槽钹型俘能器仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线传感器和便携式电子设备的应用日益广泛,以化学电池为主的供能方式存在许多明显的弊端,如体积大、供能寿命有限、需要定期更换等。为延长电池寿命、减少电子设备体积,人们开始致力于研究从环境中吸取能量并转化为电能的方法。压电发电因为具有成本低、装置简单、嵌入性好等优点,成为研究的热点之一。钹型俘能器是近年压电发电研究的一个重要方向。
     目前对槽钹型俘能器的研究大都是参数仿真分析,缺乏理论的指导和分析,具有一定的盲目性。本文根据力学和压电理论,在合理假设的基础上建立了钹型俘能器发电的数学模型,得出钹型俘能器发电性能随各参数的变化规律。为提高钹型俘能器的发电能力,又进一步研究和优化了开槽结构。在静力分析的基础上仿真分析了动态激振时开槽结构的性能。随后,分析了粘结层的应力,研究了改善粘结层应力的措施并仿真验证。
     在结构分析之后,本文研制了基于555方波控制和Buck-Boost型直流变换的压电储能电路,并进行理论分析,推导了输出功率模型以及优化了开关控制信号的参数,然后进行电路硬件设计和仿真分析,验证电路的可行性。
     在理论分析和电路分析的基础上,本文进一步展开了槽钹型俘能器储能实验。实验研究了输出功率随负载、激振频率的变化情况;锥面槽和环形槽结构对发电性能的提高;实验电路储能的可行性和优化性。通过实验可知,输出功率随频率增加而增加,对不同激振频率存在匹配负载使输出功率达到最高,实验曲线与理论曲线基本吻合;锥面槽和环形槽结构都能极大提高输出功率;Buck-Boost型压电储能电路输出功率与激振频率、电感、匹配负载、开关占空比、开关频率有关;Buck-Boost型压电储能电路能够降低匹配负载,在较宽的负载范围内能够获得较大的输出功率。
     最后,为获得更大的输出功率,提出了复合型槽钹俘能器的思想,并研究分析了三种复合型槽钹俘能器。通过理论分析和有限元仿真验证了复合型槽钹俘能器能提高输出功率,降低匹配负载。分析表明在三种复合型槽钹俘能器中多层cymbal型俘能器俘能效果最佳。
With the wide use of wireless sensors and portable electronic equipments, many drawbacks of the chemical battery which can not be ignored occur, such as big size, large quality, limited battery life, periodic replacement, material waste, environmental pollution, etc. To extend battery life and reduce the volume of electronic equipment, people begin to study the method that can harvest energy from environment and convert to electricity. Piezoelectric energy harvesting has become one of research hotspot due to its advantage of low cost, simple device, good portability, etc. In recent studies, cymbal transducer is an important research direction of piezoelectric energy harvesting.
     At present, most of research on the cymbal transducer is parametric simulation analysis, which is lack of theoretical guidance and analysis. Firstly, in this paper, reasonable assumption is made by means of mechanical theory, based on which the mathematical model of cymbal transducer is established. Then FEA (Finite Element Analysis) static analysis is made on the cymbal transducer and four types of slotted cymbal transducers from voltage, stress, deformation. It comes to a conclusion that annular-slotted cymbal transducer is the best mode. Next, transient analysis is used to get the performance of slotted cymbal transducers under harmonic excitation, so the influence of slotted cymbal, loading ways, loading frequency on the performance of cymbal transducer is obtained. Then,taken the bonding layer of cymbal transducer in actual use into account, several measures of reducing the bonding layer stress are made and simulated.
     After that, for improving the current circuit, piezoelectric energy circuit based on Buck-Boost DC-DC conversion is designed and theoretically analyzed, the expression of output power and optimized parameters of the switch control signal are obtained. Then a hardware circuit is designed and the corresponding circuit simulation analysis is performed to verify the feasibility of the circuit and optimize the circuit.
     Based on the analysis above, three main parts of experiment are done to verify the model curve, to verify the advantages of slotted cymbal transducer and the annular slotted cymbal transducer over general cymbal transducer, to verify the feasibility of the experimental circuit. Through the experiments, it can be found that the output power increases with the excitation frequency, there exist matched load at different excitation frequency to get maximum output power. It reaches conclusions that the experimental curve is in line with the theoretical curve; both the ring slotted cymbal and the annular slotted cymbal can greatly improve output power; The output power of piezoelectric energy storage circuit based on Buck-Boost DC-DC conversion is concerned with excitation frequency, inductance, load matching, switching duty cycle, switching frequency, etc. High excitation frequency, big inductance, matched switching frequency can improve the output power.
