咸化环境盐类物质与有机质相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东部咸化湖盆油气资源丰富,其中烃源岩与不同盐类物质共存。盐类物质是否影响有机质生烃过程,生成油气又有什么特征。研究咸化环境油气成因不仅可以深化油气地质及地球化学领域基础问题,而且有助于油气勘探,因此,该选题具有重要的科学和实际意义。
     本论文通过文献调研,针对有机质与盐类物质相互作用问题,提出了一整套理论研究方法,即低熟气成因利用等温热模拟手段、高熟气成因开展程序升温热模拟实验,查明碳酸盐、硫酸盐和氯化盐等对有机质的催化生烃过程;阐明了民丰等地区的天然气成因机制;最后利用化学动力学方法查明了盐类物质作用下油气成因模式,完善了咸化湖盆油气成因理论。
     在调研咸化湖盆烃源岩组合及其油气藏富集关系基础上,对东营凹陷沙四段盐湖相有机质及产出油气的地质地球化学研究发现,该区深层油型气高环烷烃(甲基环己烷指数38%)、高芳烃(苯指数26%)轻碳同位素(δ~(13)C_1为-48.95~-44.66‰)特征与有机质类型(I型II1型)及热演化史(Ro约1.1-1.6%)并不完全匹配,天然气成因问题存在争议。
     通过热模拟盐类物质作用下低熟气的生成过程发现,不同蒸发盐、热解温度和恒温时间影响源岩降解生油气数量,其中,温度对油气生成起控制作用。碳酸盐和硫酸盐对低熟气的生成有较强催化作用(产率分别提高34%和28%),氯化盐催化生气能力较弱(提高15%)。盐湖相低熟气具有烃类组分偏湿,苯含量高的特征(提高近3倍)。
     盐湖相高成熟天然气生成的热模拟结果表明,石膏对烃源岩热解成气的催化作用最强(提高77%),石盐对原油裂解的催化最显著(提高43%)。在16种单体烃及三类轻烃参数热演化规律中发现,蒸发盐的催化作用表现为加快有机质降解生油气过程,使生烃反应提前向下一个温阶即更高成熟度条件下进行,故所生烃类气体的成熟度更高。
     高成熟阶段盐类物质作用下的源岩热解和原油裂解成因天然气都以烃类组分偏干、环烷烃和芳烃含量增高为特征。其中,盐湖相高成熟源岩热解气的C_5环烷烃/C_5链烷烃>1.6,而原油裂解气C_5环烷烃/C_5链烷烃<1.3,相反盐湖相原油早期裂解的C_5环烷烃/C_5链烷烃值较高,均大于1。
     高成熟阶段热模拟气与民丰天然气比较发现,较源岩、原油自身降解,膏盐作用下热模拟气iC_4/nC_4、烷芳指数、环烷指数等更接近天然气。相似系数数理分析得出,民丰天然气主要是烃源岩与石膏相互作用热解形成,其次是原油与石盐裂解成因。只有膏盐与有机质相互作用才能解释民丰天然气组成与热演化史并不匹配的问题。
     利用平行一级动力学模型计算发现,平均活化能降低是气态烃产率增加的重要机制,蒸发盐改变重要单体烃的活化能分布。将生烃动力学模型应用于埋藏热演化史,建立膏盐作用下天然气生成模式,定量计算出石膏和石盐对生烃门限和热演化史的影响。
A large number of natural gas and oil are discovered in saline-lake facies. The deposition of organic matter in saline is different from that in freshwater lake. In the oil-gas generation, there may be the interaction of source rock and oil with evaporates in saline-lakes. Natural gases from saline maybe have sepecial geochemical characteristics. These are related to oil-gas genese in saline lake. Furthermore, oil-gas generation has affected the direction of oil field exploration and resources evaluation in saline-lake.
