration,2004,269:991-1001.
    [89]胡元太,薛欢,胡洪平,et al.能高效俘能和储能的压电俘能器[P].中国专利,专利号:ZL 2006 1 0031553.9。
    [90]Badel A,Guyomar D,Lefeuvre E,et al.Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion[J].Journal of Intelligent Material Systems and Structures,2005,16(10):889.
    [91]Guyomar D,Badel A,Lefeuvre E,et al.Toward energy harvesting using active materials and conversion improvement by nonlinear processing[J].IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control,2005,52:584-595.
    [92]Hu H,Xue H,Hu Y.A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit[J].Ultrasonics,Ferroelectrics and Frequency Control,IEEE Transactions on,2007,54(6):1177-1187.
    [93]胡洪平,高发荣,薛欢,et al.低频螺旋状压电俘能器结构性能分析[J].固体力学学报,2007,28(001):87-92.
    [94]陈坚.电力电子学-电力电子变换和控制技术[M].北京:高等教育出版社,2002.
    [95]Belyi V V.Fluctuation-dissipation dispersion relation and quality factor for slow processes[J].Physical Review E,2004,69(1):17104.
    [96]徐曼珍.新型蓄电池原理与应用[M].北京:人民邮电出版社,2005.
    [97]Badel A,Benayad A,Lefeuvre E,et al.Single crystals and nonlinear process for outstanding vibration-powered electrical generators[J].IEEE Transactions On Ultrasonics Ferroelectrics And Frequency Control,2006,53(4):673-684.
    [98] Hu Y, Xue H, Hu T, et al. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2008, 55(1): 148-160.
    [99] Interactions inside a coupled oscillation system of bubble-viscous liquid-vessel and the induced stresses and strains within the vessel wall[J]. Journal of Mechanics,2008,24(1): 55-61.
    [100] Bokaian A. Natural frequencies of beams under compressive axial loads[J]. Journal of sound and vibration, 1988,126(1): 49—65.
    [101] Bokaian A. Natural frequencies of beams under tensile axial loads[J]. Journal of sound and vibration, 1990,142(3): 481—498.
    
    [102] Auld B A. Acoustic Fields and Waves in Solids[M]. New York: Wiley, 1973.
    
    [103] Holland R, ErrNisse E P. Design of Resonant Piezoelectric Devices[J]. 1969, :12—16.
    [104] Ferrari M, Ferrari V, Guizzetti M, et al. Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems[J]. Sensors & Actuators: A. Physical, 2008,142(1): 329-335.
    [105]Emanetoglu N W, Patounakis G, Muthukumar S, et al. Analysis of temperature compensated SAW modes inZnO/SiO 2/Si multilayer structures[J]. Ultrasonics Symposium, 2000 IEEE, 2000,1.
    [106] Wu P, Emanetoglu N W, Tong X, et al. Temperature compensation of SAW in ZnO/SiO 2/Si structure[J]. Ultrasonics Symposium, 2001 IEEE, 2001,1.
    [107]Miura M, Matsuda T, Satoh Y, et al. Temperature compensated LiTaO/sub 3//sapphire bonded SAW substrate with low loss and high coupling factor suitable for US-PCS application[J]. Ultrasonics Symposium, 2004 IEEE, 2004,2.
    [108] Lakin K M, McCarron K T, McDonald J F, et al. Temperature compensated bulk acoustic thin film resonators[J]. Ultrasonics Symposium, 2000 IEEE, 2000,1.
    [109]Baumhauer J C, Tiersten H F. Nonlinear electroelastic equations for small fields superposed on a bias[J]. The Journal of the Acoustical Society of America, 1973,54: 1017.
    [110]Tiersten H F. On the accurate description of piezoelectric resonators subject to biasing deformations[J]. International journal of engineering science, 1995, 33(15):2239-2259.
    [111]Yang J. Equations for small fields superposed on finite biasing fields in a thermoelectroelastic body[J]. Ultrasonics, Ferroelectrics and Frequency Control,IEEE Transactions on, 2003, 50(2): 187—192.
    