     Finally, in order to obtain greater output power, an idea of composite cymbal transducer is put forward and three kinds of composite cymbal transducers are designed. Through theoretical analysis and finite element simulation, the composite cymbal transducers can improve output power and reduce the matched load. Among the three kinds of composite cymbal transducers multi-cymbal transducers can get the best result of energy harvesting.
引文
1 Glynne-Jones P, Tudor M J, Beeby S P and White N M. An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors Actuators A. 2004, (110):344–349.
    2 Lee C S, Joo J, Han S, Lee J H and Koh S K. Poly(vinylidene fluoride) transducers with highly conducting poly(3,4-ethylenedioxythiophene)electrodes. Proc. Int.Conf.on Science and Technology of Synthetic Metals. 2005, 152:49–52.
    3 Lee C S, Joo J, Han S and Koh S K. Multifunctional transducer using poly active layer and highly conducting poly electrode: actuator and generator. Appl. Phys. Lett. 2004, (85):1841–1843.
    4 Baker J, Roundy S and Wright P. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. Proc.3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA, Aug.). 2005, 959–970.
    5 Yang J, Zhou H, Hu Y and Jiang Q. Performance of a piezoelectric harvester in thickness-stretch mode of a plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, (52):1872–1876.
    6 Richards C D, Anderson M J, Bahr D F and Richards R F. Efficiency of energy conversion for devices containing a piezoelectric component. Micromech. Microeng[J]. 2004, (14):717–721.
    7 Cho J, Anderson M, Richards R, Bahr D and Richards C. Optimization of electromechanical coupling for a thin-film PZT membrane: I. modeling. Micromech. Microeng[J]. 2005, (15):1797–1803.
    8 Cho J, Anderson M, Richards R, Bahr D and Richards C. Optimization of electromechanical coupling for a thin-film PZT membrane: II. experiment. Micromech. Microeng[J]. 2005, (15):1804–1809.
    9 S.R.Platt, S.Farritor and H.Haider.On Low-frequency Electric Power Generation withPZT Ceramics. IEEE/ASME Transactions on Mechatronics.2005 ,(8):240-252.
    10 Ng T H and Liao W H. Feasibility study of a self-powered piezoelectric sensor. Proc. Smart Structures and Materials Conf.; Proc. SPIE. 2004, (5389):377–388.
    11 Kim S, Clark W W and Wang Q M. Piezoelectric energy harvesting with a clamped circular plate: analysis. Intell. Mater. Syst. Struct[J]. 2005, (16):847–854.
    12 Kim H W, Batra A, Priya S, Uchino K, Markley D, Newnham R E and Hofmann H F. Energy harvesting using a piezoelectric‘cymbal’transducer in dynamic environment. Japan. J. Appl. Phys. 2004, (43):6178–6183.
    13 Yinglin Ke, Tong Guo, and Jiangxiong Li. A New-Style, Slotted-Cymbal Transducer withLarge Displacement and High EnergyTransmission. IEEE transactions on ultrasonics, ferroelectrics, and frequency control.2004,(9):1171-1177.
    14 C.L.Sun, K.H.Lam. A novel drum piezoelectric-actuator. Appl. Phys. 2006 ,(6):385–389 .
    15胡洪平,高发荣,薛欢,胡元太.低频螺旋状压电俘能器结构性能分析.固体力学学报.2007,(3):87-92.
    16 Shenck N S ,Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro. 2001, (21):30–42.
    17 Elie Lefeuvre, Adrien Badel, Claude Richard, Daniel Guyomar.High Performance Piezoelectric Vibration Energy Reclamation. Smart Structures and Materials .2004,(9):379-387.
    18 Lesieutre G A, Ottman G K and Hofmann H F. Damping as a result of piezoelectric energy harvesting. Sound Vib[J]. 2004, (269):991–1001.
    19 Geffrey K. Ottman, Heath F. Hofmann, George A. Lesieutre. Optimized Piezoelectric EnergyHarvestingCircuitUsingDiscontiguousConductionMode.IEEETRANSACTIONS ON POWER ELECTRONICS.2003,(3):696-703.
    20 Ammar Y, Buhrig A, Marzencki M, Charlot B, Basrour S, Matou K and Renaudin M. Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator Proc.2005 Joint Conf.on Smart Objects and Ambient ibeuntelligence:Innovative Context-Aware Services: Usages and Technologies(Grenoble). 2005, 287–292.
    21 Badel A, Guyomar D, Lefeuvre E and Richard C. Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion. Intell. Mater. Syst. Struct. 2005, (16):889–901.
    22 Guyomar D, Badel A, Lefeuvre E and Richard C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, (52):584–594.
    23 E. Lefeuvre , A. Badel, C. Richard, L. Petit, D. Guyomar. A comparison between several vibration-powered piezoelectric generators for standalone systems.Sensors and Actuators .2006,(126) :405–416.
