悬臂梁式压电俘能器俘能性能的仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统、便携式电子设备及无线传感器的广泛应用,如何向微电子产品供能已经成为当前研究的热点问题。由于传统的化学电池供能方式有明显的不足,比如电池能量有限,使用寿命短,环境污染以及需要定期更换等,迫切需要新的供能方式。研究人员开始致力于寻求在环境中提取能量为微电子产品供能的方法。压电发电装置具有俘能效率高、发热小、环境友好,无电磁干扰、易加工,便于微型化和集成化等诸多优点,具有良好的应用前景,逐渐成为研究热点。其中悬臂梁式压电俘能器结构简单,谐振频率低,与环境中的振动频率相接近,一般工作在谐振状态下,能输出较高的能量,因此本文以悬臂梁式压电俘能器为研究对象,针对其俘能性能进行了仿真分析和实验研究。
     首先对悬臂梁式压电俘能器进行了仿真分析,把压电俘能器等效为一个包括理想电压源、电阻、电感和电容的电源,并得出不同频率下的参数值。在此基础上,进行了负载阻抗的仿真分析,分析了负载阻抗为匹配的电阻、电容和电感时压电俘能器的最优输出功率;然后进一步分析了阻尼比对悬臂梁式压电俘能器俘能性能的影响。
     接着建立了单悬臂梁式压电俘能器、多悬臂梁式压电俘能器和多模态宽频压电俘能器的有限元模型,并分析了末端质量块对俘能性能的影响。然后通过ANSYS和Multisim仿真分析比较了三种悬臂梁式压电俘能器的俘能性能。
     最后,为了验证仿真分析的正确性,制作了多套悬臂梁式压电俘能器装置并搭建了实验系统。并利用激光测振仪和阻抗分析仪测量了各类压电俘能器的振动模态和阻抗特性,测量结果与仿真分析结果基本吻合。对各类压电俘能器进行了能量采集实验,求出了各类压电俘能器的匹配阻抗并比较分析了各类压电俘能器的俘能性能。
With the wide utilization of MEMS, portable electronic equipment and wireless sensors, how to supply sufficient energy to the microelectronic products became a hotspot in research community currently. Traditional chemical battery has a huge amount of drawbacks, such as limited energy storage, short battery life, environmental pollution and periodic replacement requirement. Therefore, researchers start to find a method which can harvest the energy from the environment in order to support microelectronic products. An alluring prospect of piezoelectric power generator has been showed in front of us, because of its high efficiency, low hear emission, environment friendliness, non-electromagnetic interference, processing simplicity, microminiaturizing and integrating easiness. This paper will mainly describe the research of cantilever beam piezoelectric energy harvester because of its simple structure, low resonant frequency, closeness to the environmental frequency, and good performance in resonance condition.
     In this research, cantilever beam piezoelectric energy harvester is initially analyzed through the ANSYS simulation. Piezoelectric energy harvester is equivalent to a power source including an ideal voltage source, a resistance, an inductance and a capacitance. Through the simulation, the parameters of various frequencies are obtained. Based on this equivalent circuit, this paper analyzes the optimal power output while the load impedance is the matching resistance, inductance and capacitance. Then, the impact of the damping ratio on performance of piezoelectric energy harvester is analyzed.
     The finite element simulation models of single cantilever beam, multiple cantilever beam and multi-mode broadband piezoelectric energy harvester are developed and the impact of tip mass on harvester output performance is analyzed. Then through the ANSYS and Multisim simulation, three different piezoelectric energy harvesters’output performances are compared.
     Finally, cantilever beam piezoelectric energy harvesters’experimental system is established to verify the results of simulation analysis. The laser vibrometer and impedance analyzer test the vibration modes and impedance of harvesters, and the results basically match the simulation analysis. Then, the experiment does the energy harvesting research on different piezoelectric energy harvesters, gets the matching impedance and compares the output performances of different piezoelectric energy harvesters.
引文
[1]方科,李欣欣,杨志刚,程光明,阚君武.压电式能量获取装置的研究现状.传感器与微系统. 2006, 2(l0): 7~9.