     Basing on the identification of relationship against oil-gas reservoirs and source rocks in saline, this paper conducts a series of thermal simulations about organic matter with /without evaporates in low and high evolution phase. The simulation results show that carbonate, gypsum, and sodium chlorite intensive catalysize on organic matter degradation and gases product has certain geochemical characteristics. Furthermore, combinating with the organic matter evolution in Minfeng sag, gas generation modle is established in saline-lakes facies.
     It is worth noting that the natural gas in Minfeng area is of special geochemical characteristics such as the index of methylcyclohexane is about 38%, the index of benzene is about 26%,the methane carbon isotope composition is from -48.95 to -44.66‰. These characteristics don’t match with the maturity of orgain matter(Ro=1.1-1.6%). Hence, the gas generation causes controversy.
     For the low evolution kerogen-degraded gas, different salts、pyrolysis temperature and thermostatic time affect the yield of gas generation in varying degrees. Simulated temperature plays an important role in the gas generation. Adding carbonate or gypsum to the source rock sample, the number of catalysizing hydrocarbon would raise 34% and 28% spectively. It is found that generating gas is with some geochemical characteristics such as relative wet hydrocarbon composition and high benzene content.
     It is discovered that source rock-gupsum and oil-sodium chlorate has the largest gas production compared with other salts in high evolution. On the analysis of each C_(5-8) hydrocarbon and light hydrocarbon parameters evolutation, it is found that gypsum and sodium chlorite could accelerate the process of hydrocarbon generation from organic matter. The catalysizing essence is that the degraduation reaction of is advanced to the following higher evolution phase (thermal temperature).
     The hydrocarbon composition of kerogen-generated gas and oil-cracked one are of relative drying gases, high content of cycloalkane and aromatic in high evolution phase. The gas index of C_5 cyclane/C_5 paraffin from kerogen with evaporates is more than 1.6 and the parameter ration of oil-cracked gas is lower than 1.3. Otherwise, this ration is more than 1 in the the low evolution phase of oil cracking.
     Generating gas from source rock or oil sample with evaporates is more light carbon isotope composition compared with those from the simulated samples without evaporites. The carbon isotope of kerogen-degraded gas with/without evaporates is from -33.9‰to -34.8‰, the one of oil-cracked gas with/without evaporates ranges from -42.4‰to -44.4‰. In addition, analogying with the the carbon isotope of gas product from thermaled samples of organic matter single degraded or degraded with other salts, the one of organic matter with sodium is more light 1-2‰.
     The paper selects parameters such as iC4/nC4、the index of alkand-aromatic、the index of cycloalkaneⅠandⅢ. Comparing with the above index, it is found that gas product from organic matter degraded with gypsum or sodium chlorite is more similar to natural gase from Minfeng sag. The similarity coefficient of source rock samples with evaporates and natural gases is much close than the one of oil samples with evaporates. Comprehensive the analysis of the gas product, carbonate isotope compostion and geological setting, it is believed that natural gas found in Minfeng sag is generated from the interaction of source rocks-gypsum, followed from oil-halitethe cracking. Furthermore, only the interaction of organic matter and gypsum-halitethe could explain the problem why the gases geochemical characteristics don’t match with the evolution of organic matter in Minfeng area.
     Based on the parallel first order reaction kinetics model, it is found that the decreasement of the activation energy is the mechanism to increase the hydrocarbon number from orgaic matter pyrolysised. Evaporates influence gas generation and change the activation energy distribution of hydrocarbon. In addition, the dynamic model of hydrocarbon generation could make applicaton with this area evolution and establish gas generation model of organic with gypsum or halitethe in saline basin. After doing quantitative calculation, it is obtained that gypsum or halitethe could effect the hydrocarbon generation threshold and evolution history of organic matter(source rocks and ancient reservoir).