    24 Sodano H A, Inman D J and Park G. Generation and storage of electricity from power harvesting devices. Intell. Mater. Syst. Struct[J]. 2005, (16):67–75.
    25 Guan M and Liao W H. On the energy storage devices in piezoelectric energy harvesting. Proc. Smart Structures and Materials Conf.; Proc. SPIE. 2006, 6169 0C.1-61690C.9.
    26郭振宇,叶敏,程博.形状参数对Cymbal换能器发电能力的影响.机械科学与技术.2007,(11):1454-1457
    27田丰华,吕林夏,钱建平.开槽Cymbal换能器技术研究.鱼雷技术. 2008,(6):29-32.
    28 Sodano Henry A, DanielJ.Inman, Gyuhae Park, Donald J.Leo. Use of piezoelectric energy harvesting devices for charging batteries. Smart Structures and Materials[J],2003(5050): 101-108.
    29 Roundy S,Wright, P.K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 2004(13):1131-1142
    30 Kymissis J, Kendall D, Paradiso J and Gershenfeld N. Parasitic power harvesting in safe protect system in mobilecars. 2nd IEEE Int. Conf. on Wearable Computing(August). 1998, 132–136.
    31 Mateu L and Moll F Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. Intell. Mater. Syst. Struct[J]. 2005, (16):835–845.
    32朱永华.压电供电式红外遥控器的研究.吉林大学工学硕士论文.2007:49-67.
    33刘艳涛.压电自供电型无线发射装置研究.吉林大学工学硕士论文.2006:59-70.
    34董璐.基于MEMS的压电型微能量采集器的研究.上海交通大学工学硕士论文.2007:48-56.
    35张福学,王丽坤.现代压电学.北京:科学出版社, 2001:94-95.
    36徐芝纶.弹性力学.人民教育出版社, 1982.
    37栾桂冬,张金铎等.压电换能器和换能器阵.北大出版社,2005:122-125.
    38 Hyeoungwoo KIM, Shashank PRIYA1 and Kenji UCHINO. Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers.Japanese Journal of Applied Physics. 2006, (7):5836–5840.
    39 James F. Tressler, Wenwu Cao, Kenji Uchino and Robert E. Newnham. Finite Element Analysis of the Cymbal-Type Flextensional Transducer. IEEE Trans. Ultrason., Ferroelect., Freq.Contr., 1998, 45:1363-1368.
    40 RICHARD J. MEYER,JR., W.JACK HUGHES, THOMAS C. MONTGOMERY,DOUGLAS C. MARKLEY&ROBERT E. NEWNHAM. Design of and Fabrication Improvements to the Cymbal Transducer Aided by Finite Element Analysis. Journal of Electroceramics. 2002, 8:163–174.
    41 P. Ochoa, J. L. Pons, M. Villegas, J.F. Fernandez. Advantages and limitations of cymbals for sensor and actuator applications. Sensors and Actuators[A]. 2006, 132:63–69.
    42 E. Lefeuvre, A. Badel, C. Richard, L. Petit, D. Guyomar. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators A. 2006, (126):405–416.
    43 Y C Shu and I C Lien. Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 2006, (15):1499–1512.
    44 Daniel Guyomar, Adrien Badel, Elie Lefeuvre, and Claude Richard. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52(4):584-595.
    45 M J Guan and W H Liao. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Mater.Struct. 2007, (16):498–505.
    46 ShengWang,KwokHoLam, ChengLiang Sun.Energyharvesting with piezoelectric drum transducer. APPLIED PHYSICS LETTERS.2007,90(11):113-120.
    47 Thomas J. Johnson, David Charnegie, William W. Clark. Energy harvesting from mechanical vibrations using piezoelectric cantilever beams.Smart Structures and Materials .2006,(6169):61690D-1-61690D-12
    48林清华,林国庆.简析Boost-Buck变换器.开关电源技术. 2006:7-10.
    49 HenrySodano, Danel J, Gyuhae Park.Comparison of Piezoelectric Energy Harvesting Devicesfor Recharging Batteries. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES.2005,16(10):799-807.
    50 PILAROCHOA,MARINA VILLEGAS,JOSE LUIS PONS, JOSE FRANCISCO. Tunability of Cymbals as Piezocomposite Transducers .Journal of Electroceramics. 2005,(14):221–229.
    51 P. Ochoaa, J.L. Pons b, M. Villegas, J.F. Fernandez. Effect of bonding layer on the electromechanical response of the cymbal metal-ceramic piezocomposite. Journal of the European Ceramic Society.2007,(27):1143-1149.
    52 J. T. Scruggs.Multi-Objective Optimal Control of Vibratory EnergyHarvesting Systems. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems.2008,(6932):6932-1-6932-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700