圆盘式压电发电装置发电性能及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着微机电系统和无线网络技术的不断发展,便携式微电子产品无论是在军事领域还是在民用工业领域都得到了广泛的应用,但以化学电池为微电子、无线网络和MEMS等低耗能器件的供能方式存在质量大、体积大(不利于电子产品微型化)、寿命有限、需定期更换以及由此产生的环境污染等诸多问题。因此,如何向微电子产品无线供能已经成为当前迫切需要解决的问题。基于压电能量转换的压电发电装置是解决此问题的一个行之有效的方法,通过压电发电装置俘获微电子器件工作环境中的振动能并将其转化为电能,从而实现为微电子器件无线供能。由于悬臂梁压电振子直接承载能力小,不能直接应用于高载环境中。针对此问题,本文将以承载能力大且不需任何附加装置就可直接应用于高载环境中的圆盘式压电发电装置为研究对象,针对几种典型的圆盘式压电发电装置的理论计算模型、结构分析和输出性能进行全面的研究。
     钹型压电振子是一种典型的圆盘式压电换能器,本文首先以钹型压电发电装置为研究对象,根据碟簧理论和压电理论,建立了钹型压电发电装置的理论发电模型并进行了数值模拟分析。利用有限元手段分析了其主要结构参数对压电振子输出电压和谐振频率的影响关系,针对钹型压电振子存在环向应力集中而导致其力电转化效率降低的问题,提出了几种对钹型压电振子进行开槽结构的优化方式,分析了槽结构参数对其输出性能的影响关系并确定了其中发电性能最佳的开槽形式。在此基础上,为了研究压电振子结构与能量存储电路间的相互机电耦合作用,建立了钹型压电振子—能量存储电路多物理场机电耦合作用分析模型,并分析了振动频率和负载对压电发电装置输出性能的影响关系,为钹型压电发电装置的结构设计和优化提供理论依据。
     接着以力电转化效率更高的鼓型压电发电装置为研究对象。利用薄板振动理论和压电理论,建立了鼓型压电换能器的谐振频率计算模型。将鼓型换能器作为压电振子进行压电发电性能研究,建立了鼓型压电发电装置发电性能的数学模型并进行数值模拟分析。对鼓型压电振子进行有限元仿真分析,获得了其关键结构参数对鼓型压电振子谐振频率和发电特性的影响规律,并在此基础上,对鼓型压电振子—能量存储电路进行了多物理场机电耦合作用仿真分析,为鼓型压电发电装置的实际应用提供了理论依据。
     在综合考虑了这两种压电换能器的优点后,提出了一种钹鼓复合型压电换能器,它既具有钹型换能器高的承载能力还具有鼓型换能器高的机电能量转化效率。首先分析了钹鼓复合型换能器主要结构参数对其发电、变形性能和谐振频率的影响关系,以此确定换能器合理的结构尺寸参数;然后建立复合型压电振子—能量存储电路的机电耦合作用分析模型,针对负载和振动频率对压电发电装置输出性能的影响关系进行了研究。
     综合前述章节的研究内容,根据压电振子的发电特点和实际需要,选择并设计了合理的能量存储电路;采用合理工艺制造了压电振子实验样机,最大程度地减小工艺环节的误差对压电振子各项性能指标的影响;最后分别对本文所研究的几种压电发电装置的发电性能进行实验测试。研究结果表明,压电发电装置输出功率随振动频率增加而增加;随负载的增大先增大后减小,存在一个最佳的匹配负载使输出功率达到最大,实验验证了理论分析的正确性。鼓型压电发电装置的能量密度最高,最大达到了980 W/m3,但相对钹型压电发电装置其承载能力小,不能直接工作于高载环境中,而钹鼓复合型压电发电装置既具有高的能量密度且具有高的承载能力,相比较来说是其中综合性能最优异的压电发电装置。
With the recent advances in microelectro-mechanical systems and wireless technology, the demand for portable electronics is growing rapidly in martial filed and civil industries. However, a traditional electrochemical battery can no longer meet the needs of advanced sensing technology due to its limited large volume, large weight, service life, difficulty in replacement and environmental pollution. Thus, the power of micro-electronics products is need to imminently consider. Much attention has been paid to scavenging energy from the ambient environment in recent years because it can supply the power micro-electronics products. The piezoelectric cantilever energy harvester has difficulties to work directly without some fractures in the high stress condition due to its less ability of the mechanical stability. It has been found that the circular metal-ceramic transducers have the capability to withhold dynamic high stresses. The calculated modal, structural analysis and output power of the typical metal-ceramic energy harvesters were investigated in detail.