引文
[1]张哓宝,胡勇,马立元等.柴达木盆地西部第三系盐湖相天然气碳同位素特征、成因与分布[J].中国科学(D辑),2002,32(7): 598-608
    [2]冯建辉,谈玉明,罗小平.东濮凹陷白庙构造油气源与成藏史[J] .石油天然气地质,2003,24(2):130-134
    [3]武晓玲,卢福长,邹森林等.东濮凹陷西部斜坡带潜山成藏条件与成藏模式[J].断块油气田,2000,7(3):8-10
    [4]陈凤玲.江汉盆地同位素特征与油气藏形成环境[J].江汉石油大学职工学报,2006,19(6):1-5
    [5]张林晔,张守春,黄开权等.半咸水湖相未熟油的成因机理模拟实验研究[J].科学通报,1999,44(4):361-368
    [6]孙锡文,肖焕钦.渤南地区裂解型油气藏成因探讨[J].特种油气藏,2001,11(4): 35-39
    [7]李孝军,李文涛,张海君.济阳坳陷裂解气成藏分析及勘探方向[J].油气地质与采收率,2005,12(1): 42-44
    [8]徐志明.塔里木盆地塔中地区气藏地球化学研究[M].西南石油学院博士学位论文,1999.
    [9]孟元林,肖丽华,殷秀兰等.渤海湾盆地文安斜坡高温热流体活动与油气藏形成[J].岩石学报,2003,19(2):337-347
    [10]马永生.四川盆地普光超大型气田的形成机制[J].石油学报,2007,28(2):9-21
    [11]谢增业,魏国齐,李剑等.川东北飞仙关组鲕滩储层沥青与天然气成藏过程[J].天然气工业,2004,24(12):17-19
    [12]朱光有,金强,张善文等.渤南洼陷盐湖-咸水湖沉积组合及其油气聚集[J].矿物学报,2004,24(1):25-30
    [13] Ungerer, p.State of the art of research in kinetic modeling of oil formation and expulsion[J]. Organic Geochemistry,1990,16(1-3):17-19
    [14]金强、查明,.柴达木盆地西部第三系蒸发岩与生油岩的共生沉积作用研究[J].地质科学,2000,35(4): 465-473
    [15]朱光有,金强.东营凹陷两套优质烃源岩层地质地球化学特征研究[J].沉积学报,2003,21(3):416-420
    [16]朱光有,金强.烃源岩的非均质性研究—以牛38井为例[J].石油学报,2002,23(5):34-39
    [17]胡光明,纪友亮,张亚京.陆相盐湖层序地层学研究简述[J].盐湖研究盐湖研究, 2006,14(1):55-59
    [18]金强,查明,张林晔.济阳坳陷下第三系有效烃源岩分布与评价[R]中国石油大学(华东),2003
    [19]金强,王力,王秀红等.胜利中深层天然气成因地质地球化学研究[R]中国石油大学(华东),2008
    [20]金强,黄醒汉.东濮凹陷早第三纪盐湖成因的探讨:一种深水成因模式[J].华东石油学院学报,1985,9(1):1-11
    [21]鹿洪友,肖贤明,刘中云等.东营凹陷北部原油有机地化特征与成因类型[J].沉积学报,2003,21(4):708-712
    [22]王一刚,窦立容,文应初等.四川盆地东北部三叠系飞仙关组高含硫化氢H2S成因研究[J] .地球化学,2002,31 (6):517-524
    [23]马永生,郭旭升,郭彤楼等.四川盆地普光大型气田的发现与勘探启示[J].地质论评,2005,51(4):477-480
    [24] Brook B T.1952.Evidence of catalytic action in petroleum. Ind. Eng. Chem.44(11):2570-2577
    [25] Johns W D,Shimoyama A.1972.Clay minerals and petroleum forming reaction durial an diagenesis.AAPG bull.56(11):2160-2167
    [26] Almon W R.1975.Petroleum-forming reacion:clay catalyzed fatty acid decarboxy.Diss ,Abs.Int.,36(1):129B
    [27] Horsfield B, Douglas A G.1980.The infuence of minerals on the pyrolysis of kerogens.Geochim.Cosmochim.Acta,44:1119-1113
    [28]沈忠民.低熟源岩可溶有机质生烃动力学特征[J].地质论评,1999,45(1):85-91
    [29]绥进才,邵宏舜,黄杏珍等,盐湖相生油岩地球化学参数与沉积环境[J].沉积学报,1994,12(3):114-119
    [30]彭平安,盛国英,付家谟等.盐湖沉积环境未成熟油的成因与碳酸盐沉积阶段沉积的有机质有关[J].科学通报,2000,45(增刊):2689-2694
    [31]张国防,吴德云,马金钰等.盐湖相石油早期生成[J].石油实验地质, 1995,17(4):357-366
    [32]李术元,林世静,郭绍辉等.无机盐类对干酪根生烃过程的影响.地球化学,2002,31(1):15-20
