陆地棉转录因子的染色体定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花(Gossypium spp.)是世界上最重要的天然纤维作物。集纤维、蛋白、油用于一体。棉属50个种中有4个栽培种可生产纺织用纤维,分别是亚洲棉(G. arboreum)、草棉(G. herbaceum)、陆地棉(G. hirsutum)和海岛棉(G. barbadense)。其中陆地棉(G. hirsutum)占世界棉花总产量的95%以上。
     我国不仅是一个产棉大国,也是用棉大国,棉花生产在国民经济中具有极其重要的地位。棉纤维具有吸湿、通气、保湿、柔软和不带静电等优点,因此越来越受到人们的喜爱,棉花的需求量也在日益增长。但低温、干旱、盐碱以及病虫害等生物和非生物胁迫因子都是限制棉花生长发育和纤维产量的重要因素。转录因子在植物生长发育、防卫反应和逆境胁迫应答过程中扮演着非常重要的角色。
     转录因子(transcription factor, TF)又称反式作用因子(trans-acting factor),它与真核生物基因启动子区域中的顺式作用元件(cis-acting factor)发生特异性结合,并与其它相关蛋白互作,调节基因的表达强度或控制基因的时空特异性表达,应答激素刺激和外界环境胁迫。在作物分子育种中,与导入或改良个别功能基因的方法相比,导入或改良一个转录因子是提高作物产量、品质、抗逆性更为有效的方法和途径。转录因子的染色体定位对了解转录因子基因的染色体分布特点,准确把握基因的结构、功能和进化关系具有重要意义。
     本研究利用北京大学生物信息中心鉴定的陆地棉转录因子DNA序列和NCBI(National Center for Biotechnology Information)数据库棉花MYB转录因子DNA序列设计SSR引物,并进行转录因子的染色体定位。这一方面可以增加棉花遗传作图标记,另一方面为进一步解析转录因子在棉花产量、纤维品质以及逆境抗性中的作用奠定基础。本研究结果如下:
     1引物多态性分析
     利用1116条陆地棉转录因子和65个棉花转录因子DNA序列设计的1592对SSR引物,筛选亲本渝棉1号与中棉所35(CRl35)、T586和7235,共获得74对多态性引物,占总引物的4.6%。其中,渝棉1号与中棉所35间25对多态性引物,占总引物的1.6%;渝棉1号与T586间33对多态性引物,占总引物的2.1%;渝棉1号与7235间36对多态性引物,占总引物的2.3%。74对多态性引物涵盖26个转录因子家族的69个转录因子。
     2多态性引物的群体标记基因型检测
     以74对多态性引物分别检测3个重组近交系群体,共获得101个位点。其中,25对引物检测(渝棉1号×中棉所35)群体,获得25个位点;36对引物检测(渝棉1号x7235)群体,获得41个位点;33对引物检测(渝棉1号xT586)群体,获得35个位点。
     3转录因子基因染色体定位
     对所获得的101个位点与本实验室前期对(渝棉1号×中棉所35)、(渝棉1号x7235)和(渝棉1号xT586)重组近交系群体定位的SSR标记位点进行遗传连锁分析,将其中92个位点定位于棉花23条染色体,9个位点未定位。(渝棉1号×中棉所35)群体定位23个位点,2个位点未定位;(渝棉1号×7235)群体定位39个位点,2个位点未定位;(渝棉1号×T586)群体定位30个位点,5个位点未定位。
     4转录因子的家族与基因组分布
     本研究涉及26个转录因子家族的69个成员,最少涉及某一转录因子家族的某1个转录因子(AP2、ARR-B等),最多的MYB转录因子家族达到9个转录因子。定了92个位点,其中32个属于A染色体亚组,60个属于D染色体亚组。
Cotton (Gossypium spp.) is the world's most important natural fiber crops. The genus Gossypium comprises approximately 45 diploid and 5 tetraploid species, including 4 cultivated species, G. arboreum, G. herbaceum, G. hirsutum and G. barbadense, which produce textile fiber. Of the cultivated species, G. hirsutum supplies over 95% of the world's total fiber production.
     China is not only a major cotton producing country, but also a major cotton consuming country. Cotton has an extremely important position in the national economy. The unique feature of absorbing moisture, aeration, soft and static electricity exception are loved by people more and more, and the demand for cotton is growing day by day. However, cotton growth and yield are limited by biotic or abiotic stress, such as hypothermia, drought, salinity, pests and diseases. Transcription factors play a very important role in pant growth, stress response process and adversity defensing procedure.
