基于VSC-HVDC海上风电场并网控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发和规模化利用以风能为代表的可再生能源,对促进国民经济发展、保护环境、应对全球能源危机等方面具有重要的社会意义和战略价值,现已成为世界各国实现可持续发展的重要战略手段之一。近年来,我国风电事业得以蓬勃发展,风能的开发利用已由陆地逐步转向海上。开发海上风能具有风资源蕴藏量丰富、风能利用率高和大型风电机组不占用土地资源等特点,因此越来越受到业界的关注。随着大型海上风电机组技术的日趋成熟,海上风电场建设规模的不断扩大,且与陆地电网的距离越来越远,急需解决海上风电场的输电问题,使得研究与应用适合海上风电场实施远距离传输的柔性直流输电(VSC-HVDC)技术已成为当前的研究热点;同时,VSC-HVDC系统对海上输电变流器的电压等级、系统动态性能、并网及电能质量等方面都提出了更高的要求。
     论文针对海上风电场并网VSC-HVDC系统,侧重于研究海上风电场柔性直流输电变流器主电路拓扑结构及其控制算法,主要解决基于模块化多电平结构的大功率变流器的调制方法和均压控制技术难题,以及各种先进控制算法在海上风电场VSC-HVDC系统中的应用等问题。论文的具体研究内容简述如下:
     1、根据VSC-HVDC系统具有电压高、功率大的特点,建立模块化多电平变流器(MMC)拓扑结构的数学模型,同时,针对对直流侧电容电压不平衡问题,提出分别控制桥臂内电容电压和桥臂间电容电压实现直流侧电容的平衡,将电容电压排序法与参考信号叠加环流抑制分量的方法有机结合。并采用多载波PWM调制技术,分别针对带直流输出电容和直接输出的MMC结构进行仿真,结果表明采用论文所设计的调制和电容均压控制方法,可使输出电平数提高近一倍,同时,多电平波形质量明显优于常规均压控制方法。
     2、分析了MMC主电路参数选择方案,采用传统双闭环矢量控制策略,设计了20MW大容量VSC-HVDC系统,并结合论文所提出的电容均压控制方法搭建了系统仿真模型。同时,还针对传统矢量控制中存在的PI参数较多、整定困难等不足,提出将粒子群(PSO)搜索算法与PID神经网络(PIDNN)相结合,基于系统线性模型,以PIDNN控制器代替传统的PI调节器,以PSO算法搜索PIDNN最优权值,避免PI参数的试凑过程,使系统动态跟踪误差达到最小,优化了系统控制性能。
     3、研究非线性控制策略在VSC-HVDC系统中的应用,包括:虚拟磁链直接功率控制(VF-DPC)、反馈线性化,无源性、反步法、无差拍等方法。其中对于VF-DPC,给出了该控制策略应用于MMC结构时磁链和功率估计的方法,将均压控制策略和多载波调制方法相结合代替传统查表法,使得VF-DPC能够适用于MMC拓扑结构。仿真研究结果表明,相对于传统矢量控制方法,将VF-DPC应用于MMC,能够有效提高大容量VSC-HVDC系统动态性能;对于反馈线性化方法,将变流器非线性数学模型转化为等效的线性模型,并基于系统精确线性化模型设计其控制器;无源性方法利用系统能量耗散特性,设计其控制器,同时,配合适当的阻尼注入使系统快速收敛于平衡点;反步法针对变流器的高阶、非线性等特点,给出了一种寻找系统李雅普诺夫函数的方法,从而推导出全局渐近稳定的控制律;无差拍控制主要解决实际系统中存在的采样和计算延迟造成的系统不稳定问题,通过数学模型递推的方法,可预测下一拍的控制量,从而弥补延时造成的影响。通过对比各种非线性控制方法在VSC-HVDC中的应用,表明VF-DPC方法既能提高系统性能又易于工程实现。
     4、VSC-HVDC实验系统设计,包括实验系统的硬件和软件设计,采用工程上常用的双闭环矢量控制方法,实现了双端系统的并网运行,能够跟踪功率、电压等控制目标,且稳态精度较高,验证了所设计实验平台硬件系统的正确性和基本控制算法的有效性。同时,实验结果为进一步设计满足实际工程应用的大容量海上风电场柔性直流输电变流器(如20MW)奠定了基础。
     论文的创新点如下:
     (1)针对MMC直流侧电容电压平衡问题,提出通过将桥臂电容电压排序法和参考信号叠加环流抑制分量方法相结合,并利用多载波调制策略控制变流器工作,提高了MMC的多电平输出波形质量和电平数;
     (2)提出利用改进的PID神经网络控制器代替传统PI调节器,并通过与粒子群搜索算法相结合,来优化神经网络权值参数,使系统动态跟踪误差达到极小;
     (3)将直接功率控制方法应用于MMC结构,提出了适用于MMC结构的功率及磁链估计方法,提高了大容量系统的动态响应性能。
Development and large-scale utilization of new energy represented bywind power is of great significance and strategic value in the aspects ofpromoting national economic development, environmental protection, solvingglobal energy crisis and so on, which has become one of the importantstrategic goals of the world to achieve sustainable development. In recentyears, Chinese wind power industry is to flourish and has gradually turned tooffshore from land-based wind farm. There are many advantages such asabundant wind energy reserves, high utilization of the wind generator, nottaking up land resources and so on. Therefore, it is one of the focuses ofindustry. As the technology of wind turbine control constantly improve,continues to mature, offshore wind farms have been expanding and distancewith the onshore grid is farther. So, offshore wind farm transmission problemsneed to be resolved. The technology of high voltage direct currenttransmission based on voltage source (VSC-HVDC), which is suitable forlong-distance transmission of offshore wind energy, has become one of thecurrent research focus. This has put forward higher requirements on theaspects of offshore converter voltage level, system dynamic performance, andnetwork power quality.
     This paper researches the related technologies of VSC-HVDC system foroffshore wind farm grid integration, mainly including two aspects of the maincircuit topology and control algorithm. The following problems are solved,including voltage balance and triggering method of high-power converterbased on the MMC structure, as well as a variety of advanced control algorithms application on the offshore wind farm VSC-HVDC system. Theresearches are outlined as follows.
     1. High voltage and high-power are the characteristics of theVSC-HVDC system applications. According to it, a new topology of modularmulti-level converter (MMC) was introduced, and its mathematical modelwas established. Based on these, for the control difficulty of unbalancedcapacitor voltage, the method was proved, that controlling the balancing ofcapacitor voltages between arms and within one, respectively. Two methodsof capacitor voltage sequencing and component added to reference signal forcirculating current suppression. Simulation studies were carried out for theMMC with DC output capacitance and the direct output one, using themulti-carrier PWM triggering technology. The simulation results show thatthe MMC modulation and voltage balancing control strategy designed in thispaper can significantly improve the quality of the output waveform andincrease the number of output level by nearly double compared toconventional methods.