    [33]高岗.油气生成模拟方法及其石油地质意义[J].天然气地球科学,2000,11(2):25-29
    [34]赵桂瑜,李术元,刘洛夫等.2005,碳酸盐岩催化降解干酪根生烃过程及动力学研究.地质科学,40(1):47-5
    [35]王培荣,徐冠军,肖延荣等.原油组分C5-C13轻馏分族组成的环境指向意义及探索[J].自然科学进展,2007,17(6):755-763
    [36]张在龙,劳永新,王培建等.盐水对未熟脂肪酸脱羧生烃的影响[J].石油大学学报,2000,24(6):57-60
    [37]谢增业,田世澄,李剑等.川东北飞仙关组鲕滩天然气地球化学特征与成因[J].地球化学,2004,33(6):567-573
    [38] Behar F, Kressmann S, Rudkiewicz L, et al. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1/2/3): 173-189
    [39] Hill R.J., Tang Yongchun, Kaplan I.R., 2003. Insights into oil cracking based on laboratory experiments. Organic Geochemistry, 34: 1651-1672
    [40] umham A.K., Gregg H.K., Ward R.L., Knuss K.G., 1997. Decomposition kinetics and mechanism of n-hexadecane-1,2-13C2 and dodec-1-ene-1,2-13C2 doped in petroleum and n-hexadecane. Geochimca et Cosmochimica Acta, 61(17): 3725-3737
    [41] Bumham A.K., Gregg H.K., Ward R.L., Knuss K.G., 1997. Decomposition kinetics and mechanismof n-hexadecane-1,2-13C2 and dodec-1-ene-1,2-13C2 doped in petroleum and n-hexadecane. Geochimca et Cosmochimica Acta, 61(17): 3725-3737
    [42]李术元,郭邵辉,沈润梅.沥青质催化降解特征及动力学研究[J].沉积学报,2001,19(1):137-141
    [43] Mango F D, Elrod L W. The carbon isotope composition of catalytic gas: A comparative analysis with natural gas[J]. Geochimica et Cosmochimica Acta, 1999, 63(7/8):1097-1106
    [44] Mango F.D Hightower J.W.The catalytic decomposition of petroleum into natural gas[J] Geochimca et Cosmochimica Acta, 1997, 61(24): 5347-5350
    [45]田春志,卢双舫,李启明,等.塔里木盆地原油高压条件下裂解成气的化学动力学模型及其意义[J].沉积学报,2002,20(3):488-492
    [46]尹长河,王廷栋,王顺玉.威远、资阳震旦系干酪根与油裂解气鉴别[J].沉积学报,2001,19(1): 156-160
    [47]赵孟军,张水昌,廖志勤.原油裂解气在天然气勘探中的意义[J].石油勘探与开发,2001,28(4):47-49
    [48]朱光有,赵文智,梁英波等.中国海相沉积盆地富气机理与天然气的成因探讨[J].科学通报,2007,52(增刊I):46-57
    [49] Horsfield B, Schenk H J, Mills N, et al. Closed-system programmed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir[J]. Organic Geochemistry, 1992, 19, 191-204
    [50] Schenk H J, Di Primo R, Horsfield B. The conversion of oil into gas in petroleum reservoirs. Part 1: omparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmedtemperature closed-system pyrolysis[J]. Organic Geochemistry, 1997, 26, 467-481
    [51] Ungerer P, Behar F, Villalba M, et al. Kinetic modelling of oil cracking[J]. Organic Geochemistry, 1988, 13, 857-868