     Transcription factor (TF) is also called trans-acting factor which can specificly bind with the cis-acting factor in the promoter region, interact with other protein that regulate gene expression intensity and even control the spatial and temporal specificity of gene expression, and response to hormone stimulation and the external environment stress. To improve crop yield, quanlity and resistance to stress in molecular breeding, compared to transfering or modifying an individual functional gene, transfering or modifying a transcription factor is more effective. Manipulation of a transcription factor can prompt numbers of functional genes to play a role, so as to achieve access to comprehensive improvement of plant traits. Chromosomal localization of transcription factor has a great significance to understand the distribution characteristics of transcription factor, the accurate gene structure, function and evolution.
     The present study designed SSR primer according to Gossypium hirsutum transcription factor DNA sequences in Plant Transcription Factor Databases (PTFD) and Gossypium MYB transcription factor DNA sequences in National Center for Biotechnology Information (NCBI), and mapped the polymorphic SSR in upland cotton. The results can increase the cotton genetic mapping markers, and lay the foundation for further resolving the role of transcription factors in the cotton yield, fiber quality and stress tolerance. The results are as following:
     1 Primer polymorphism
     A total of 1592 SSR primer pairs designed from 1116 Gossypium hirsutum transcription factor DNA sequences in PTFD and 65 transcription factor DNA sequences in NCBI were used to screen the polymorphic primers between upland cotton cultivars/lines Yumian 1,7235, CCRI35 and T586. A total of 74 pairs of polymorphic primers were obtained, accounting for 4.6% of the total primer pairs. The polymorphic primers included 25 polymorphic primers between Yumian 1 and CRI 35,33 between Yumian 1 and T586, 36 between Yumian 1 and 7235, accounting for 1.6%,2.1% and 2.3% of the total primers, respectively. Seventy-four pairs of polymorphic primers cover 69 transcription factors of the 26 transcription factor families.
     2 Genotyping RIL populations
     Three recombinant inbred line populations were genotyped with the primer pairs showing polymorphism between two parents and 101 polymorphic loci were detected. Among them, 25 primer pairs obtained 25 loci in population (Yumian1×CRI35),36 primer pairs obtained 41 loci in population (Yumian1×7235), and 33 primer pairs obtained 35 loci in population (Yumianl×T586).
     3 Localizing transcription factors
     The 101 transcription factor SSR loci, together with other SSR loci mapped on upland cotton linkage map in our laboratory, were used to conduct on genetic linkage analysis, and 92 loci were mapped on 23 chromosomes. Twenty-three of 25 loci were mapped on chromosome in population (Yumian 1×CRI35) population,30 of 35 loci were mapped on chromosome in population (Yumian 1×T586), and 39 of 41 loci were mapped in population (Yumian 1×7235). 4 Distribution of transcription factor genes
     The mapped 26 transcription factor families included 69 members, and involved one to 19 members from each family. A total of 92 loci were mapped on 23 chromosomes, including 32 loci cotton A-genome and 60 on D-genome from tetraploid cotton.