     Cymbal harvester is a typical metal-ceramic transducer which is studied for scavenging vibration energy. Based on the force analysis and piezoelectric theory, a mathematical modal of the cymbal transducer was presented to calculate the output power of the energy harvester. The effects of structural parameters on the output voltage and resonant frequency of the cymbal transducer were analyzed by ANSYS. Some optimal methods which could increase the conversion efficiency were presented to decrease the circular stress of the cymbal transducer. The effects of the structural parameters of slots on the output voltage were also analyzed and an optimal method was confirmed. In order to study the coupling action between piezoelectric and electric circuit sides, a model of the piezoelectric structure and electric circuit was developed, and the effects of the vibrated frequency and resistive load on the output power were presented which can be useful to design the cymbal energy harvester.
     The drum energy harvester was studied due to the high effective piezoelectric charge coefficient. Based on the vibrated theory of the thin plate and piezoelectric theory, a modal was developed to calculate the resonant frequency. Power generation from the drum transducer was modeled by using the piezoelectric theory. The relationship between the structural parameters, output voltage and resonant frequency of the drum transducer were analyzed by ANSYS. The coupling action between piezoelectric and electric circuit sides of the drum energy harvester which can be useful for application was studied.
     A novel transducer which should withhold cyclic high stresses and have high effective piezoelectric charge coefficient was design due to the advantages of the cymbal and drum transducer. The effects of the structural parameters on the output voltage, displacement and resonant frequency were analyzed to confirm the reasonable structural parameters. A model of the piezoelectric structure and electric circuit of the cymbal-drum transducer was developed to analyze the effects of the vibrated frequency and resistive load on the output power.
     Integration of the previous studies, energy storage circuits were designed. And a reasonable technics which can decrease the errors among the transducers was selected to fabricate the transducer. The output power of the energy harvesters were measured by the experimental methods. The results show that the output power initially increases with the resistive load, whereas it will decrease when the resistive load is further increased. At each of these frequencies, it has an optimal load corresponding to the maximum output power density. It can be found that the results obtained from the theoretical modal are in very good agreement with those from experimental results. The results also show that the drum energy harvester has the highest power density which can reach 980 W/m3, however the drum transducer can’t used directly in the high stresses condition. The cymbal-drum transducer has the high effective piezoelectric charge coefficient and can work directly in the high stresses condition. Compared with the cymbal and drum energy harvester, the cymbal-drum energy harvester is optimal.
引文
1 D. Cullar, D. Esrill, M. Strvastuva. Overview of Sensor Network. Computer. 2004, 37(8): 41~49
    2李亚平.一种基于微型无线传感网络的路由算法.微机电技术应用. 2007, 8(2): 25~28
    3崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展.计算机研究与发展. 2005, 42(1): 163~174
    4 I. Alcyildia, W. Su, Y. Sanakarasuhtamaniam, E. Cayirci. Wireless Sensor Networks: a Survey. Computer Networks. 2002, 38(4): 393~422
    5 A. Chandrakasan, R. Amirtharajah, J. Goodman, W. Rabiner. Trends in Low Power Digital Signal Processing. 1998: 604~607
