燃料电池车用高频逆变系统的谐波分析与抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机和环境污染的日益严重,传统的内燃机汽车受到前所未有的挑战。作为新型的动力汽车,燃料电池汽车得到越来越多的关注。由于车辆的实际运行工况随机多变,以及大量电力电子器件的使用,由此引起的谐波对燃料电池系统稳定性造成很大的影响,因此对谐波抑制的研究成为燃料电池汽车极其重要的环节之一。
     本文针对燃料电池空气供给系统中,空压机驱动电机高频逆变系统的谐波问题展开研究,提出一种新型的基于变定时周期滞环电流控制有源电力滤波器(Active Power Filter, APF),对逆变系统输出侧的谐波进行实时补偿。理论分析和仿真结果表明,在高频条件下采用该方式的有源电力滤波器具有更好的谐波补偿性能,可以很好的满足系统的要求。
     本文首先在分析了燃料电池系统特殊性的基础上,对燃料电池高频逆变系统脉宽调制方式(Pulse Width Modulation, PWM)和脉冲幅值调制(Pulse Amplitude Modulation, PAM)输出谐波特性进行了仿真分析,仿真结果表明在采用了PAM电压调制方式下的逆变系统输出谐波含量更小。其次,基于系统对动态性能的要求,并且针对系统的高频工作环境,提出了一种基于变定时周期的滞环电流控制APF对谐波进行实时的补偿,根据谐波指令电流的幅值和频率变化改变定时周期,从而满足APF对逆变系统的谐波补偿性能的要求。通过理论分析和仿真结果表明,变定时周期的滞环电流控制与传统的定时滞环比较方式相比,可以更好的跟踪指令电流变化,减小跟踪误差,同时可以在一定的采样周期内保持开关频率的基本稳定,使得跟踪电流的输出频谱更加集中。最后在以上理论分析和仿真结果的基础上,结合燃料电池高频逆变系统和APF谐波补偿装置,对整个高频逆变系统的谐波特性进行仿真分析。仿真结果表明,在采用PAM调制方式以及基于变定时周期的滞环电流控制APF可以有效的抑制逆变系统的谐波成分,提高了系统的稳定性。
With the emergence of energy crisis and enviromental pollution, the vehicle with internal-combustion engine is faced with a rigorous challenge. The fuel cell electric vehicle(FCEV) as a new electric vehicle is being taken into consideration. For the actual operating condition of the vehicle changes in a tochastic variable, the stability of the fuel cell system is seriously effected by harmonic current caused by the variable conditions. Therefore the harmonic suppression has been one of the key links in the study of FCEV.
     The thesis is proposed with consideration of the harmonic current. To realize the real-time compensation of the harmonic, a time-changed active power filter(APF) is set in the output side of the inverter. Theoretical analysis and simulation results show the good performance of harmonic compensation by the time-changed method, which able to meet requirements of the system.
     This thesis analyzed the harmonic characteristics of pulse width modulation (PWM) and pulse amplitude modulation (PAM) based on the specificity of the fuel cell system firstly, the simulation results show that PAM-controlled inverter has a better output harmonic performance. Secondly, the time-changed APF is proposed based on the dynamic performance requirements. The time can be changed by the variation of harmonic current detected. The theoretical analysis and simulation results show that the tracking error is decreased in the time-changed method compared with traditional time-control hysteresis current method. Besides, the time-changed controlled method maintain the switching frequency stability in a certain sampling period. Finally, the simulation results show the inverter system, which is combined the PAM-controlled inverter with the time-changed hysteresis current controller, eliminates the harmonic components of the inverter system effectively, and improves the stability of the system.
引文
[1]陶国良,吴震宇.车载燃料电池用空气压缩机工作性能研究及能效分析:(硕士学位论文).杭州:浙江大学,2007.
    [2] Blunier.B, Miraoui.A. Air management in PEM fuel cells: State-of-the-art and prospectives. IEEE Transactions on Magnetics, 2007, 34(4): 245~254.
    [3] Pokphet.T, Khan-ngern.W, Charoensuk.J, et al. Effect of hydrogen Purging period on system performance of PEMFC. Electrical Engineering Computer Telecommunications and Information Technology, 2009, 25(3): 88~92.