引文
[1]楚鹰.纤维发育相关基因的SNP研究和棉花蔗糖合酶基因片段的克隆及表达分析[D].南京农业大学,2004
    [2]高燕会.四个栽培棉种间的种间杂交及其遗传与系统发育研究.浙江大学博士学位论文2004
    [3]郭旺珍,张天真,何金龙.我国棉花主要品种的RAPD指纹图谱研究.农业生物技术学报.1996,4(2):129-134
    [4]何旭平,冷苏凤,承泓良。高品质棉花品种—渝棉1号。江苏农业学报,2000,4,pp203
    [5]黄骏麒.中国棉作学.北京:中国农业科技出版社,1998
    [6]贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    [7]刘三宏.四倍体棉种起源与演化的FISH研究田.中国农业科学院硕士学位论文,2004
    [8]路子显,常团结,刘翔,等.植物碱性亮氨酸拉链(bZIP)蛋白的研究进展(一)[J].遗传.,2001,23:564-570
    [9]王建波,ISSR分子标记及其在植物遗传学研究中的应用.遗传,2002,24(5):613-616
    [10]王新宇,郭旺珍,张天真等.我国短季棉品种的RAPD指纹图谱分析.作物学报,1997,23(6):669-676
    [11]吴茂清,张献龙,聂以春等.四倍体栽培棉种产量和纤维品质性状的QTL定位.遗传学报,2003,30(5):443-452
    [12]殷剑美,武耀廷,张军等.陆地棉产量性状的QTL的分子标记定位.生物工程学报,2002,18(2):162-166
    [13]袁有禄,张天真,郭旺珍.棉花高强纤维性状QTLs的分子标记筛选及其定位.遗传学报,2001,28(12):1151-1161
    [14]张青林,罗正荣,ISSR及其在果树上的应用,果树学报,2004,21(1):54-58
    [15]张天真,袁有禄,郭旺珍.棉花高强纤维QTLs的微卫星标记筛选.中国农业科学.2001.28(12):1151-1161
    [16]张正圣,张凤鑫.陆地棉高产和高品质的同步改良.西南农业学报,1998,11:230-234
    [17]郑学项,冯素萍,李维国.DNA分子标记研究进展.安徽农业科学,2009,37(26):12420-12422
    [18]Abdalla AM, Reddy OUK, El-Zik KM, et al.Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor. Appl.Genet.2001,102:222-229
    [19]Applequist WL, Cronn R, Wendel JF. Comparative development of fiber in wild and cultivated. Evol Dev.2001,3:3-17
    [20]Vander Wurff AWG, Chan YL, Van Straalen NM, et al. TE-AFLP:combining rapidity and robustness in DNA fingerprinting [J]. BioTechniques.2000,10(29):105
    [21]Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol.1994,24: 701-713
    [22]Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of Ethylene-Response-Factor1 inArabidopsis confers resistance to several necrotrophic fungi[J]. Plant J.2002,29:23-32
    [23]Botstein ND. Construction of a genetic linkage map in man using restriction fragment lengtn polymorphisms [J]. Am J Hum Genet.1980,32:314-331
    [24]Bray EA. Plant responses to water deficit. Trends Plant Sci.1997,2:48-54
    [25]Cao YF, Wu YF, Zheng Z, et al. Over-expression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco[J]. Physiological and Molecular Plant Pathology.2006,67(3-5):202-211
    [26]Cedroni ML, Cronn RC, Adams KL, et al. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Mol Biol.2003,51:313-325
    [27]Chen ZJ, Scheffler BE, Dennis E, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol.2007,145:1303-1310
    [28]Choi H, Hong JH, Ha J, et al. ABFS a family of ABA-responsive element binding factors[J]. Jour Biol Chem.2000,275:1723-1730
    [29]Chrispeels HE, Oettinger H, Janvier N, et al. AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation. Plant Mol Biol.2000,42:279-90
    [30]Chuanfu An, Sukumar Saha, Johnie N. et al. Cotton(Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. Theor Appl Genet.2008,116:1015-1026.
    [31]Cronn RC, Adams KL. Quantitative analysis of transcript accumulation from genes duplicated by polyploidy using cDNA-SSCP. Biotechniques.2003,34:726-730
    [32]Cronn RC, Small RL, Wendel JF. Duplicated genes evolve independently after polyploid formation in cotton. Proceedings of the National Academy of Sciences USA.1999,96:144406-114411
    [33]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene super family during plant defense response[J].Plant Mol Biol.2003,51:21-37
    [34]Dubouzet JG, Sakuma Y, Ito Y. et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J.2003,33: 751-763
    [35]Edwards GA, Endrizzi JE, Stein R. Genome DNA content and chromosome organization in Gossypium. Chromosoma.1974,47:309-326
    [36]Endrizzi J, Turcotte EL, Kohel RJ. Genetics, cytology, and evolution of Gossypium. Adv Genet.1985, 23:272-375
    [37]Eulgen T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J].Trends Plant Sci.2000,5(5):199-206
    [38]Fang D, Lv JH, Guo WZ, et al. Cloning and Mapping of a New MYB Transcription Factor (GhTF1) in Cotton. Acta Agronomica Sinica.2008,34(2):207-211 (in Chinese with English abstract).