    6 W. R. Davis, N. Zhang, K. Camera, D. Markovic, T. Similkstein, M. J. Ammer and R. W. Brodersen. A Design Environment for High Throughput. Dedicated Signal Processing Systems. 2001, 50: 545~548
    7杨增涛.新型压电器件的力电耦合分析与结构设计.中南大学博士论文. 2009: 5~10
    8 W. H. Liao, D. H. Wang, S. L. Huang. Wireless Monitoring of Cable Tension of Cable-Stayed Bridges Using PVDF Piezoelectric Films. Journal of Intelligent Material Systems and Structures. 2001, 12(5): 331~339
    9 J. A. Paradiso, T. Starner. Energy Scavenging for Mobile and Wireless Electronics. IEEE Pervasive Computing. 2005, 4(1): 18~27
    10 K. L. Lee, C. P. Lau, H. F. Tse, D. S. Echt, D. Heaven. First Human Demonstration of Cardiac Stimulation with Transcutaneous Ultrasound Energy Delivery Implications for Wireless Pacing with Implantable Devices. Journal of the American College of Cardiology. 2007, 50(9): 877~883
    11 T. S. Saponas, J, Lester, C. Hartung. Devices that Eell on You: Privacy Trends in Consumer Ubiquitous Computing. In: 16th USENIX Security Symposium, Boston. 2007, 55~70
    12 M. Billinghurst, T. Starner. Wearable Devices: New Ways to Manage Iinformation. Computer. 1999, 32(1): 57~64
    13温中泉.微型振动式发电机的基础理论及关键技术研究.重庆大学硕士论文. 2003: 40~42
    14 N. H. Clark and D. H. Doughty. Development and Testing of 100kW/1 Min Liion Battery Systems for Energy Storage Applications. Journal of Power Sources.2005, 146: 798~803
    15汤小川,张宇峰,张博,王喜莲,刘晓为.基于MEMS技术的微型直接甲醇燃料电池的设计与制作.纳米技术与精密工程. 2009, 7(1): 76~81
    16 R. Hahn , S. Wagner, A. Schmitz, H. Reichl. Development of a Planar Micro Fuel Cell with Thin Film and Micro Patterning Technologies. Journal of Power Sources. 2004, 131: 73~78
    17 O. Erick, A. Gabriel. Rincon-Mora, Long-lasting, Self-sustaining, and Harvesting System-in-package (SIP) Wireless Micro-sensor. Conf. on Energy Environment and disasters, Charlotte, NC, USA. 2005, July 24~30
    18 S. Erten, E. Eren and S. Icli. Dye Sensitized Solar Cell Based on 1,8-naphthalene Benzimidazole Comprising Carboxyl Group. European Physical Journal. 2007, 38: 227~230
    19 V. Leonov, T. Torfs, R. Fiorini. Thermoelectric Converters of Numan Warmth for Self-powered Wireless Sensor Nodes. IEEE Sensors Jouranl. 2007, 7: 650~657
    20 C. B. Williams, R. B. Yates. Analysis of a Microelectric Generator for Microsystems. Sensors and Actuators A. 1996, 52: 8~11
    21 N. N. Ching, G. M. Chan, W. J. Li, H. Yung, P. H. W. Leong. PCB Integrated Micro-generator for Wireless Systems. International Symposium Smart Structures and Microsystems. 2000: 19~21
    22 S. Meninger, J. O. Mur-miranda, R. Amirtharajah, A. P. Chandrakasan and J. H. Lang. Vibration-to-electric Energy Conversion. IEEE Transactions on very Large Scale Integration Systems. 2001, 9(1): 64~76
    23 F. Peano, T. Tambosso, E. D. Di. Design and Optimization of a MEMS Electret-based Capacitive Energy Scavenger. Journal of Microelectromechanical Systems. 2005, 14(3): 429~435
    24 T. Sterken, K. Baert, R. Puers. A New Power MEMS Component with Variable Capacitance. In Proc.2003 Pan Pacific Symposium Conf. 2003, 27~34
    25 S. Roundy. Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Wlectricity Conversion: (dissertation). Berkeley: The University of California. 2003: 56~68
    26杜小振.环境振动驱动微型压电发电装置的关键技术研究.大连理工大学博士论文. 2008: 17~18
    27 S. Roundy, P. K. Wright, J. Rabaey. A Study of Low Lever Vibrations as a Power Source for Wireless Sensor Nodes. Computer Communications. 2003, 26: 1131~1144
    28 S. Roundy, P. K. Wright. A Piezoelectric Vibration Based Generator for Wireless Electronics. Smart Materials and Structures. 2004, 13: 1131~1142
    29 S. Roundy, E. S. Leland, J. Baker. Improving Power Output for Vibration-based Energy Scavengers. IEEE Pervasive Computing. 2005, 4: 28~36
    30 H. A. Sodano, D. J. Inman, G. Park. A Review of Power Harvesting from Vibration using Piezoelectric Materials. The Shock and Vibration Digest. 2004, 36(3): 197~205