    [52] Bjoroy M, Williams JA, Dolcater DL, et al. Variation in hydrocarbon distribution in artificially matured oils[J]. Organic Geochemistry, 1988, 13, 901-913
    [53] Behar F, Kressmann S, Rudkiewicz L, et al. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1/2/3): 173-189
    [54] Hill R J, Tang Yong-chun, Kaplanc I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34: 1651-1672
    [55]田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1827
    [56]胡国艺,李志生,罗霞,等.两种热模拟体系下有机质生气特征对比[J].沉积学报,2004,22(4):718-723
    [57]熊永强,耿安松,张海祖,等.油型气的形成机理及其源岩生烃潜力恢复[J].天然气工业,2004,24(2):11-13
    [58]王振平,付晓泰,卢双舫,等.原油裂解成气模拟实验、产物特征及其意义[J].天然气工业,2001,21(3):12-15
    [59]李术元,郭邵辉,沈润梅.沥青质催化降解特征及动力学研究[J].沉积学报,2001,19(1):137-141
    [60] Mango F D, Hightower J W. The catalytic decomposition of petroleum into natural gas[J]. Geochimca et Cosmochimica Acta, 1997, 61(24): 5347-5350
    [61] Pepper A S, Dodd T A. Simple kinetic models of petroleum formation. Part II: oil-gas cracking[J]. Marine and Petroleum Geology, 1995,12, 321-340
    [62] Domine F., Bounaceurb R., Scacchib G., et al. Up to what temperature is petroleum stable? New insights from a 5200 free radical reactions model[J]. Organic Geochemistry, 2002, 33: 1487-1499
    [63]冯子辉,迟元林,杜洪文,等.原油在储层介质中的加水裂解生气模拟实验[J].沉积学报,2002,20(3):505-509
    [64]许怀先,陈丽华,万玉金等.石油地质实验测试技术与应用[M].北京:石油工业出版社,2001
    [65] Leythaeuser D, Schaefer R, Cornford C, et al. Generation and migration of light hydrocarbon (C2~C7)in sedimentary basins[J]. Organic Geochemistry, 1979, 1(4): 191-214
    [66] Snowdon L, Powell T. Immature oil and condensate-modification of hydrocarbon generation model for terrestrial organic matter[J]. AAPG, 1982, 66(6): 775-788
    [67]戴金星,裴锡古,戚厚发.中国天然气地质学(卷一)[M].北京:石油工业出版社,1992
    [68]戴金星.中国煤成气研究二十年的重大进展[J].石油勘探与开发,1999,26(3):1-10
    [69] Thompson K F. Light hydrocarbons in subsurface sediments[J].Geochim Cosmochim Acta, 1979, 43:627-647
    [70] Thompson K F. Value of light hydrocarbon on the study of petroleum generation[J]. Geochim Cosmochim Acta,1983,47:303-316
    [71]胡惕麟,戈葆雄,张义纲等.源岩吸附烃和天然气轻烃指纹参数的开发和应用[J].石油实验地质,1990,12(4):375-393
    [72]廖永胜.罐装岩屑轻烃和碳同位素在油气勘探中的应用[A].天然气地质研究论文集[C].北京:石油工业出版社,1989:138-144
    [73]秦建中,郭树之,王东良.苏桥煤型气田地化特征及其对比[J].天然气工业,1991,11(5):21-26
    [74] Thompson K F. Light hydrocarbons in subsurface sediments[J]. Geochim Cosmochim Acta, 1979, 43: 627-647