     2. The method of MMC main circuit parameter selection is analyzed.The20MW VSC-HVDC system was researched based on the strategy ofdouble closed-loop vector control and the simulation model of whole systemwas established, including the capacitor voltage balancing control methodproposed. For the problems of too many PI parameters and difficult to adjust,the method of combination of particle swarm (PSO) searching algorithm andPID neural network was proposed. The traditional PI regulator was instead byPIDNN controller. The optimal weight of PIDNN is searched by PSOarithmetic, which made the dynamic tracking error to minimum, optimizingthe system control performance and avoiding the repeated adjustment of thePI parameters.
     3. Nonlinear control strategy for VSC-HVDC system was researched,including the virtual flux direct power control (VF-DPC), feedbacklinearization, passivity control, back-stepping method and deadbeat controland so on. For the VF-DPC, estimation method of flux was given when it was used in MMC. The capacitor voltage balancing control method andmulti-carrier trigger strategy was used to instead of the traditional look-uptable method, which enabled the VF-DPC could be applied to the MMCtopology. The VF-DPC strategy was compared with the traditional vectorcontrol method by simulation, the results show that it used in MMC caneffectively improve the dynamic performance of the large capacityVSC-HVDC system. For the feedback linearization control method, thenonlinear mathematical model of the converter was transformed intoequivalent linear model, and controller was designed based on exactlinearization model. For passivity control method, the controller was designedbased on system energy dissipation characteristics, and combined with theappropriate damping injection to make the system quickly converges to theequilibrium point. For the high-order and nonlinear characteristics of VSC,the back-stepping method is used for searching the Lyapunov function, andthen the control strategy of global asymptotic stability can be derived.Deadbeat control was used mainly to solve the system instability caused bythe delay of the sampling and calculating in actual system. It can predict thecontrol quantity of next-beat and compensate the impacts because of delaybased on recursive derivation of mathematical model. Then, all the nonlinearcontrol methods above mentioned were compared in the application ofVSC-HVDC, and the conclusion that the VF-DPC can improve systemperformance and ease for actual implementation.
     4. The experimental system was built, and then the system hardware andsoftware were designed. The double closed-loop vector control strategycommonly used in engineering was realized for the double-ended systemconnecting to grid running. The system power and voltage could track thegiven values, and the accuracy of steady-state is high. It verified thecorrectness of the control algorithm and effectiveness of the designedexperimental platform hardware. The experimental results lay a foundation ofhigh-power (20MW) offshore wind farm VSC-HVDC converter for practicalengineering application.
     The innovations are as follows:
     (1) For the problem of DC capacitor voltage balance of MMC, The bothmethods of capacitor voltage sorting and superimposing circulationrestraining components into reference signals were combinated. Andmulti-carrier modulation strategy was used to control the converter. This canimprove the quality and level number of MMC output wave.
     (2) Improved PID neural network controller was used for instead of thetraditional PI regulator, and combination of particle swarm search algorithmto optimize the neural network weights parameters. It can make systemdynamic tracking error minimum.
     (3) Direct power control method was applied to the MMC structure.Power and flux estimation methods for the MMC structure were approved.This can improve the dynamic response performance of the high-capacitysystem.
引文
[1]新浪财经,大金重工转动―海上风车‖[OL], http://finance.sina.com.cn/roll/20100927/08448709331.shtml,2010-9-27.
    [2]王志新,张华强.风力发电及其控制技术新进展[J].低压电器.2009,30(19):1-7.
    [3] B. Jaeobson,Y. Jiang-hafner, P. Rey, G. Asplund. HVDC with voltage source converters andextruded cables for up to±300kV and1000MW. Clgre sesslon.2006,B4-105.
    [4]王志新。现代风力发电技术及工程应用[M]。北京:电子工业出版社,2010.10. pp1-19.
    [5]林海雪,汤广福,贺之渊.灵活电力传输-HVDC的选择,中国电力出版社,2011.1,pp134-180,8-9.
    [6] I. MATTSSON, B.D. RAILING, B.WILLIAMS, et al. murraylink, the longest undergroundHVDC cable in the world,2004,B4-103.
    [7]汤广福。基于电压源换流器的高压直流输电技术[M]北京:中国电力出版社,2010.1,pp312-334.
    [8] A. Nabae, LTakahashi, H.Akagi. A new neutral-point clamped PWM inverter. IEEE Transactionson IA.1981,17(5):518-523.
    [9] Yazdani, A., Iravani, R. A generalized state-space averaged model of the three-level NPCconverter for systematic DC-voltage-balancer and current-controller design[J]. IEEETransactions on Power Delivery,2005,20(2):1105-1114.
    [10] Yazdani, A., Iravani, R. Dynamic model and control of the NPC-based back-to-back HVDCsystem [J]. IEEE Transactions on Power Delivery,2006,21(1):414-424.
    [11]姚文熙,王斯然,刘森森等.三电平空间矢量调制中的共模分量[J].电工技术学报.2009,24(4):108-113.
    [12] Pou, J., Zaragoza, J., Ceballos, S. A Carrier-Based PWM Strategy With Zero-Sequence VoltageInjection for a Three-Level Neutral-Point-Clamped Converter[J]. IEEE Transactions on PowerElectronics,2012,27(2):642-651.
    [13]原熙博,李永东,王琛琛.基于零序分量注入的三电平PWM整流器目标优化控制[J].电工技术学报.2009,24(3):116-121.
    [14]申张亮,郑建勇,梅军.基于改进虚拟空间矢量调制方法的中点箝位型三电平逆变器电容电压平衡问题[J].电力自动化设备.2011,31(3):79-84.
    [15]宋文祥,陈国呈,束满堂等.中点箝位式三电平逆变器空间矢量调制及其中点控制研究[J].中国电机工程学报.2006,26(5):105-109.
    [16]姚文熙,王斯然,刘森森.三电平空间矢量调制中的共模分量[J].电工技术学报.2009,24(4):108-113.
    [17] Das, S., Narayanan, G. Novel Switching Sequences for a Space Vector Modulated Three-LevelInverter[J]. IEEE Transactions on Industrial Electronics.2012,59(3):1477-1487.
    [18]张艳莉,费万民,吕征宇等.三电平逆变器SHEPWM方法及其应用研究[J].电工技术学报.2004,19(1):108-113.