    31 L. Mateu, F. Moll. Review of Energy Harvesting Eechniques and Applications for Microelectronics. Proc. SPIE. 2005, 5837: 359~373
    32 B. S. Lee, J. J. He, W. J. Wu, W. P. Shih. MEMS Generator of Power Harvesting by Vibrations using Piezoelectric Cantilever Beam with Digitate Electrode. Proc. Smart Structures and Materials Conf.; Proc. SPIE. 2006, 6169: 61690B
    33 C. S. Lee, J. Joo, S. Han, S. K. Koh. Multifunctional Transducer using Poly (vinylidene fluoride) Active Layer and Highly Conducting Poly (3, 4-ethylenedioxythiophene) Electrode: Actuator and Generator. Apply Physical Letter. 2004, 85: 1841~1844
    34 C. S. Lee, J. Joo, S. Han. Poly (vinylidene fluoride) Transducers with Highly Conducting Poly (3, 4-ethylenedioxythiophene) Electrodes Proc. Int. Conf. on Science and Technology of Synthetic Metals. 2005, 152: 49~52
    35 F. Mohammadi, A. Khan, R.B. Cass. Power Generation from Piezoelectric Lead Zirconate Titanate Fiber Composites Proc. Materials Research Symp. 2003: 736~739
    36 D. L. Churchill, M. J. Hamel, C. P. Townsend, W. Steven. Strain Energy Harvesting for Wireless Sensor Networks. Proc. Smart Struct. and Mater. Conf.; Proc. SPIE. 2003: 319~327
    37 J. Baker, S. Roundy, P. Wright. Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks Proc. 3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA, Aug.). 2005: 959~970
    38 J. S. Yang, H. G. Zhou, Y. T. Hu, Q. Jiang. Performance of a Piezoelectric Harvester in Thickness-stretch Mode of a Plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2005, 52: 1872~1878
    39 C. D. Richards, M. J. Anderson, D. F. Bahr, R. F Richards. Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component. Micromech. Microeng. 2004, 14: 717~721
    40程光明,庞建志,唐可洪,杨志刚,曾平,阚君武.压电陶瓷发电能力测试系统的研制.吉林大学学报. 2007, 37(2): 367~371
    41龚立娇.基于压电材料的能量采集研究.南京航空航天大学硕士论文. 2008: 24~42
    42张国良.压电振子在旋转机构上的发电能力的试验研究.吉林大学硕士论文. 2006: 50~60
    43贺学锋,温志渝,温中泉,尚正国,刘海涛,廖海洋.振动式压电发电机的理论模型与实验.纳米技术与精密工程. 2007, 5(4): 307~310
    44温志渝,温中泉,贺学锋,廖海洋,刘海涛.振动式压电发电机及其在无线传感器网络中的应用.机械工程学报. 2008, 44(11): 75~79
    45 T. H. Ng, W. H. Liao. Feasibility Study of a Self-powered Piezoelectric Sensor Proc. Smart Structures and Materials Conf. Proc. SPIE, 2004, 5389: 377~88
    46 T. H. Ng, W. H. Liao. Sensitivity Analysis and Energy Harvesting for a Self-powered Piezoelectric Sensor. Journal of Intelligent Material Systems and Structures. 2005, 16: 785~797
    47阚君武,唐可洪,王淑云,杨志刚,贾杰,曾平.压电悬臂梁发电装置的建模与仿真分析.光学精密工程. 2008, 16(1): 71~76
    48 S. N. Jiang, X. F. Li, S. H. Guo, Y. T. Hu, J. S. Yang and Q. Jiang. Performance of a Piezoelectric Bimorph for Scavenging Vibration Energy. Smart Materials and Structures. 2005, 14: 769~774
    49 T. A. Anderson and D. W. Sexton. A Vibration Energy Harvesting Sensor Platform for Increased Industrial Efficiency. Proc. Smart Structures and Materials Conf. Proc. SPIE. 2006, 6174~61741Y
    50 S. R. Platt, S. Farritor, H. Haider. On Low-frequency Electric Power Generation with PZT Ceramics. IEEE/ASME Trans. Mechatronics. 2005, 10: 240~252
    51 L. Mateu, F. Moll. Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts. Journal of Intelligent Material Systems and Structures. 2005, 16: 835~845
    52胡洪平,高发荣,薛欢,胡元太.低频螺旋状压电压电发电装置结构性能分析.固体力学学报. 2007, 28(1): 87~92
    53 M. Ericka, D. Vasic, F. Costa, G. Poulin and S. Tliba. Energy Harvesting from Vibration using a Piezoelectric Membrane. Physique. Coll. 2005, 128: 187~93
    54曾平,刘艳涛,吴博达,程光明,杨志刚,阚君武.一种新型压电式无线发射装置.吉林大学学报(增刊). 2006, 36(2): 78~82
    55陈子光,胡元太,杨嘉实.基于扭转模态的角振动压电压电发电装置研究.应用数学与力学. 2007, 28(6): 693~699
    56 H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham and H. F. Hofmann. Energy Harvesting Using a Piezoelectric Cymbal Transducer in Dynamic Environment. Japanese Journal of Applied Physics. 2004, 43(9): 6178~6183