    [2]杜小振,褚金奎,朴相镐,张海军.基于微型悬臂梁的发电机制探索.中国机械工程. 2005, 16: 41~43.
    [3] A. J. Schoenecker, T. Daue, B. Brueckner, et al. Overview on macro fiber composite applications-art. no. 61701K. Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics. 2006, 6170: K1701-K1701.
    [4]张福学.现代压电学上册.北京:科学出版社. 2001: 84.
    [5]马惠铖.压电效应及压电材料的研究.动力及电气工程. 2010:119.
    [6] Lee C S, Joo J, Han S, Lee J H and Koh S K. Poly(vinylidene fluoride) transducers with highly conductingpoly (3,4-ethylenedioxythiophene) electrodes. Proc. Int.Conf.on Science and Technology of Synthetic Metals. 2005, 152:49-52.
    [7] Lee C S, Joo J, Han S and Koh S K. Multifunctional transducer using poly active layer and highly conducting poly electrode: actuator and generator. Appl. Phys. Lett. 2004, (85): 1841-1844.
    [8] Mohammadi F, Khan A, Cass R B. Power generation from piezoelectric lead zirconate titanate fiber composites Proc [J]. Materials Research Symp, 2003: 736-739.
    [9] D.L.Churchill , M.J.Hamel , C.P.Townsend , W.Steven. Strain Energy Harvesting for Wireless Sensor Networks Proc.3rd Int. Enertu Conversion Engineering Conf. (San Francisco,CA,Aug.). 2005: 959~970.
    [10] Baker J, Roundy S and Wright P. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. Proc.3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA, Aug.). 2005, 959-970.
    [11] S.Roundy,E.S.Leland,J.Baker. Improving Power Output for Vibration-based Energy Scavengers. IEEE Pervasive Computing.2005,4: 28~36.
    [12] Richards C D, Anderson M J, Bahr D F and Richards R F. Efficiency of energy conversion for devices containing a piezoelectric component. Micromech. Microeng[J]. 2004, (14):717-721.
    [13] J.W.Sohn,S.B.Choi and D.Y.Lee. An Investigation on Piezoelectric Energy Harvesting for MEMS Power Sourses J.Mech.Eng. Sci. 2005:429~436.
    [14]阚君武,唐可洪,王淑云,杨志刚,贾杰,曾平.压电悬臂梁发电装置的建模与仿真分析.光学精密工程. 2008, 16(1): 71~76.
    [15] T. H. Ng, W. H. Liao. Feasibility Study of a Self-powered Piezoelectric Sensor Proc. Smart Structures and Materials Conf. Proc. SPIE, 2004, 5389: 377~88.
    [16] T. H. Ng, W. H. Liao. Sensitivity Analysis and Energy Harvesting for a Self-powered Piezoelectric Sensor. Journal of Intelligent Material Systems and Structures. 2005, 16: 785~797.
    [17]李知远.悬臂梁式压电俘能器理论与实验研究.哈尔滨工业大学硕士学位论文. 2008: 24~50.
    [18] H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham and H. F. Hofmann. Energy Harvesting Using a Piezoelectric Cymbal Transducer in Dynamic Environment. Japanese Journal of Applied Physics. 2004, 43(9): 6178~6183.
    [19] H. W. Kim, S. Priya and K. Uchino. Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers. Japanese Journal of Applied Physics. 2006, 45(7): 5836~5840.
    [20] C. L. Sun, K. H. Lam. A novel drum piezoelectric-actuator. Appl. Phys.2006,6: 385~389.
    [21] S. Wang, K. H. Lam, C. L. Sun, K. W. Kwok, H. L. Chan, M. S. Guo, X. Z. Zhao. Energy harvesting with piezoelectric drum transducer. Applied physics letters. 2007, 90:113506~113509.
    [22] S. N Jiang, Y. T. Hu. Analysis of a Piezoelectric Bimorph Plate with a Central-Attached Mass as an Energy Harvester, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2007, 54(7):1463~1469.
    [23] S. R. Platt, S. Farritor, H. Haider. On Low-frequency Electric Power Generation with PZT Ceramics. IEEE/ASME Trans. Mechatronics. 2005, 10: 240~252.