    [39]Fryxell PA. A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea.1992,2: 108-165
    [40]Gilmour SJ, Zarka DG, Stockinger EJ, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold induced COR gene expression. Plant J. 1998,16:433-442
    [41]Guo HM, Li ZC, Zhang H, et al. Cloning of Cotton CBF Gene and Its Cold Tolerance Expression in Transgenic Tobacco. Acta Agronomica Sinica.2011.37(2):286-293(in Chinese with English abstract)
    [42]Guo W, Cai C, Wang C, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics.2007,176:527-541
    [43]Guo WZ, Cai CP, Wang CB, et al. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics.2008,9:314
    [44]Guo WZ, Ma GJ, Zhu YC, et al. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland cotton. Journal of Integrative Plant Biology. 2006,48:320-326
    [45]Guo WZ, Zhang TZ, Pan JJ, et al. Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton. Chinese Sci, Bull.1998,43:52-54
    [46]Gu Y Q, Wildermuth M C, Chakravarthy S, et al. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell,2002,14:817-831
    [47]Gutierrez OA, Basu S, Saha S, et al. Genetic distance of cottoncultivars and germplasm lines based on SSR markers and itsassociation with agronomic and fiber traits of their F2 hybrids. CropSci.2002,42: 1841-1847
    [48]Han ZG, Guo WZ, Song XL, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreumin allotetraploid cotton. Mol Genet Genom.2004,272:308-327
    [49]Hayashi K, Hashimoto N, Daigen M, et al. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus [J]. Theor Appl Genet.2004,108:1212-1220
    [50]Iqbal MJ, Aziz N, Saeed NA, et al. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet.1997,94:139-144
    [51]Iqbal MJ, Reddy OUK,E1-Zik KM, et al. A genetic bottleneck in the'evolution under domestication' of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor. Appl.Genet. 2001,103:547-554
    [52]Jiang CX, Wright RJ, El-Zik KM, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci, USA.1998,95:4419-4424
    [53]Kosambi DD. The estimation of map distances from recombination values. Ann Eugen.1944,12: 172-175
    [54]Kranz HD, Iknekamp M, Greco R, et al.Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana[J]. Plant Jour.1998,16:263-276
    [55]Lacape JM, Nguyen TB, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome.2003,46: 612-626
    [56]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP). Anew marker system based on a simple PCR reaction:its application to mapping and gene tagging in ssica. Theor Appl Genet.2001, 103:455-461
    [57]Lin Z, He D, Zhang X, et al. Linkage map construction and mapping QTL for cotton fiber quality using SRAP, SSR and RAPD. Plant Breeding.2005,124:180-187
    [58]Lin ZX, Zhang YX, Zhang XL, et al. A high-density integrative linkage map for Gossypium hirsutum. Euphytica.2009,166:35-45
    [59]Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor. Appl. Genet.2003,106:461-469
    [60]Liu K, Shan GF, Li FG, et al. Molecular Cloning and Characterization of EREB5, a Novel Transcription Factor Gene of ERF Family fromGossypium barbadense L. Cotton Science.2011,23 (3):205-211 (in Chinese with English abstract)
    [61]Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet.1997,13(2):67-73
    [62]Mei M, Syed NH, Gao W, et al.Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium).Theor. Appl. Genet.2004,108:280-291
    [63]Meng HY, Du XM, Zhang CY, et al. Cloning and Promoter Function Identification of Cotton Transcription Factor GhMS3. Sci Agric Sinica.2010,43(17):3489-3498(in Chinese with English abstract)
    [64]Multani DS, Lyon BR. Genetic fingerprinting of Australian cotton cultivars with RAPD makers. Genome,1995,38:1005-1008
    [65]Nakano T, Suzuki K, FujimuraT, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol.2006,140:411-32
    [66]Nguyen TB, Giband M, Brottier P, et al.Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor. Appl.Genet.2004,109:167-175
    [67]Ni HJ, Wang W, Zhang J, et al. QTL mapping of yield and fiber quality traits in upland cotton(Gossypium hirsutum L.) using F2 and its derived populations.J Southwest Univ, 2011,33(6):7-14 (in Chinese with English abstract)
    [68]Onate-Sanchez L, Anderson JP, Young J, et al. a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol.2007,143:400-409
    [69]Park JM, Park CJ, Lee SB, et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacc. Plant Cell.2001,13:1035-1046
    [70]Paterson AH, Jiang CX, Collette A, et al. Progress in understanding structure, function andevolution of the cotton genome. Plant & Animal Genome Ⅶ Conference Abstract.1999:17-21