    57 H. W. Kim, S. Priya and K. Uchino. Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers. Japanese Journal of Applied Physics. 2006, 45(7): 5836~5840
    58 R. E. Newnham, J. Zhang. Cymbal Transducer: a Review. Proceedings of the
    12th IEEE International Symposium on Applications of Ferroelectrics, Honolulu, HI, United states. 2001, 29~32
    59 S. Wang, H. L. Kwok, C. L. Sun, K. W. Kwok, H. L. W. Chan, M. S. Guo and X. Z. Zhao. Energy Harvesting with Piezoelectric Drum Transducer. Applied Physics Letters. 2007, 90(11): 113506~113509
    60 P. J. Cornwell, J. Goethal, J. Kowko, M. Damianakis. Enhancing Power Harvesting Using a Tuned Auxiliary Structure. Journal of Intelligent Material Systems and Structures. 2005, 16: 825~834
    61 S. Roundy, Y. Zhang. Toward Self-tuning Adaptive Vibration Based Micro-generators. Smart Materials, Nano and Micro-Smart Systems (Sydney, Dec). 2005, 35~41
    62 S. M. Shahruz. Design of Mechanical Bandpass Filters for Energy Scavenging. Journal of Sound Vibration. 2006, 292: 987~998
    63 S. M. Shahruz. Limits of Performance of Mechanical Band-pass Filters Used in Energy Scavenging. Journal of Sound Vibration. 2006, 293: 449~461
    64 H. Xue, Y. T. Hu, and Q. M. Wang. Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs with Different Operating Frequencies. IEEE Transactions on Ultrasonics, Feroelectrics, and Frequency Control. 2008, 55(9), 2104~2108
    65 Z. T. Yang, J. S. Yang. Connected Vibrating Piezoelectric Bimorph Beams as a Wide-band Piezoelectric Power harvester. Journal of Intelligent Material Systems and Structures. 2009, 20(5): 569~574
    66 J. Han, A. Jouanne A, T. Le, K. Mayaram, T. S. Fiez. Novel Power Conditioning Circuits for Piezoelectric Micro Power Generators. Proc.19th Ann. IEEE Applied Power Electronics Conf. and Exposition Conf. 2004, pp.1541~1546
    67 G. K. Ottman, H. F. Hofmann, G. A. Lesieutre. Optimized Piezoelectric Energy Harvesting Circuit Using Step-down Converter in Discontinuous Conduction Mode. Proc. IEEE 33rd Annual Power Electronics Specialists Conf.(Cairns, Queensland, June). 2002, 4: 1988~1994
    68 G. A. Lesieutre, G. K. Ottman, H. F. Hofmann. Damping as a Result of Piezoelectric Energy Harvesting. Journal of Sound Vibration. 2004, 269(3): 991~1001
    69 Y. Ammar, A. Buhrig, M. Marzencki, B. Charlot, S. Basrour, K. Matou and M.Renaudin. Wireless Sensor Network Node with Asynchronous Architecture and Vibration Harvesting Micro Power Generator. Proc.2005 Joint Conf.on Smart Objects and Ambient ibeuntelligence: Innovative Context-Aware Services: Usages and Technologies (Grenoble). 2005, pp. 287~292
    70 E. Lefeuvre, A. Badel, C. Richard, D. Guyomar. Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures. 2005, 16: 865~876
    71 E. Lefeuvre, A. Badel, C. Richard, D. Guyomar. High Performance Piezoelectric Vibration Energy Reclamation. Proc. Smart Structures and Materials Conf.; Proc. SPIE. 2004, 5390: 379~387
    72 A. Badel, D. Guyomar, E. Lefeuvre, C. Richard. Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion. Journal of Intelligent material Systems and Structures. 2005, 16: 889~901
    73 D. Guyomar, A. Badel, E. Lefeuvre, C. Richard. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. IEEE Transactions on Ultrasonics, Fcrroelectrics, and Frequency Control. 2005, 52: 584~594
    74 E. Lefeuvre, A. Badel, A. Benayad A, L. Petit and D. Guyomar. A Comparison between Several Approaches of Piezoelectric Energy Harvesting. Physique Coll. 2005, 128: 177~186
    75 E. Lefeuvre, A. Badel, C. Richard, L. Petit and D. Guyomar. A Comparison between Several Vibration-powered Piezoelectric Generators for Standalone Systems. Sensors Actuators A. 2006, 126: 405~416