    [19] Yongchang Zhang, Zhengming Zhao, Jianguo Zhu. A Hybrid PWM Applied to High-PowerThree-Level Inverter-Fed Induction-Motor Drives VSC Transmission System Using FlyingCapacitor Multilevel Converters and Hybrid PWM Control[J]. IEEE Transactions on IndustrialElectronics,2011,58(8):3409-3420.
    [20] Jie Shen, Schro der, S., Ros ner, R., et al. A Comprehensive Study of Neutral Point Self-BalancingEffect in Neutral-Point-Clamped Three-Level Inverters[J]. IEEE Transactions on PowerElectronics,2011,26(11):3084-3095.
    [21]姜卫东,王群京,史晓锋,等.中点箝位型三电平逆变器在空间矢量调制时中点电位的低频振荡[J].中国电机工程学报.2009,29(3):49-55.
    [22] Zaragoza, J., Pou, J., Ceballos, S., et al. Voltage-Balance Compensator for a Carrier-BasedModulation in the Neutral-Point-Clamped Converter[J]. IEEE Transactions on IndustrialElectronics,2009,56(2):305-314.
    [23]赵慧杰,钱照明,李骏,等.载波PWM方法三电平逆变器中点电位控制研究[J].电力电子技术.2007,41(3):28-30.
    [24]宋强,刘文华,严干贵,等.基于零序电压注入的三电平NPC逆变器中点电位平衡控制方法[J].中国电机工程学报.2004,24(5):57-62.
    [25]孟永庆,沈传文,刘正,等.基于零序电压注入的三电平中点箝位整流器中点电位控制方法的研究[J].中国电机工程学报.2007,27(10):92-97.
    [26] Wei Chen, Yunping Zou, Lijuan Xu. Direct power control for Neutral-point-clamped three-levelPWM rectifier[C]. IEEE International Conference on Industrial Technology, Chengdu. IEEEICIT,2008:1-6.
    [27] Zaimeddine, R., Undeland, T. Direct power control strategies of a grid-connected three-levelvoltage source converter VSI-NPC[C]. Proceedings of the2011-14th European Conference onPower Electronics and Applications, Norway, EPE,2011:1-7.
    [28]姜卫东,王群京,陈权,等.考虑中点电压不平衡的中点箝位型三电平逆变器空间矢量调制方法[J].中国电机工程学报.2008,28(30):20-26.
    [29] Grigoletto, F.B., Pinheiro, H. A space vector PWM modulation scheme for back-to-backthree-level diode-clamped converters[C]. Power Electronics Conference. Santa Maria, Brazil.COBEP, Brazilian.2009:1058-1065.
    [30] Lewicki, A., Krzeminski, Z., Abu-Rub, H. Space-Vector Pulse Width Modulation forThree-Level NPC Converter with the Neutral Point Voltage Control[J]. IEEE Transactions onIndustrial Electronics,2011,58(11):5076-5086.
    [31] Ting Lu, Zhengming Zhao, Yingchao Zhang, et al. A novel direct power control strategy basedon energy interface concept for three-level PWM rectifier[C]. Vehicle Power and PropulsionConference, Beijing, IEEE,2009:1573-1580
    [32] Changliang Xia, Xin Gu, Tingna Shi, et al. Neutral-Point Potential Balancing of Three-LevelInverters in Direct-Driven Wind Energy Conversion System[J]. IEEE Transactions on EnergyConversion,2011,26(1):18-29.
    [33] Eloy-Garcia, J., Arnaltes, S. Rodriguez-Amenedo, J.L. Extended direct power control formultilevel inverters including DC link middle point voltage control[J]. Electric PowerApplications, IET,2007,1(4):571-580.
    [34] Gupta, A.K., Khambadkone, A.M. A Simple Space Vector PWM Scheme to Operate aThree-Level NPC Inverter at High Modulation Index Including Over modulation Region, WithNeutral Point Balancing[C]. Industry Applications Conference, Fourtieth IAS Annual Meeting,Singapore, Fourtieth IAS,2005:1657-1664.
    [35] Lie Xu, Vassilios G. Agelidis. VSC Transmission System Using Flying Capacitor MultilevelConverters and Hybrid PWM Control[J]. IEEE Transactions on Power Delivery,2007,22(1):693-702.
    [36]王鸿雁,王小峰,张超,等.飞跨电容多电平逆变器的新型载波PWM方法[J].电工技术学报.2006,21(2):63-67.
    [37] Pulikanti, S.R., Dahidah, M.S.A., Agelidis, V.G. Voltage Balancing Control of Three-LevelActive NPC Converter Using SHE-PWM[J]. IEEE Transactions on Power Delivery,2011,26(1):258-7267.
    [38] Liu, Y.H., Arrillaga, J., Watson, N.R. Capacitor Voltage Balancing in Multi-Level VoltageReinjection (MLVR) Converters[J]. IEEE Transactions on Power Delivery,2005,20(2):1728-1737.
    [39] Liu, Y.H., Arrillaga, J., Watson, N.R. Multi-level voltage reinjection-a new concept in highvoltage source conversion[J]. Generation, Transmission and Distribution, IEE Proceedings,2004,151(3):290-298.
    [40] R. Osman, A medium-voltage drive utilizing series-cell multilevel topology for outstandingpower quality[C]. Conf. Rec. IAS Annu. Meeting, Robicon Corp., Pittsburgh PA,1999, pp.2662-2669.
    [41] Rodriguez, J., Bernet, S., Bin Wu. et al. Multilevel Voltage-Source-Converter Topologies forIndustrial Medium-Voltage Drives[J]. IEEE Transactions on Industrial Electronics,2007,54(6):2930-2945.
    [42]乔卫东,毛颖科.上海柔性直流输电示范工程综述[J].华东电力,2011,39(7):1137-1140.
    [43]管敏渊,徐政.模块化多电平换流器型直流输电的建模与控制[J].电力系统自动化,2010,34(9):64-68.
    [44] Perez, M.A., Rodriguez, J. Generalized modeling and simulation of a modular multilevelconverter[C]. IEEE International Symposium on Industrial Electronics (ISIE), Valparai so, IEEE,2011:1863-1868.
    [45] Rasic, A., Krebs, U., Leu, H., et al. Optimization of the modular multilevel convertersperformance using the second harmonic of the module current[C]. European Conference onPower Electronics and Applications, Erlangen, EPE,2009:1-10.
    [46] Munch, P., Liu, S., Ebner, G. Multivariable Current Control of Modular Multilevel Converterswith Disturbance Rejection and Harmonics Compensation[C]. IEEE International Conference onControl Applications, Kaiserslautern, CCA,2010:196-201.
