牵引供电系统与高速列车牵引传动系统耦合振荡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速铁路的发展,高速列车普遍采用交-直-交的传动技术,其牵引传动系统的四象限脉冲整流器谐波频谱宽,高频谐波含量高,高速列车与牵引供电系统耦合振荡的问题逐步凸现出来,对高速铁路的安全运行带来了极大的危害。
     为分析牵引供电系统与高速列车牵引传动系统耦合振荡的机理和影响级联系统稳定性的关键因素,本文从牵引供电系统的谐波计算模型分析入手,对具有复杂结构的牵引供电网利用链式网络模型和节点电压矩阵计算方法研究其谐波的传播情况。研究牵引网分布参数的计算问题,编写了牵引网的谐波计算程序,并将牵引网谐波分析理论和计算程序应用到京沪高铁CRH380系列动车组出现的车网振荡事故的问题分析中,结合试验测试数据对事故原因做了较好的诠释。本文还对牵引网的单线简化模型进行了分析,通过公式推导计算了供电系统的等效阻抗并分析了谐波电流的放大情况。
     本文引入阻抗比判据对由牵引供电系统和四象限脉冲整流器组成的级联系统稳定性进行了分析,通过在简化电网参数情况下研究系统前级输出阻抗和后级输入阻抗的阻抗比关系,分析了影响此级联系统稳定的因素。针对牵引网的拓扑结构搭建了牵引供电网的仿真模型,与单相脉冲整流器的仿真模型联立为级联系统的仿真模型。通过对级联系统的仿真研究验证影响级联系统稳定性的因素。对单相脉冲整流器的控制策略进行了初步研究,分析了数字控制延时对无差拍控制的影响,进而提出了解决控制延时影响的预测电流控制方法。搭建了小功率的单相PWM整流器实验平台,通过实验对比了无差拍控制和预测电流控制电流环稳定性的差异,并对网侧参数和整流器控制环参数对系统稳定性的影响进行了实验验证。
With the development of high-speed railway, high speed trains generally use AC-DC-AC drive technology. The harmonic spectrum of four-quadrant pulse rectifier in traction drive system is wide and there are plenty of high-frequency harmonic components. The coupled oscillation between high-speed train and traction power supply system gradually emerges and brings great harm to the safe operation of the high-speed rail.
     Aimed to analyze the coupled oscillation mechanism between traction network and traction drive system and the key factors affecting the stability of the cascade system, the thesis starts from the harmonic propagation analysis to the traction network. It works out the spread of the harmonics by the node voltage matrix calculation in the chain network model. It studies the distribution parameter calculation of traction network and writes the harmonic calculation program. The network harmonic analysis theory and computational procedures are applied to the analysis of resonant accident which happened on the Beijing-Shanghai line when CRH380series EMUs are tested. Analysis results combined with the test data give a good interpretation to the cause of the accident. To study the amplification of harmonic currents, the singlet simplified model of the traction network is analyzed and the equivalent impedance is calculated by the formula derivation.
     This thesis introduces the impedance ratio criterion to analyze the stability of the cascade system. The output-input impendence ratio is described in the case of simplified network parameters and the factors affecting the stability of the cascade system are analyzed. Both the traction network and the single-phase PWM rectifier are modeled in MATLAB and the model of the cascade system is tested to study its stability. The thesis preliminarily studies the control strategy of rectifiers and the deadbeat control with digitally controlled delay is analyzed. Predictive current control method is proposed to solve the control delay impact. A low-power single-phase PWM rectifier platform is built and experiments are implemented to analyze different control strategies and the stability of the system.
引文
[1]郑琼林.交流传动HXD1电力机车谐振原因分析与对策[J].变频器世界,2009,5:40-44.
    [2]姚楠.电气化铁道牵引网基波与谐波模型研究[硕士学位论文].北京:北京交通大学,2008.
    [3]李群湛,贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2010.
    [4]何正友,胡海涛,方雷,张民,高仕斌.高速铁路牵引供电系统谐波及其传输特性研究[J].中国电机工程学报,2011,31(16):55-62.
    [5]Erik Mollerstedt, Bo Bernhardsson. Out of control because of harmonics-an analysis of the harmonic response of an inverter locomotive[J]. IEEE Control Systems Magazine, August 2000:70-81.
    [6]Hanmin Lee, Changmu Lee, Gilsoo Jang. Harmonic analysis of the Korean high-speed railway using the eight-port representation model[J]. IEEE Transactions on Power Delivery,2006, 26(2):979-986.
    [7]王奇.高速铁路牵引供电系统高次谐波谐振仿真研究[硕士学位论文].成都:西南交通大学,2007.
    [8]杨少兵,吴命利.基于实测数据的高速动车组谐波分布特性与概率模型研究[J].铁道学报,2010,32(3):33-38.
    [9]吴命利.电气化铁道牵引网的统一链式电路模型[J].电机工程学报,2010,30(28):52-58.
    [10]吴命利,李群湛.输电线谐波模型与算法研究[J].铁道学报,1995,17(增刊):105-112.