    [4] Jong-Soo Kim, Byoung-Kuk Lee. Analysis of low frequency current ripples in Fuel Cell Electric Vehicles considering driving conditions. IEEE Vehicle Power and Propulsion Conference, 2009, 51(2): 691~695.
    [5] Tae Won Lee, Jin Hurb, Byoung Kuk Lee, et al. Design of a fuel cell generation system using a PEMFC simulator. Electric Power Systems Research, 2007, 12(34): 1257~1264.
    [6]向金凤.燃料电池发动机控制系统的研究与实现:(硕士学位论文).武汉:武汉理工大学,2004.
    [7]马宪民.电动汽车高频交流功率分布系统的谐波分析.西安科技学院学报,2008,21(2):145~148.
    [8]朱雷,黄苏融,张琪等.车用燃料电池空气压缩机用高密度无刷永磁电机.微特电机,2004,8(1):3~5.
    [9]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998.
    [10]范瑞祥,罗安.并联混合型有源电力滤波器的理论与应用研究:(硕士学位论文).长沙:湖南大学,2007.
    [11]高吉磊,张雅静,林飞等.单相PWM整流器谐波电流抑制算法研究.中国电机工程学报,2010,30(21):32~39.
    [12]白皓然,王凤祥.高速发电机分布式发电系统功率变化技术研究:(博士学位论文).沈阳:沈阳工业大学,2009.
    [13]韩龙飞,陈国柱.谐波抑制与并联混合有源滤波器的关键技术:(博士学位论文).杭州:浙江大学,2007.
    [14]耿大勇,王凤翔.变流器供电系统的无功补偿与谐波抑制研究:(博士学位论文).沈阳:沈阳工业大学,2002.
    [15]姜素霞,杨小亮,李春文等.三相有源电力滤波器不定频滞环电流控制研究.电力电子技术,2011,5(2):36~40.
    [16]杨桢,李鑫,刘俊峰等.新型注入式有源电力滤波器的研究.电力电子技术,2011,8(10):28~33.
    [17]洪峰,单任仲,王慧等.一种变环宽准恒频电流滞环控制方法.电工技术学报,2009,24(1):115~119.
    [18]徐中华,叶楠,何中一等.基于变环宽滞环控制与重复控制的逆变器控制技术.逆变电源,2008,11(7):49~52.
    [19]杨旭,王兆安.准固定频率滞环PWM电流模式控制方法的研究.电源世界,2001,15(11):5~8.
    [20] Tan F.D, Middlebrook R.D. Unified model for currentprogrammed converters . IEEE Transactions on Power Electronics, 1995, 10(4) :397~408 .
    [21]李宋.一种新颖滞环PWM控制技术的仿真研究.华东交通大学学报,2009,26(6):48~51.
    [22]许胜,赵剑峰,许杏桃.三电平定时滞环PWM电流控制方法.电力电子技术,2011,45(1):62~64.
    [23] Inqram.D.M, Round.S.D. A novel digital hysteresis current controller for an active power filter. Proceedings of IEEE International Conference on Power Electronics and Drive Systems. 1997, 11(2): 744~749.
    [24]王登峰,刘彬娜.燃料电池混合动力汽车多能源系统仿真分析与控制:(硕士学位论文).长春:吉林大学,2007.
    [25]许家群,刘明基,黄海燕等.车用大功率燃料电池发动机动力系统平台.清华大学学报(自然科学版),2006,14(2):33~37.
    [26]许思传,安凯,周定贤等.质子交换膜燃料电池发动机空气系统仿真与试验研究.车用发动机,2011,5(1):25~29.
    [27]张建灿,陶国良.燃料电池空压机测试平台及供气系统的控制策略研究:(博士学位论文).杭州:浙江大学,2005.
    [28]钟再敏,孔勇进,徐志俊.燃料电池汽车动力系统仿真试验台开发.汽车技术,2009,17(2):42~46.
    [29] Hassanaly. N, Dube.Y. Air supply state model for a proton exchange membrane fuel cell control. IEEE Electrical and Computer Engineering, 2001, 121(7): 1203~1211.