    [47] Munch, P., Liu, S., Dommaschk, M., Modeling and current control of modular multilevelconverters considering actuator and sensor delays[C]. Annual Conference of IndustrialElectronics, Kaiserslautern, IEEE Ind,2009:1633-1638.
    [48] Gnanarathna, U.N. Gole, A.M. Jayasinghe, R.P. Efficient Modeling of Modular MultilevelHVDC Converters (MMC) on Electromagnetic Transient Simulation Programs[J]. IEEETransactions on Power Delivery,2011,26(1):316-324.
    [49]刘钟淇,宋强,刘文华.基于模块化多电平变流器的轻型直流输电系统[J].电力系统自动化.2010,34(2):53-58.
    [50] Saeedifard, M., Iravani, R. Dynamic Performance of a Modular Multilevel Back-to-Back HVDCSystem[J]. IEEE Transactions on Power Delivery,2010,25(4):2903-2912.
    [51]管敏渊,徐政,MMC型VSC-HVDC系统电容电压的优化平衡控制[J].中国电机工程学报.2011,31(12):9-14.
    [52]屠卿瑞,徐政,郑翔,等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36(2):547-552.
    [53] Hagiwara, M.; Akagi, H.; Control and Experiment of Pulsewidth-Modulated Modular MultilevelConverters[J]. IEEE Transactions on Power Electronics,2009,24(7):1737-1746.
    [54]王国强,王志新,李爽.模块化多电平变流器的直接功率控制研究[J],中国电机工程学报,2012,36(2):64-71.
    [55]王奎,郑泽东,李永东.新型模块化多电平变换器电容电压波动规律及抑制方法[J].电工技术学报,2011,26(5):8-14.
    [56] Korn, A.J., Winkelnkemper, M., Steimer, P. Low Output Frequency Operation of the ModularMulti-Level Converter[J]. Energy Conversion Congress and Exposition, Turgi, IEEE,2010:3993-3997.
    [57] Zixin Li, Yaohua Li, Ping Wang, et al. Improving the performance of modular multilevelconverter by reducing the dead time effect[C]. European Conference on Power Electronics andApplications, Beijing, IEEE,2011:1-10.
    [58]王鸿雁,张超,王小峰,等.基于控制自由度组合的多电平PWM方法及其理论分析[J].中国电机工程学报.2006,26(6):42-48.
    [59] Gupta A K. Khambadkone A M. A space vector PWM scheme for multilevel inverters based ontwo-level space vector PWM[J]. IEEE Transactions on Industrial Electronics200653(5):1631-1639.
    [60]曾允文,变频调速Svpwm技术的原理、算法与应用[M],机械工业出版社,2011.4pp150-177.
    [61]张永昌,赵争鸣.基于快速空间矢量调制算法的多电平逆变器电容电压平衡问题研究[J].中国电机工程学报.2006,26(18):71-76.
    [62]姜旭,肖湘宁,赵洋,等.改进的多电平SVPWM及其广义算法研究[J].电机工程学报.2007,27(4):90-95.
    [63] Nikola Celanovic, Dushan Boroyevich. A fast space-vector modulation algorithm formultilevelthree-phase converters[J]. IEEE Trans. on Ind. Applicat.,2001,37(2):637-641.
    [64]王琛琛,李永东,高跃.基于通用多电平SVPWM算法的三电平无速度传感器矢量控制系统[J].电工技术学报,2007,22(9):107-111.
    [65] Dengming Peng, Lee, F.C., Boroyevich, D. A novel SVM algorithm for multilevel three-phaseconverters[C]. Power Electronics Specialists Conference, Blacksburg VA, IEEE,2002:509-513.
    [66]姜卫东,王群京,陈权.一种新的N电平电压源逆变器的空间矢量调制算法[J].电机工程学报.2008,28(33):12-18.
    [67]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制的通用算法[J].电网技术,2011,35(5):59-64.
    [68] Zeliang Shu; Jian Tang; Yuhua Guo, et al. An Efficient SVPWM Algorithm With LowComputational Overhead for Three-Phase Inverters[J]. Power Electronics, IEEE Transactions on,2007,22(5):1797-1805.
    [69] Shiny, G., Baiju, M.R. A fractal based space vector PWM scheme for general n-level inverters[J].International Power Electronics Conference, Trivandrum, IEEE,2010:847-854.
    [70] Corzine, K.A., Baker, J.R. Multilevel Voltage-Source Duty-Cycle Modulation:Analysis andImplementation[J]. Industrial Electronics, IEEE Transactions on,2002,49(5):1009-1016.
    [71]丁冠军,汤广福,丁明,等.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报,2009,29(36):1-8.
    [72]孙宜峰,阮新波.级联型多电平逆变器的功率均衡控制策略[J].中国电机工程学报,2006,26(4):126-133.
    [73]王立乔,胡长生,张仲超.错时采样空间矢量调制技术的频域数学分析[J].电力系统自动化,2004,28(2):26-31.
    [74] Zhenyu Yang, Jianfeng Zhao, Xijun Ni, et al.Research on eliminating common-mode voltage ofcascaded medium-voltage variable frequency driver with phase-difference SVPWM[C].European Conference on Power Electronics and Applications, Nanjing, IEEE,2007:1-10.
    [75] Gupta, R., Ghosh, A., Joshi, A. Multiband Hysteresis Modulation and SwitchingCharacterization for Sliding-Mode-Controlled Cascaded Multilevel Inverter[J]. IndustrialElectronics, IEEE Transactions on,2010,57(7):2344-2353.
    [76] Poh Chiang Loh, Holmes, D.G. Flux modulation for multilevel inverters[J]. IEEE Transactionson Industry Applications,2002,38(5):1389-1399.
    [77] Renge, M.M., Suryawanshi, H.M. Three-Dimensional Space-Vector Modulation to ReduceCommon-Mode Voltage for Multilevel Inverter[J]. IEEE Transactions on Industrial Electronics,2010,57(7):2324-2331.
    [78] Prats, M.M., Franquelo, L.G., Portillo, R., et al. A3-D space vector modulation generalizedalgorithm for multilevel converters[J]. IEEE Power Electronics Letters,2003,99(4):110-114.
    [79]管敏渊,徐政,屠卿瑞,等.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化,2010,34(2):48-52.
    [80] Perez, M., Rodriguez, J., Pontt, J., et al. Power Distribution in Hybrid Multi-cell Converter withNearest Level Modulation[C]. IEEE International Symposium on Industrial Electronics,Valparaiso,2007:736-741.
    [81] Ilves, K., Antonopoulos, A., Norrga, S., et al. A new modulation method for the modularmultilevel converter allowing fundamental switching frequency[C]. International Conference onPower Electronics, Stockholm, IEEE,2011:991-998.