    [24]胡洪平,高发荣,薛欢,胡元太.低频螺旋状压电俘能器结构性能分析.固体力学学报. 2007.(3): 87-92.
    [25] C. Kendall. Parastic Power Collection in Shoes Mounted Devices. MIT. 1998: 267~272.
    [26] N. A. Shenck. Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe, a MS Thesis. 1999: 21~35.
    [27] N. S. Shenck. Piezoelectric Shoe Power: two Approaches. IEEE Computer Society. 2002, 11(3): 21~25.
    [28] J. A. Paradiso. Systems for Human-Powered Mobile Computing. 2006: 263~286.
    [29]日经BP社.日新电机自发光团扇. (2007-04-29) [2011-06-05]. http:// www. go -gddq.com/html/2007-04/416024.htm.
    [30] S. Priya. Modeling of Electric Energy Harvesting Using Piezoelectric Windmill. Applied Physics Letter. 2005, 87: 184101~184103.
    [31] E. Hausler, S. Stein. Implantable Physiological Power Supply with PVDF Film. Ferroelectrics. 1984, 60: 277~282.
    [32] G. W Taylor, J. R Burns, S. A Kammann. The Energy Harvesting Eel: a Small Subsurface Ocean/River Power Generator. IEEE Journal of Oceanic Engineering. 2001, 26(4): 539~547.
    [33]朱永华.压电供电式红外遥控器的研究.吉林大学工学硕士论文. 2007: 49-67.
    [34]刘艳涛.压电自供电型无线发射装置研究.吉林大学工学硕士论文. 2006: 59-70.
    [35]程光明,庞建志,唐可洪.压电陶瓷发电能力测试系统的研制.吉林大学学报(工学版). 2007(02).
    [36]王志彬.固支梁压电俘能器宽频规划及其仿真与实验研究.哈尔滨工业大学工学硕士论文. 2010: 11~49.
    [37]袁江波.圆盘式压电发电装置发电性能及其关键技术研究.哈尔滨工业大学工学博士论文. 2010: 68~77.
    [38] A Gammarano, S G Burrow, D A W Barton, A Carrella, L R Clare. Tuning a Resonant Energy Harvester Using a Generalized Electrical Load. Smart Materials and Structures. 2010, 19:1~7.
    [39] J. Ajitsaria1, S. Y. Choe1, D. Shen, D. J. Kim. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater. Struct. 2007,16: 447~454.
    [40] Yaowen Yang, Lihua Tang. Equivalent Circuit Modeling of Piezoelectric Energy Harvesters. Journal of Intelligent Material Systems and Structures. 2009. 20(18): p. 2223.
    [41]房目稳.压电俘能器俘能性能数学建模及仿真分析.哈尔滨工业大学工学硕士论文. 2010: 36.
    [42] Jmail M. Renno, Mohammed F. Daqaq, Daniel J. Inman. On the optimal energy harvesting from a vibration source. Journal of Sound and Vibration. 2009: 386~405.
    [43] A. Erturk, D. J. Inman. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of vibration and Acoustics. 2008, 130: 1~14.
    [44] C. M. Junior, A. Erturk, D. Inman. An electromechanical finite element modelfor piezoelectric energy harvester plates. Journal of Sound and Vibration. 2009, 327: 9~25.
    [45] A. Erturk, D. J. Inman. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater.Struct. 2009, 18: 1~17.
    [46]张朝晖. ANSYS 8.0结构分析及实例解析.北京:机械工业出版社. 2005: 181~185.
    [47]卢有为.复合型悬臂梁压电俘能器理论与实验研究.哈尔滨工业大学硕士学位论文. 2009: 10~22.
    [48]刘智.槽拨形俘能器仿真与实验研究.哈尔滨工业大学硕士学位论文. 2009: 38~48.
    [49] J. D. Zhang, A. Hladky-Hennion, W. J. Hughes, E. Newnhanm. Modeling and Underwater Characterization of Cymbal Transducers and Arrays. IEEE Transactions on Ultrasonics Fcrroelectrics and Frequency Control. 2001, (48): 560~568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700