    [75] Thompson K F. Value of light hydrocarbon on the study of petroleum generation[J]. Geochim Cosmochim Acta, 1983, 47: 303-316
    [76]徐永昌,沈平,陈践发等.凝析油的地球化学特征[J].中国科学(B辑),1988,6:643-650
    [77]沈平,陈践发,彭韵硕.轻烃中C6族组成和芴系化合物与沉积环境的关系[J].沉积学报,1992,10(3):68-75
    [78]张义纲.天然气的生成与聚集[M].南京:海河大学出版社,1991
    [79] Berner U, Faber E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes[J]. Advances in Organic Geochemistry, 1987, 13: 67-72
    [80] Berner U, Faber E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Org Geochem, 1996, 24(10): 947-955
    [81] Tang Y, Perry J K, Jenden P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimical et Cosmochimica Acta, 2000, 64(15): 2673-2687
    [82]包茨.天然气地质学[M].北京:科学出版社,1988
    [83]沈平,徐永昌,王先彬等.气源岩和天然气地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991
    [84] Stahl W. Carbon and nitrogen isotopes in hydrocarbon research and exploration[J]. Chemical Geology, 1977, 20: 121-149
    [85] Faber E, Stahl W. Gaseous hydrocarbons of unkown origin found while drilling[J]. Org Geochem, 1987, 13(10): 875-879
    [86] Whiticar M J. Correlation of natural gases with their sources[A]. The Petroleum System from Source to Trap[C]. Edited by Leslie B, Magoon and Wallance G Don. AAPG Memoir 60, 1994: 261-284
    [87]沈平,申歧祥,王先彬等.气态烃同位素组成特征及煤系气判识[J].中国科学(B辑),1987,17(6):647-656
    [88]戴金星,戚厚发.我国煤成烃气的δ13C-Ro关系[J].科学通报,1989,34(9):690-692.
    [89]陈安定,张文正,徐永昌.沉积岩成烃热模拟试验产物的同位素特征及其应用[J].中国科学(B辑),1993,23(2):209-217
    [90] Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochim Cosmochim Acta, 1980, 44(5): 649-661
    [91] Gaveau B, Letolle R, Monthioux M. Evaluation of kinetic parameters from 13C isotopic effect during coal pyrolysis[J]. Fuel, 1987, 66: 228-231
    [92] Clayton C. Carbon isotope fractionation during natural gas generation from kerogen[J]. Mar Petrol Geol, 1991, 8: 232-240
    [93] Lorant F, Prinzhofer A, Behar F, et al. Carbon isotopic and molecular constrains on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology(Isotope Geoscience), 1998, 147: 249-264
    [94]赵孟军,张水昌,廖志勤.原油裂解气在天然气勘探中的意义[J].石油勘探与开发,2001,28(4): 47-52
    [95] Prinzhofer A A, Huc A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gas[J]. Chemical Geology, 1995, 126: 281-290.
    [96] Prinzhofer A, Battani A. Gas isotopes Tracing: an important tool for hydrocarbon exploration[J]. Oil and Gas Science and Technology-Rev, IFP, 2003, 58(2): 299-311.