    [82]魏晓光,汤广福.基于电压源换流器的高压直流输电系统离散化建模与仿真研究[J].电网技术,2006,30(2):34-39.
    [83] Turner, R., Walton, S., Duke, R. Robust High-Performance Inverter Control Using DiscreteDirect-Design Pole Placement[J]. IEEE Transactions on Industrial Electronics,2011,58(1):348-357.
    [84] Lidong Zhang, Harnefors, L., Nee, H.-P. Modeling and Control of VSC-HVDC Links Connectedto Island Systems[J]. IEEE Transactions on Power Systems,2011,26(2):783-793.
    [85] Rioual, P., Pouliquen, H., Louis, J.-P. Regulation of a PWM Rectifier in the UnbalancedNetwork State Using a Generalized Model[J]. IEEE Transactions on Power Electronics,1996,11(3):495-502.
    [86]郑超,周孝信,李若梅.新型高压直流输电的开关函数建模与分析[J].电力系统自动化,2005,29(8):32-35.
    [87] S. Colea, R. Belmans. A proposal for standard VSC HVDC dynamic models in power systemstability studies[J]. Electric Power Systems Research, ELSEVIER,2011,(81):967-973.
    [88] Zheng Chao, Zhou Xiaoxin, Ruomei, L. Dynamic Modeling and Transient Simulation for VSCBased HVDC in Multi-Machine System[J]. International Conference on Power SystemTechnology, Beijing, IEEE,2006:1-7.
    [89] Jovcic, D., Lamont, L.A., Xu, L. VSC Transmission Model for Analytical Studies[C]. PowerEngineering Society General Meeting, UK, IEEE,2003:1737-1742.
    [90]潘武略,徐政,张静.不对称运行条件下VSC-HVDC动态相量建模[J].高电压技术,2009,35(7):1705-1710.
    [91] Wei Yao, Jinyu Wen, Shijie Cheng, et al. Modeling and Simulation of VSC-HVDC withDynamic Phasors[C]. Third International Conference on Electric Utility Deregulation andRestructuring and Power Technologies, Wuhan, IEEE,2008:1416-1421.
    [92]孙栩,孔力. VSC-HVDC系统的动态相量法建模仿真分析[J].电力系统自动化,2008,32(1):44-47.
    [93]郑超,周孝信.基于电压源换流器的高压直流输电小信号动态建模及其阻尼控制器设计[J].中国电机工程学报,2006,26(2):7-12.
    [94]张强,风力发电并网变流器工程问题研究[博士论文].合肥:合肥工业大学.2006.
    [95] Wang, Y.A., Boys, J.T., Hu, A.P. Modelling and Control of an Inverter for VSC-HVDCTransmission System with Passive Load[C]. International Conference on Power SystemTechnology, TAS, IEEE,2009:1-6.
    [96] Cuiqing Du, Bollen, M.H.J., Agneholm, E., et al. A New Control Strategy of a VSC–HVDCSystemfor High-Quality Supply of Industrial Plants[J]. IEEE Transactions on Power Delivery,2007,22(4):2386-2394.
    [97] Lie Xu, Liangzhong Yao, Sasse, C. Grid Integration of Large DFIG-Based Wind Farms UsingVSC Transmission[J]. IEEE Transactions on Power Systems,2007,22(3):976-984.
    [98]皇甫成,贺之渊,汤广福.交流电网不平衡情况下电压源换相直流输电系统的控制策略[J].2008,28(22):144-151.
    [99] Lie Xu, Andersen, B.R., Cartwright, P. VSC Transmission Operating Under Unbalanced ACConditions-Analysis and Control[J]. IEEE Transactions on Power Delivery,2005,20(1):427-434.
    [100]伍小杰,王颖杰,朱荣伍,等.三相电压型PWM整流器不平衡控制虚拟导纳法[J].电力自动化设备.2010,30(3):35-39.
    [101] Peng Xiao, Corzine, K.A., Venayagamoorthy, G.K. Cancellation Predictive Control forThree-Phase PWM Rectifiers under Harmonic and Unbalanced Input Conditions[C].32ndAnnual Conference on Industrial Electronics, Rolla MO, IEEE,2006:1816-1821.
    [102] Peng Xiao, Corzine, K.A., Venayagamoorthy, G.K. Multiple Reference Frame-Based Control ofThree-Phase PWM Boost Rectifiers under Unbalanced and Distorted Input Conditions[J]. IEEETransactions on Power Electronics,2008,23(4):2006-2017.
    [103] Lee, K., Jahns, T.M., Lipo, T.A., et al. Observer-Based Control Methods for CombinedSource-Voltage Harmonics and Unbalance Disturbances in PWM Voltage-Source Converters[J].IEEE Transactions on Industry Applications,2009,45(6):2010-2021.
    [104]张桂斌,徐政,王广柱.基于空间矢量的基波正序_负序分量及谐波分量的实时检测方法[J].中国电机工程学报,2001,21(10):1-5.
    [105] Leon, A.E., Mauricio, J.M., Solsona, J.A., et al. Adaptive Control Strategy for VSC-BasedSystems Under Unbalanced Network Conditions[J]. IEEE Transactions on Smart Grid,2010,1(3):311-319.
    [106] Bo Yin, Oruganti, R., Panda, S.K., et al. An Output-Power-Control Strategy for a Three-PhasePWM Rectifer Under Unbalanced Supply Conditions[J]. IEEE Transactions on IndustrialElectronics,2008,55(5):2140-2151.
    [107] Etxeberria-Otadui, I., Viscarret, U., Caballero, M., et al. New Optimized PWM VSC ControlStructures and Strategies Under Unbalanced Voltage Transients[J]. IEEE Transactions onIndustrial Electronics,2007,54(5):2902-2914.
    [108] Wu, X.H., Panda, S.K., Xu, J.X. Analysis of the Instantaneous Power Flow for Three-PhasePWM Boost Rectifer Under Unbalanced Supply Voltage Conditions[J]. IEEE Transactions onPower Electronics,2008,23(4):1679-1691.
    [109] Yi Tang, Poh Chiang Loh, Peng Wang, et al. One-Cycle Controlled Three-Phase PWM RectifiersWith Improved Regulation Under Unbalanced and Distorted Input Voltage Conditions[J]. IEEETransactions on Power Electronics,2010,25(11):2786-2796.
    [110] Yongsug Suh, Yuran Go, Dohwan Rho. A Comparative Study on Control Algorithm for ActiveFront-End Rectifier of Large Motor Drives Under Unbalanced Input[J]. IEEE Transactions onIndustry Applications,2011,47(3):1419-1431.