    [112] Tiersten H F. On the nonlinear equations of thermoelectroelasticity[J]. 1970.
    [113] Yang J S, Zhang X. Vibrations of a constrained crystal plate under a thermal bias[J]. Journal of Thermal Stresses, 2003,26(5): 467—477.
    [114] Tiersten H F. Perturbation theory for linear electroelastic equations for small fields superposed on a bias[J]. The Journal of the Acoustical Society of America, 1978,64: 832.
    [115] Mindlin R D, Yang J, NetLibrary I. An Introduction to the Mathematical Theory of Vibrations of Elastic Plates[M]. World Scientific, 2006.
    [116] Liu Y, Fan H, Yang J. Analysis of the shear stress transferred from a partially electroded piezoelectric actuator to an elastic substrate[J]. Smart Materials and Structures, 2000,9(2): 248-254.
    [117] Mattila T, Oja A, Seppa H, et al. Micromechanical bulk acoustic wave resonator[J].Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, 2002,1.
    [118]Chandrahalim H, Weinstein D, Bhave S A. Thickness shear mode vibrations in silicon bar resonators[J]. Ultrasonics Symposium, 2005 IEEE, 2005,2.
    [119] Miller A, Angenheister G. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology[J]. Journal of Modern Optics, 1985,32(5): 507-508.
    [120] Nelson D F, Cheeke J D. Electric, Optic and Acoustic Interaction in Dielectrics[J].American Journal of Physics, 1982, 50: 952.
    [121] Sinha B K, Tiersten H F. First temperature derivatives of the fundamental elastic constants of quartz[J]. Journal of Applied Physics, 1979, 50: 2732—2739.
    [122] von K T. Festigkeitsprobleme im mashinenbau[J]. Encyklopadie der Mathematischen Wissenschaften, Teubner, Leipzip, 1910,4(4): 348-352.
    [123] Chia C Y. Nonlinear Analysis of Plates[M]. New York: McGraw-HiU Inc, 1980.
    [124] Yamaki N. Influence of large amplitudes on flexural vibrations of elastic plates[J].ZAMM, 1961,41(12): 501—510.
    [125] Hu Y T, Yang J S, Jiang Q. A model for electroelastic plates under biasing fields with applications in buckling analysis[J]. International Journal of Solids and Structures, 2002, 39(9): 2629-2642.
    [126]Tiersten H F. Analysis of intermodulation in thickness shear and trapped energy resonators[J]. The Journal of the Acoustical Society of America, 1975,57: 667.
    [127] Yang J S. A thickness-shear high voltage piezoelectric transformer[J]. International Journal of Applied Electromagnetics and Mechanics, 1999,10(2): 105—121.
    [128] Yang J S. Analysis of a thickness-shear piezoelectric transformer[J]. International Journal of Applied Electromagnetics and Mechanics, 2005,21(2): 131 — 141.
    [129]Hu J, Tseng K J. High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode[J]. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control, 2004, 51(5): 502—509.
    [130] Yang J S, Yang X, Turner J A, et al. Two-dimensional equations for electroelastic plates with relatively large shear deformations[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2003, 50(7): 765—772.
    [131] Bottom V E. Introduction to quartz crystal unit design[M]. New York: Van Nostrand Reinhold, 1982.
    [132]Mindlin R D, Lee P C. Thickness-shear and flexural vibrations of partially plated,crystal plates[J]. International Journal of Solids and Structures, 1966,2: 125—139.
    [133]Mindlin R D, Forray M. Thickness-Shear and Flexural Vibrations of Contoured Crystal Plates[J]. Journal of Applied Physics, 2004,25: 12.
    [134] Wang J, Lee P C, Bailey D H. Thickness-shear and flexural vibrations of linearly contoured crystal strips with multiprecision computation[J]. Computers and Structures, 1999, 70(4): 437—445.
    [135] Lee P C, Wang J. Piezoelectrically forced thickness-shear and flexural vibrations ofcontoured quartz resonators[J]. Frequency Control Symposium, 1995. 49th.,Proceedings of the 1995 IEEE International, 1995: 705—715.
    [136]Stevens D S,Tiersten H F.An analysis of doubly rotated quartz resonators utilizing essentially thickness modes with transverse variation[J].The Journal of the Acoustical Society of America,1986,79:1811.
    [137]Lee P C,Chen S.Vibrations of Contoured and Partially Plated,Contoured,Rectangular,AT-Cut Quartz Plates[J].The Journal of the Acoustical Society of America,1969,46:1193.
    [138]Shindo Y,Narita F,Sosa H.Electroelastic analysis of piezoelectric ceramics with surface electrodes[J].International journal of engineering science,1998,36(9):1001-1009.
    [139]Liu Y,Fan H,Yang J.Analysis of the shear stress transferred from a partially electroded piezoelectric actuator to an elastic substrate[J].Smart Materials and Structures,2000,9(2):248-254.
    [140]Yang J S,Tiersten H F.Elastic analysis of the transfer of sheafing stress from partially electroded piezoelectric actuators to composite plates in cylindrical bending[J].Smart Mater.Struct,1997,6(3):333-340.
    [141]Mindlin R D.High Frequency Vibrations of Piezoelectric Crystal Plates[J].International Journal of Solids and Structures,1972,8:895-906.
    [142]贺玲凤,刘军.声弹性技术[M].北京:科学出版社,2002.
    [143]胡大友.快速充电的基本模式与停充控制方式[J].电气时代,2001(7):16-17.
    [144]Guan M,Liao W H.On the energy storage devices in piezoelectric energy harvesting[J].2006,6169:61690C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700