    76 Y. T. Hu, H. Xue, T. Hu, H. P. Hu. Nonlinear Interface Between the PiezoelectricHarvesting Structure and the Modulating Circuit of an Energy Harvester with a Real Storage Battery. IEEE Transactions on Ultrasonics Fcrroelectrics and Frequency Control. 2008, 55(1): 148~160
    77 J. P. Ayers, D. W. Greve, I. J. Oppenheim. Energy Scavenging for Sensor Applications Using Structural Strains. Proc. Smart Structures and Materials Conf.; Proc. SPIE. 2003, 5057: 364~375
    78 H. A. Sodano, D. J. Inman, G. Park. Generation and Storage of Electricity from Power Harvesting Devices. Journal of Intelligent Material Systems and Structures. 2005, 16: 67~75
    79 M. Guan, W. H. Liao. On the Energy Storage Devices in Piezoelectric Energy Harvesting. Proc. Smart Structures and Materials Conf.; Proc. SPIE. 2006, 6169: 61690C
    80 E. Hausler, S. Stein. Implantable Physiological Power Supply with PVDF Film. Ferroelectrics. 1984, 60: 277~282
    81 S. Tarner. Human Wearable Computing. IBM Systems Journal. 1996, 35: 618~629
    82 C. Kendall. Parastic Power Collection in Shoes Mounted Devices. MIT. 1998: 267~272
    83 N. A. Shenck. Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe, a MS Thesis. 1999: 21~35
    84 N. S. Shenck. Piezoelectric Shoe Power: two Approaches. IEEE Computer Society. 2002, 11(3): 21~25
    85 J. A. Paradiso. Systems for Human-Powered Mobile Computing. 2006: 263~286
    86 N. G. Elvin, A. A. Elvin, M. Spector. A Self-powered Mechanical Strain Energy Sensor. Smart Materials and Structures. 2001, 10: 293~299
    87 N. G. Elvin, A. A. Elvin, M. Spector. Implantable Bone Strain Telemetry System and Method: US, 6034296
    88 Z. L. Wang, J. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 2006, 312(5771): 242~246
    89 Y. Ammar, A. Buhrig, M. Marzencki, B. Charlot, S. Basroutr, K. Matou and M. Renaudin. Wireless Sensor Network Node with Asynchronous Architecture and Vibration Harvesting Micro Power Generator. Joint SOC-EUSAI Conference Grenoble, October 2005, pp.287~292
    90 E. S. Leland, E. M. Lai, P. K. Aright. A Self-powered Wireless Sensor for Indoor Environmental Monitoring. WNCG Conference, Austin, TX, 2004, pp.267~278
    91 N. S. Shenck, J. A. Paradiso. Energy Scavenging with Shoe-mounted Piezoelectrics. IEEE Micro. 2001, 21: 30~42
    92 S. Priya. Modeling of Electric Energy Harvesting Using Piezoelectric Windmill. Applied Physics Letter. 2005, 87: 184101~184103
    93 G. W Taylor, J. R Burns, S. A Kammann. The Energy Harvesting Eel: a Small Subsurface Ocean/River Power Generator. IEEE Journal of Oceanic Engineering. 2001, 26(4): 539~547
    94 S. W. Arms, C. P. Townsend, D. L. Churchill, J. H. Galbreath, S.W. Mundell. Power Management for Energy Harvesting Wireless Sensors. Proc. Smart Structures and Materials Conf. Proc. SPIE. 2005, 5763: 267~275
    95 J. F. Fernandez, A. Dogan, J. F. Tressler, K. Uchino et al. Tailoring the Performance of Ceramic-metal Piezocomposite Actuators Cymbals. Sensors and Actuators A. 1998, 65: 228~237
    96 S. Timoshenko. Strength of Materials. New York: D. Van Nostrand Co. 1930:172~175
    97林世裕.膜片弹簧与碟形弹簧离合器的设计与制造.科学出版社. 1995: 25~26
    98张福学,王丽坤.现代压电学.科学出版社. 2001: 94~95
    99奕桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京大学出版社. 1990: 110~115
    100曲远方.功能陶瓷的物理性能.北京:化学工业出版社. 2007: 183~185
    101 J. D. Zhang, A. Hladky-Hennion, W. J. Hughes, E. Newnhanm. Modeling and Underwater Characterization of Cymbal Transducers and Arrays. IEEE Transactions on Ultrasonics Fcrroelectrics and Frequency Control. 2001, (48): 560~568
    102 F. James. J. F. Tressler, W. W Cao, K. Uchino, E. Newnhanm. Finite Element Analysis of the Cymbal-Type Flextensional Transducer. IEEE Transactions on Ultrasonics Fcrroelectrics and Frequency Control. 1998, 45: 1363~1368
    103朱建国,骆英.压电驱动器性能的有限元分析.压电与声光. 2006, 28(1): 27~30
    104娄利飞,杨银堂,樊永祥,李跃进.压电薄膜微传感器振动模态的仿真分析.振动与冲击. 2006, 25(4): 165~168
    105邢志波,孙成亮,刘光聪,赵兴中. Cymbal换能器试验研究.压电与声光. 2007, 29(3): 273~275.