    [111] Holtz, J. Pulsewidth modulation for electronic power conversion [C]. Proceedings of the IEEE.1994,82(8):1194–1214.
    [112]陈伟,邹旭东,唐健,等.三相电压型PWM整流器直接功率控制调制机制[J].中国电机工程学报,2010,30(3):35-41.
    [113] Mu oz, S., Pe rez, M.A., Rodri guez, J. A modified active and reactive direct power controlstrategy with disturbances minimization[C].36th Annual Conference on IEEE IndustrialElectronics Society, Valparaiso, IEEE,2010:280-285
    [114] Escobar, G., Stankovic, A.M., Carrasco, J.M., et al. Analysis and design of direct power control(DPC) for a three phase synchronous rectifier via output regulation subspaces[J]. IEEETransactions on Power Electronics,2008,18(3):823-830.
    [115] Sato, A., Noguchi, T. Voltage-Source PWM Rectifier–Inverter Based on Direct Power Controland Its Operation Characteristics[J]. IEEE Transactions on Power Electronics,2011,26(5):1559-1567.
    [116]杨兴武,姜建国.电压型PWM整流器预测直接功率控制[J].中国电机工程学报,2011,31(3):34-39.
    [117] Antoniewicz, P., Kazmierkowski, M.P. Virtual-Flux-Based Predictive Direct Power Control ofACDC Converters With Online Inductance Estimation[J].IEEE Transactions on IndustrialElectronics,2008,55(12):4381-4390.
    [118] Dawei Zhi, Lie Xu, Williams, B.W. Improved Direct Power Control of Grid-Connected DC/ACConverters [J]. IEEE Transactions on Power Electronics,2009,24(5):1280-1292.
    [119] Serpa, L.A., Round, S.D., Kolar, J.W. A Virtual-Flux Decoupling Hysteresis Current Controllerfor Mains Connected Inverter[C]. Power Electronics Specialists Conference, Zurich, IEEE,2006:1-7.
    [120] Bouafia, A., Krim, F., Gaubert, J.-P. Fuzzy-Logic-Based Switching State Selection for DirectPower Control of Three-Phase PWM Rectifier[J]. IEEE Transactions on Industrial Electronics,2009,56(6):1984-1992.
    [121] Kazmierkowski, M.P., Jasinski, M., Wrona, G. DSP-Based Control of Grid-Connected PowerConverters Operating Under Grid Distortions[J]. IEEE Transactions on Industrial Informatics,2011,7(2):204-211.
    [122] Yongsug Suh, T.A. Lipo. Modeling and Analysis of Instantaneous Active and Reactive Power forPWM AC/DC Converter Under Generalized Unbalanced Network[J]. IEEE Transactions onPower Delivery,2006,21(3):1530-1540.
    [123] Roiu, D., Bojoi, R., Limongi, L.R., et al. New Stationary Frame Control Scheme forThree-Phase PWM Rectifers Under Unbalanced Voltage Dips Conditions[C]. IndustryApplications Society Annual Meeting, Torino, IEEE,2008:1-7.
    [124]耿强,夏长亮,阎彦,等.电网电压不平衡情况下PWM整流器恒频直接功率控制[J].中国电机工程学报,2010,30(36):79-85.
    [125] Noguchi, T., Tomiki, H., Kondo, S., et al. Direct power control of PWM converter withoutpower-source voltage sensors[J]. IEEE Transactions on Industry Applications,1998,34(3):473-479.
    [126]陈伟,三相电压型PWM整流器的直接功率控制技术研究与实现[博士论文].湖北:华中科技大学,2009.
    [127]吴凤江,汪之文,孙力. PWM整流器的改进虚拟磁链定向矢量控制[J].电机与控制学报,2008,12(5):504-508.
    [128] Larrinaga, S.A., Vidal, M.A.R., Oyarbide, E., et al. Predictive Control Strategy for DC/ACConverters Based on Direct Power Control[J]. IEEE Transactions on Industrial Electronics,2007,54(3):1261-1271.
    [129] Vazquez, S., Leon, J.I., Franquelo, L.G. et al. Model Predictive Control with constant switchingfrequency using a Discrete Space Vector Modulation with virtual state vectors[C]. InternationalConference on Industrial Technology, Seville, IEEE,2009:1-6.
    [130] Zixin Li, Yaohua Li, Ping Wang, et al. Control of Three-Phase Boost-Type PWM Rectifier inStationary Frame under Unbalanced Input Voltage[J]. IEEE Transactions on Power Electronics,2010,25(10):2521-2530.
    [131]郭小强,邬伟扬,赵清林.新型并网逆变器控制策略比较和数字实现[J].电工技术学报,2007,22(5):111-116.
    [132] Hong Seok S, Keil R, Mutschler P, et al. Advanced control scheme for a single-phase PWMrectifier in traction applications[C]. Industry Applications Conference,2003,3:1558-1565.
    [133] Lei Shang, Dan Sun, Jiabing Hu, et al. Predictive direct power control of grid-connectedvoltage-sourced converters under unbalanced grid voltage conditions[C]. InternationalConference on Electrical Machines and Systems, Hangzhou, IEEE,2009:1-5.
    [134] Eloy-Garcia, J., Arnaltes, S., Rodriguez-Amenedo, J.L. Direct power control of voltage sourceinverters with unbalanced grid voltages[J]. IET Power Electronics,2008,1(3):395-407.
    [135] Vazquez, S., Sanchez, J.A., Carrasco, J.M. et al. Direct Power Control for three-phase powerconverters under distorted input voltages[C]. International Conference on Industrial Technology,Seville, IEEE,2009:1-6.
    [136] Rivera, S., Kouro, S., Corte s, P., et al. Generalized Direct Power Control for Grid ConnectedMultilevel Converters[C]. International Conference on Industrial Technology,2010,1351-1358.
    [137]杨勇,阮毅,吴国祥,等.基于DPWM1的无差拍解耦控制的三相并网逆变器[J].电工技术学报,2010,25(10):101-107.
    [138]李春龙,沈颂华,卢家林,等.基于状态观测器的PWM整流器电流环无差拍控制技术[J].电工技术学报,2006,21(12):84-89.
    [139] Hui Ouyang, Kai Zhang, Pengju Zhang, et al. Repetitive Compensation of Fluctuating DC LinkVoltage for Railway Traction Drives[J]. IEEE Transactions on Power Electronics,2011,26(8):2160-2171.
    [140]高吉磊,黄先进,林飞.基于重复观测器的PWM整流器无差拍控制[J].电工技术学报,2010,25(6):47-54.