    [97] Alain A. Genetic and post-genetic molecular and isotopic fractionations in natural gas[J]. Chemical Geology, 1995, 126(3/4): 281-290
    [98]赵孟军,曾凡刚,秦胜飞等.塔里木发现和证实两种裂解气[J].天然气工业,2001,21(1):35-39
    [99]张水昌,赵文智,王飞宇等.塔里木盆地东部地区古生界原油裂解气成藏历史分析—以英南2气藏为例[J].天然气地球科学,2004,15(5): 441-451
    [100]李术元,郭绍辉,刘宗玉.盐水介质中煤的早期热解生烃特征和动力学[J].石油大学学报,1999,23(2):72-79
    [101]邓宏文,钱凯.深湖相泥岩的成因类型和组合演化[J].石油大学学报,1990,8(3):1-20
    [102]杨显成,隋风贵,李文涛等.新疆石油地质[J].石油大学学报,2007,28(5):563-565
    [103]王力.济阳和临清坳陷深层天然气成因鉴别与生成模式研究.石炭系-二叠系烃源岩的生烃演化[D].东营:中国石油大学(华东),2008
    [104]李荣西,廖永胜,周义.济阳坳陷石炭-二叠系热演化与生烃阶段[J].地球学报, 2001,22(1):85-90
    [105]徐永昌,王志勇,王晓锋等.低熟气及我国典型低熟气田[J].中国科学D辑,2008, 38(1):87-93
    [106]王晓锋,刘文汇,郑建京,等.乌连戈伊气田形成机制及其启迪.天然气工业,2006,26(5):29-32
    [107]Sykes R., Snowdon L.R. Guidelines for assessing the petroleum potential of coaly source rock using Rock-Eval pyrolysis[J]. Organic Geochemistry, 2002, 33:1442-1455
    [108]Behar F et al. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation [J]. Organic Geochemistry, 1997, 26(5-6): 321-339
    [109]Parsi Z.,Gorecki T.et al. Advances in non-discriminating pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2005, 61:1-8
    [110]卢双舫,王民,王跃文等.密闭体系与开放体系模拟实验结果的比较研究及其意义[J].沉积学报,2006,24(2):282-288
    [111]姜峰,王万春等.高温超高压模拟实验研究.温压条件对有机质成熟作用的影响[J].沉积学报,1998,16(3):153-155
    [112]张水昌,王招明,王飞宇等.塔里木盆地塔东2油藏形成历史-原油稳定性与裂解作用实例研究[J].石油勘探与开发,2004,31(6):25-31
    [113]熊永强,王涌泉,张海祖等.干酪根二次生烃动力学模拟实验研究[J].中国科学(D辑),2001,31(4):315-320
    [114]Lorant F, Behar F, Vandenbroucke M. Methane generation from methyl- ated aromatics: kinetic study and carbon isotope modeling[J]. Energy & Fuels. 2000, 14:1143-1155
    [115]卢家烂.干酪根成烃模拟实验及其应用[M].见:傅家漠,秦匡宗编.干酪根地球化学.广州:广东科技出版社,1995:471-519
    [116]解启来,范善发,周中毅等.压力对烃源层演化及产烃影响的模拟实验[J].矿物岩石地球化学通报,1996,15 (2):91-93
    [117]秦建中,刘井旺,刘宝泉等.加温时间、加水量对模拟实验油气产率及地化参数的影响[J].石油实验地质,2002,24(2):152-157
    [118]Lewan,M.D.Laboratory simulation of petroleum formation by hydrous pyrolysis. In:Engel,M.H.,Macko,S.A.(Eds.)[J].Organic Geochemistry Principles and Applications.Plenum Press ,New York,pp.419-422
    [119]李剑,胡国艺,谢增业等著.中国大中型气田天然气成藏物理化学模拟研究[M].北京:石油工业出版社,2001,68-69
    [120]李志明,秦建中,刘宝泉等.柴达木盆地上第三系泥岩生烃热压模拟实验[J].天然气工业,2005,25 (2):30-33
    [121]卢双舫.有机质成烃动力学理论及其应用[M].北京:石油工业出版社,1996
    [122]熊永强耿安松张海祖等.油型气的形成机理及其源岩生烃潜力恢复[J].天然气工业,2001,24(2):11-13
    [123]田春志,卢双舫,李启明等.塔里木盆地原油高压条件下裂解成气的化学动力学模型及其意义[J].沉积学报,2002,20(3):488-492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700