    [30]宋锦刚,宋锦明.燃料电池汽车氢气管理系统测试平台的构建.电源技术,2010,16(7):22~26.
    [31] Dae-Kyu Choi, Byoung-Kuk.Lee, Se-Wan.Choi, et al. A novel power conversion circuit for cost-effective battery-fuel cell hybrid systems. Journal of Power Sources. 2005, 26(152): 245~255.
    [32] Grizzle.B, Pucci.M. A scroll compressor with a high-performance sensorless induction motor drive for the air management of a PEMFC system for automotive applications. IEEE Vehicular Technology, 2008, 57(6): 3413~3427.
    [33]吴守箴,臧英杰.电气传动的脉宽调制控制技术.北京:机械工业出版社. 1999.
    [34]王兆安,黄俊.电力电子技术.北京:机械工业出版社. 2002.
    [35]辜承林,陈乔夫,熊永前.电机学.武汉:华中科技大学出版社,2005.
    [36] Blunier.B, Miraoui.A. Elimination of harmonics in a multilevel converter for HEV applications. IEEE Workshop on Power Electronics in Transportation, 2002, 45(3): 135~142.
    [37]张桔苹,王成山.有源电力滤波器谐波检测方法的研究:(硕士学位论文).天津:天津大学,2008.
    [38]周洪亮,杜维.有源电力滤波控制技术的研究及应用:(博士学位论文).杭州:浙江大学,2002.
    [39]童立青,彭方正.串联混合有源电力滤波器新型控制技术研究:(硕士学位论文).杭州:浙江大学,2009.
    [40]周雒维,江泽佳.有源电力滤波器谐波电流检测和控制新方法的研究:(硕士学位论文).重庆:重庆大学,2001.
    [41]王明菊,张昌凡.基于滑模变结构控制的有源电力滤波器的研究及应用:(硕士学位论文).长沙:湖南工业大学,2007.
    [42]崔虎宝,姜惠兰.基于空间矢量预测电流滞环控制的并联型有源电力滤波器:(博士学位论文).天津:天津大学,2006.
    [43]马海啸,龚春英,严仰光.电流滞环控制半桥双降压式逆变器输出滤波器设计.中国电机工程学报,2007,27 (13):98~103.
    [44]漆铭钧,罗安,刘定国.注入式混合型有源电力滤波器的电流控制新策略.中国电机工程学报,2008,28(36):47~54.
    [45]于晓丹,孙丽敬.有源电力滤波器的谐波检测方法研究.变频器世界,2007,11(2):45~48.
    [46]曹奇,申群太.并联型有源电力滤波器谐波电流检测及控制策略的研究:(博士学位论文).长沙:中南大学,2010.
    [47]曹金梅,李文娟.基于ip-iq谐波检测法的并联型有源电力滤波器的研究:(硕士学位论文).哈尔滨:哈尔滨理工大学,2009.
    [48]涂春鸣,罗安,汤赐等.注入式混合型有源电力滤波器的控制算法.中国电机工程学报,2008,28(24):52-58 .
    [49]嵇丽明,侯世英.改进型直流侧有源电力滤波器的谐波抑制技术研究:(博士学位论文).重庆:重庆大学,2010.
    [50]周娟,王超,张勇等.四桥臂有源电力滤波器直流侧电压控制研究.电气应用,2011,18(20):15~19.
    [51]何易桓,张代润,张竹等.有源电力滤波器的一种新滞环控制方法.电力电子技术,2009,22(10):17~22.
    [52]孟建华,蔚泉清,刘靖峰.定时和滞环相结合的跟踪控制方法.西安工程大学学报,2008, 22(5):592~595.
    [53] Zhong Qing, Zhang Yao, Zheng Jiawei, et al. Optimal selection ofoutput inductance in active power filters. Electric PowerAutomation Equipment. 2006, 26(10): 17~20.
    [54]谢运祥,朱立新,唐中琦.有源滤波器输出电感值的选取方法.华南理工大学学报,2000,28(9):73~76.
    [55]张国荣,齐国虎,苏建徽.并联型有源电力滤波器输出电感选择的新方法.中国电机工程学报,2010,30(6):22~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700