    [141]瞿博,洪小圆,吕征宇.模糊控制在三相PWM整流器无差拍控制中的应用[J].中国电机工程学报,2009,29(15):50-54.
    [142] Ottersten, R., Svensson, J. Vector Current Controlled Voltage Source Converter-DeadbeatControl and Saturation Strategies[J]. IEEE Transactions on Power Electronics,2002,17(2):279-285.
    [143]傅晓帆,周克亮,程明.近海风电场并网用多端口VSC-HVDC系统的无差拍协同控制策略[J].电工技术学报,2011,26(7):51-59.
    [144] Hassan K. Khalil (著),朱义胜等(译),非线性系统(第三版),北京:电子工业出版社.2011:348-373.
    [145]邓卫华,张波,丘东元,等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    [146] Si-Ye Ruan, Guo-Jie Li, Lin Peng, et al. A nonlinear control for enhancing HVDC lighttransmission system stability[J]. Electrical Power and Energy Systems, ELSEVIER,2007,29:565–570.
    [147] Yacoubi, L., Al-Haddad, K., Fnaiech, F., et al. A DSP-based implementation of a new nonlinearcontrol for a three-phase neutral point clamped boost rectifier prototype[J]. IEEE Transactionson Industrial Electronics,2005,52(1):197-205.
    [148] Dong-Choon Lee, G-Myoung Lee, Ki-Do Lee. DC-bus voltage control of three-phase AC/DCPWM converters using feedback linearization[J]. IEEE Transactions on Industry Applications,2000,36(3):826-833.
    [149] Andrés E. León, Jorge A. Solsona, Claudio Busada, et al. High-performance control of athree-phase voltage-source converter including feedforward compensation of the estimated loadcurrent[J]. Energy Conversion and Management, ELSEVIER,2009,50:2000-2008.
    [150] Moharana, A., Dash, P.K. Input-Output Linearization and Robust Sliding-Mode Controller forthe VSC-HVDC Transmission Link[J]. IEEE Transactions on Power Delivery,2010,25(3):1952-1961.
    [151] Hairong Chen, Zheng Xu, Fan Zhang. Nonlinear control for VSC based HVDC system[C]. IEEEPower Engineering Society General Meeting, Montreal, Que, IEEE,2006:1-5.
    [152]张平化,杨贵杰,李铁才.三相PWM整流器的反馈线性化直接电压控制[J].中国电机工程学报,2010,30(18):39-46.
    [153]王久和,杨秀媛.电网不平衡时电压型PWM整流器控制策略[J].中国电机工程学报,2011,31(18):14-20.
    [154]何斌,张秀彬,赵兴勇.电压不对称条件下电压源换流器式高压直流输电的自适应无源控制[J].电网技术,2007,31(14):68-73.
    [155]乔树通,姜建国.三相Boost型PWM整流器输出误差无源性控制[J].电工技术学报,2007,22(2):68-73.
    [156] Carrasco, J.M., Galvan, E., Escobar, G., et al. Passivity-based controller for a three phasesynchronous rectifier[C].26th Annual Confrerence Industrial Electronics Society, Seville, IEEE,2000:2629-2634.
    [157] Harnefors, L., Bongiorno, M. Current controller design for passivity of the input admittance[C].Power European13th Conference on Electronics and Applications, Ludvika, IEEE,2009:1-8.
    [158] Tzann-Shin Lee. Lagrangian modeling and passivity-based control of three-phase AC/DCvoltage-source converter[J]. IEEE Transactions on Industrial Electronics,2004,51(4):892-902.
    [159] Pengfei Wang, Jiuhe Wang, Zuohua Xu. Passivity-based control of three phase voltage sourcePWM rectifiers based on PCHD model[C]. International Conference on Electrical Machines andSystems. Beijing, IEEE,2008:1126-1130.
    [160]朱晓荣,李和明,彭咏龙,等.基于反步法的电流型PWM整流器控制策略[J].电工技术学报,2007,22(2):78-83.
    [161]王茂海,孙元章,宋永华.基于反步法的多馈入直流输电系统调制控制器设计[J].中国电机工程学报,2005,25(23):7-11.
    [162] Si-Ye Ruan, Guo-Jie Li, Xiao-Hong Jiao, et al. Adaptive control design for VSC-HVDC systemsbased on backstepping method[J]. Electric Power Systems Research, ELSEVIER,2007,77:559–565.
    [163] Hammoudi, M.Y., Allag, A., Mimoune, S.M., et al. Tracking control via adaptive backsteppingapproach for a three phase PWM AC-DC converter[C]. International Conference on IndustrialTechnology, Biskra, IEEE,2006:1676-1681.
    [164]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社.2005:1-15.
    [165]尚磊,孙丹,胡家兵,等.三相电压型并网逆变器滑模变结构直接功率控制[J].电力系统自动化,2010,34(14):79-83.
    [166]汪万伟,尹华杰,管霖.三相电压型PWM整流器滑模变结构直接功率控制[J].华南理工大学学报(自然科学版),2009,37(11):83-87.
    [167] Jiabing Hu, Lei Shang, Yikang He, et al. Direct Active and Reactive Power Regulation ofGrid-Connected DC AC Converters Using Sliding Mode Control Approach[J]. IEEETransactions on Power Electronics,2011,26(1):210-222.
    [168] Shang, L., Sun, D., Hu, J. Sliding-mode-based direct power control of grid-connectedvoltage-sourced inverters under unbalanced network conditions[J]. IET Power Electronics,2011,4(5):570-579.
    [169] Camboim, F., Filho, R.D., Neves, F., et al. Discrete-time sliding mode direct power control forthree-phase rectifiers[C]. Power Electronics Conference, Recife, IEEE,2009:878-885.
    [170]张志,谢运祥,乐江源,等.三相电压型PWM整流器的反馈线性化和滑模控制[J].华南理工大学学报(自然科学版),2009,37(11):71-75.
    [171]赵葵银,PWM整流器的模糊滑模变结构控制[J].电工技术学报,2006,21(7):49-53.
    [172]叶津,杨旭,叶海忠.基于负载估测的三相整流器全滑模控制策略[J].电力电子技术,2010,44(12):70-75.
    [173]郑雪生,李春文,汤洪海,等.三相PWM电压型逆变器的积分滑模控制[J].电工技术学报,2007,22(12):105-109.
    [174] Ramadan, H.S., Siguerdidjane, H., Petit, M. Robust nonlinear control strategy for HVDC lighttransmission systems[C].34th Annual Conference of Industrial Electronics, IEEE,2009:360-365.