    106 Y. L. Ke, T. Guo, J. X. Li. A New-style, Slotted-cymbal Transducer with Large Sisplacement and High Energy Transmission. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2004, 51(9): 1171~1177
    107 J. W. Sohn, S. B. Choi1, D. Y. Lee. An Investigation on Piezoelectric Energy Harvesting for MEMS Power Sources. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2003: 429~436
    108 C. L. Sun, K. H. Lam, H. L. W. Chan, X. Z. Zhao and C. L. Choy. A Novel Drum Piezoelectric-actuator. Applied Physics A. 2006, 84: 385~389
    109 C. L. Sun, K. H. Lam, S. G. Lu, H. L. W. Chan, X. Z. Zhao and C. L. Choy. Effect of Geometry on the Characteristics of a Drum Actuator. Journal of Intelligent Material Systems and Structures. 2007, 18: 1~6
    110徐芝纶.弹性力学.人民教育出版社. 1982: 72~95
    111穆廷荣.压电陶瓷和金属构成的复合薄圆板的强迫振动—B:均匀声压策动.声学学报. 1983, 8(6): 364~373
    112曹志远.板壳振动理论.中国铁道出版社. 1989: 85~99
    113 J. S. Yang, H. Y. Fang. Analysis of a Rotationg Elastic Beam with Piezoelectric Films as an Angular Rate Sensor. IEEE Transactions on Ultrasonics, Fcrroelectrics, and Frequency Control. 2002, 49(6): 798~804
    114 S. N. Jiang, Y. T Hu. Analysis of a Piezoelectric Bimorph Plate with a Central-attached Mass as an Energy Harvester. IEEE Transactions on Ultrasonics, Fcrroelectrics, and Frequency Control. 2007, 54(7): 1463~1469
    115 B. A. Auld. Acoustic Fields and Waves in Solids. New York: Wiley. 1973, vol 1, pp.357~382
    116 Y. C. Shu and I. C. Lien. Analysis of Power Output for Piezoelectric Energy Harvesting Systems. Smart Materials and Structures. 2006, 15: 1499~1512
    117 E. Lefeuvre, A. Badel, D. Audigier D. Toward Buck-Boost Converter for Sensorless Power Optimization of Piezoelectric Energy Harvester. IEEE Transactions on Ultrasonics, Fcrroelectrics, and Frequency Control. 2007, 22(5): 2018~2025
    118杨世彦.电工学中册.机械工业出版社. 2003: 26~32
    119 P. Ochoa, J. L. Pons, M. Villegas. Effect of Bonding Layer on the Electromechanical Response of the Cymbal Metal-ceramic Piezocomposite. Journal of the European Ceramic Society. 2007, 27:1143~1149
    120 Y. C. Shu and I. C. Lien. Analysis of Power Output for Piezoelectric Energy Harvesting Systems. Smart Materials and Structures. 2006, 15:1499~1512
    121 Y. Liao and H. A. Sodano. Structural Effects and Energy Conversion Efficiency of Power Harvesting. Journal of Intelligent Material Systems and Structures. 2009, 20: 505~514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700