    [11]方雷.高速铁路牵引供电系统数字建模及仿真[硕士学位论文].成都:西南交通大学,2010.
    [12]郭蕾,李群湛,刘炜,解绍锋.额定功率下高速机车谐波特性的仿真分析[J].西南交通大学学报,2009,44(6):835-840.
    [13]朱成花,严仰光.输入滤波器与开关变换器相互作用的分析[J].电力电子技术,2004,38(4):23-25.
    [14]朱成花,严仰光.一种改进的阻抗比判据[J].南京航空航天大学学报,2006,38(3):315-320.
    [15]吴涛.直流分布式供电系统中子模块输入输出阻抗的分析[硕士学位论文].南京:南京航空航天大学,2007.
    [16]Middlebrook R D. Input filter consideration in design and application of switching regulators[C]. IEEE IAS Annual Meeting,1976:336-382.
    [17]Wildrick C M and Lee F C. A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Electronics,1995,10(5):280-285.
    [18]Feng X, Liu J, Lee F C. Impedance specifications for stable dc distributed power systems[J]. IEEE Transations on Power Electronics,2002,17(2):157-162.
    [19]Feng X, Ye Z, Xing K, Lee F C and Borojevic D. Impedance specification and impedance improvement for dc distributed power system[C]. Power Electronics Specialists Conference, USA,1999:889-894.
    [20]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [21]高吉磊.单相PWM整流器谐波电流抑制算法研究[博士学位论文].北京:北京交通大学,2011.
    [22]Roland John Hill, Ibrahim H. Cevik. On-line simulation of autotransformer-fed AC electric railroad traction networks[J]. IEEE Transactions on Vehicular Technology,1993,42(3): 365-372.
    [23]Gary W. Chang, Hsin-Wei Lin, Shin-Kuan Chen. Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters[J]. IEEE Transactions On Power Delivery,2004,19(2):766-773.
    [24]Andrea Mariscotti, Paolo Pozzobon. Determination of the Electrical Parameters of railway traction lines: calculation, measurement, and reference data[J]. IEEE Transactions On Power Delivery,2004,19(4):1538-1546.
    [25]李群湛.牵引变电所供电分析及综合补偿技术[M].北京:中国铁道出版社,2006.
    [26]Bin Yu. Predictive current controlled PWM strategy for grid-connected single-phase inverter[Dissertation]. Canada: The University of New Brunswick,2004.
    [27]Hung G K, Chang C C, Chen C L. Analysis and implementation of a delay-compensated deadbeat current controller for solar inverters[J]. IEE Proceedings of Circuits Devices System, 2001,148(5):279-286.
    [28]Hua C C, Wu C W, and Chuang C W. A digital predictive current control with improved sampled inductor current for cascaded inverters[J]. IEEE Transactions on Industrial Electronics,2009,56(5):1718-1726.
    [29]Yu B, Chang L C. Improved predictive current controlled PWM for single-phase grid-connected voltage source inverters[C]. Power Electronics Specialists Conference, Recife,2005:231-236.
    [30]Holmes D G, Martin D A. Implementation of a direct digital predictive current controller for single and three phase voltage source inverters[C]. Industry Applications Conference, San Diego,1996,2:906-913.
    [31]Mohamed Y A I and El-Saadany E F. An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltage-source inverter[J]. IEEE Transactions on Industrial Electronics,2007,54(2):747-759.
    [32]刘玉洁,盛彩飞,林飞,游小杰,郑琼林.高速动车组网侧电流谐波特性的研究[J].电气传动,2010,40(1):33-50.
    [33]Jian Hu. Deadbeat controlled PWM converter[Dissertation]. Montreal:McGill University, 1999.
    [34]李伟,张黎.交-直-交传动系统网侧变流器预测电流控制方法的计算机仿真及实现[J].中国铁道科学,2002,23(6):49-54.
    [35]刘俊岭,杨耕,耿华,王宏宝.数字化有源滤波器时延补偿方法的分析和验证[J].电力电子技术,2007,41(11):31-33.
    [36]李春龙,沈颂华,卢家林,张建荣.基于状态观测器的PWM整流器电流环无差拍控制技术[J].电工技术学报,2006,21(12):84-89.
    [37]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究[博士学位论文].武汉:华中理工大学,2000.
    [38]冯晓云.电力牵引交流传动及其控制系统[M].成都:西南交通大学出版社,2009:95-118.
    [39]刘建强,郑琼林,张永锋,杜会谦,孙帮成.CRH3型动车组列车网络传输介质电气特性研究.机车电传动,2010(6):1-5.
    [40]郎兵,吴命利.牵引网谐波模型及其仿真计算[J].电力系统自动化,2009,33(17):76-80.
    [41]杨志华,朱俐琴.交流传动电力机车网侧谐波分析与对策[J].电力机车与城轨车辆,2003, 26(2):8-12.
    [42]刘建强.高速列车牵引传动系统.电力电子,2011(3):58-62.
    [43]Brenna M, Foiadelli F. Sensitivity analysis of the constructive parameters for the 2x25-kV high-speed railway lines planning[J]. IEEE Trans. on Power Delivery,2010,25(3):1923-1931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700