    [175] Jianhua Zhang, Xiaojun Li, Guolian Hou, et al. Study of sliding-mode control based grid-sidePWM rectifier for wind power generation system under unbalanced input voltage condition[C].4th IEEE Conference on Industrial Electronics and Applications, Beijing, IEEE,2009:1631-1635.
    [176]李和明,朱晓荣,石新春,等.电流型PWM整流器的不平衡控制[J].电工技术学报,2010.25(7):85-92.
    [177]周国梁,石新春,魏晓光,等.电压源换流器高压直流输电不平衡控制策略研究[J].中国电机工程学报,2008,28(22):137-143.
    [178]张桂斌,徐政,王广柱.基于VSC的直流输电系统的稳态建模及其非线性控制[J].中国电机工程学报,2002,22(1):17-22.
    [179]杨旭,王兆安.一种新的准固定频率滞环PWM电流控制方法[J].电工技术学报,2003,18(3):24-28.
    [180]梁海峰,王松,李庚银,等. VSC-HVDC系统H_控制器设计[J].电网技术,2009,33(9):35-39.
    [181] Stankovic, A.V., Ke Chen. A New Control Method for Input–Output Harmonic Elimination ofthe PWM Boost-Type Rectifier Under Extreme Unbalanced Operating Conditions[J]. IEEETransactions on Industrial Electronics,2009,56(7):2420-2430.
    [182]邹祖冰,蔡丽娟,甘辉霞.电压型PWM逆变器的自抗扰控制策略[J].电工技术学报,2004,19(2):84-88.
    [183]郭源博,周鑫,张晓华,等.三相电压型脉宽调制整流器的自抗扰控制[J].电力系统自动化,2011,35(16):87-93.
    [184]邵立伟,廖晓钟.自抗扰控制器在电压型PWM整流器中的应用[J].北京理工大学学报,2008,28(1):50-53.
    [185]周孝法,陈陈,宋正强,等.基于改进例子群优算法的HVDC PI控制器研究优化设计[J].高电压技术,2009,35(2):408-414.
    [186] Liyong Yang, Zhenguo Chang, Zhengxi Li. A novel fuzzy logic controller and antiwindup PIcontroller for three-phase PWM Rectifier[C]. International Conference on Mechatronics andAutomation, Beijing, IEEE,2009:1952-1956.
    [187] Yan Zhao, Xue-hao Hu, Guang-fu Tang, et al. A study on MMC model and its current controlstrategies[C].2nd IEEE International Symposium on Power Electronics for DistributedGeneration Systems, Beijing,2010:259-264.
    [188]刘凤君.多电平逆变技术及其应用[M].北京:机械工业出版社.2007:156-168.
    [189]刘洪涛.新型直流输电的控制和保护策略研究[博士论文].杭州:浙江大学,2003.
    [190]殷自力,李庚银,李广凯,等.柔性直流输电系统运行机理分析及主回路相关参数设计[J].电网技术,2007,31(21):16-21.
    [191]周孝法,陈陈,宋正强,等.基于改进PSO算法的HVDC PI控制器优化设计[J].高电压技术,2009,35(2):408-414.
    [192] Kennedy J,Eberhart R.Particle swarm optimization[C].IEEE Neural Networks Proceedings,Perth, Australia,1995:1942-1948.
    [193]朴海国,王志新,张华强.基于粒子群算法的PID神经网络非线性控制系统[J].控制理论与应用,2009,26(12):1317-1324.
    [194]舒怀林.PID神经元网络及其控制系统[M].北京:机械工业出版社,2006:35-68.
    [195] Al-Othman A K,Abdelhamid T H.Elimination of harmonics in multilevel inverters withnon-equal DC sources using PSO[C]. IEEE Power Electronics and Motion ControlConference,Poznan, IEEE,2008:606-613.
    [196] Kouzou A,Saadi S,Mahmoudi M O,et al.Voltage quality enhancement of PWM AC Voltagecontroller using Particle Swarm Optimization[C]. IEEE Power Engineering, Energy andElectrical Drives International Conference, Lisbon, IEEE,2009:309-314.
    [197]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005:112-125.
    [198] Tokuoohnishi. Three Phase PWM converter/inverter by means of instantaneous active andreaetive Power control[C]. International Conference on Industrial Electronics, Control andInstrumentation, IEEE,1991:819-824.
    [199] L.Xu, P.Cartwright. Direet Aetive and Reaetive Power Control of DFIG for Wind EnergyGeneration[J]. IEEE Transaetion on Energy Conversion,2006.21(3):750-758.
    [200] Sanjay Bharadwaj, et al. Entry Trajectory Tracking Law via Feedback Linearization [J]. Journalof Guidance, Control, and Dynamics,1998,21(5):726-732.
    [201]尹明.基于VSC-HVDC的风电场联网技术研究[博士论文].北京:华北电力大学.2006.
    [202]王久和.电压型PWM整流器的非线性控制[M].北京:机械工业出版社,2008:139-144.
    [203]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制[M],北京:清华大学出版社,2007:135-143.
    [204]王春民,刘兴明,嵇艳鞠.连续与离散控制系统[M].北京:科学出版社,2008:365-368.
    [205] Mohamed Y.A.-R.I., El-Saadany E.F. An Improved Deadbeat Current Control Scheme With aNovel Adaptive Self-Tuning Load Model for a Three-Phase PWM Voltage-Source Inverter[J].IEEE Transactions on Industrial Electronics,2007,54(2):747-759.
    [206] D.-C. Lee, S.-K. Sul, M.-H. Park. High performance current regulator for a feld-orientedcontrolled induction motor drive[J]. IEEE Trans.Ind. Appl.,1994,30(5):1247–1257.
    [207] Abu-Rub H., Guzinski J., Krzeminski Z., et al. Predictive current control of voltage-sourceinverters[J]. IEEE Trans. Ind. Electron.,2004,51(3):585–593.
    [208] H.-T. Moon, H.-S. Kim, M.-J. Youn. A discrete-time predictive current control for PMSM[J].IEEE Trans. Power Electron.,2003,18(1):464–472.
    [209] Mohamed, Y.A.-R.I., El-Saadany, E.F. Robust High Bandwidth Discrete-Time PredictiveCurrent Control with Predictive Internal Model—A Unified Approach for Voltage-Source PWMConverters[J]. IEEE Transactions on Power Electronics,2008,23(1):126-136.
    [210] Delghavi, M.B., Yazdani, A. Islanded-Mode Control of Electronically CoupledDistributed-Resource Units Under Unbalanced and Nonlinear Load Conditions[J]. IEEETransactions on Power Delivery,2011,26(2):661-673.
    [211]梅红明,刘建政.基于电流观测器的三相变流器重复控制方法[J].中国电机工程学报,2011,31(27):59-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700