    [71]Paterson AH, Estill J, Rong JK, et al. Toward a genetically-anchored physical map of the cotton genomes. Cotton Sci.2002:14:31
    [72]Pierre Broun, Yan Liu, Emily Queen, et al. Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochem Rev.2006,5:27-38
    [73]Qian SY, Huang JQ, Peng YJ, et al. Studies on the hybrid of G. hirsutum L. and G. anomalum Wawr.& Peyr. and application in breeding. Sci Agric Sin.1992,25(6):44-51 (in Chinese with English abstract)
    [74]Qureshi SN, Saha S, Kantety RV, et al. EST-SSR:A New Class of Genetic Markers in Cotton.J. Cotton Sci.2004,8:12-123
    [75]Schwecheimer C, Zourelidou MC, Bevan M W. Plant transcription factors studies. Annu Rev Plant Physiol Plant Mol Biol.1998,49(6):127-150
    [76]Reddy OUK, Pepper AE, Abdurakhmonov I, et al. New dinucleotide and trinucleotide microsatellite markers resources for cotton genome research.J Cotton Sci.2001,5:103-113
    [77]Reinisch AJ, Dong JM, Brubaker CL, et al. A detailed RFLP map of cotton, Gossypium hirsutum× Gossypium barbadance:chromosome organization and evolution in disomic polyploid genome. Genetics.1994,138:829-847
    [78]Ren LH, Guo WZ, Zhang TZ. Identification of quantitative trait (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Botanica Sinica.2002,44(7): 815-820
    [79]Riechmann JL. Transcription factors of Arabidopsis and rice:a genomic perspective. In:Grasser K D ed. Regulation of transcription in plants. Blackwell, Oxford. Annu Plant Rev.2006,29:28-53
    [80]Rong JK, Abbey C, Bowers JE, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton(Gossypium). Genetics.2004,166:389-417
    [81]Saranga Y, Menz M, Jiang CX, et al. Genomic dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions. Genome Research.2001,11:1988-1995
    [82]Schwecheimer C, Zourelidou M C, Bevan M W. Plant transcription factors studies. Annu Rev Plant Physiol Plant Mol Biol.1998,49:127-150
    [83]Senior ML and Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome.1993,36:884-889
    [84]Shappley ZW, Jenkins JN, Meredith WR, et al. An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor Appl Genet.1998,97:756-761
    [85]Shappley ZW, Jenkins JN, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cot Sci.1998,2:153-163
    [86]Shen X, Guo W, Zhu X, et al. Molecular mapping of QTL for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breeding.2005,15:169-181
    [87]Shen X, Zhang T, Guo W, et al. Mapping fiber and yield QTL with main, epistatic, and QTL× environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci.2006,46:61
    [88]Shen X, Guo W, Lu Q, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica.2007,155(3):371-380
    [89]Shiu SH, Shih MC, Li WH. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol.2005,139:18-26
    [90]Singh K, Foley RC, Onate-Sanchez L. Transcription factors in plant defense and stress response [J].Curr Opin Plant Biol.2002,5 (5):430-436
    [91]Song X, Wang K, Guo W, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome.2005,48:378
    [92]Stewart JM. Potential for crop improvement with nues for evolution. Genetics.1994,149:1987-1996
    [93]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol.2001,4:447-456
    [94]Tatineni V, Cantrell RG, Davis DD. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci.1996,36:186-192
    [95]Ulloa M, Cantrell RG, Percy RG, et al. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. J Cotton Sci.2000,4:10-18
    [96]Ulloa M, Meredith WR Jr. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci.2000,4:161-170
    [97]Ulloa M, Meredith WR, Shappley ZW, et al. RFLP genetic linkage maps from four F2:3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet.2002,104:200-208
    [98]Van Ooijen JW, Voorrips RE. JoinMap 4.0, software for the calculation of genetic linkage maps. Plant Research International.2006
    [99]Vos P.,AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research.1995,23(21): 4407-4414
    [100]Walford SA, Wu YR, Llewellyn DJ, et al. GhMYB25-like:a key factor in early cotton fibre development. Plant Journal.2011,65:785-797.
    [101]Wan Q, Zhang Z, Hu M, et al. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica.2007,158:241-247
    [102]Wang BH, Guo WZ, Zhu XF, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica.2006,152:367-378
    [103]Wang K, Song X, Han Z, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor AppI Genet.2006,113:73-80
    [104]Wendel JF, Cronn RC, Johnston JS, et al. Feast and famine in plant genomes. Genetica.2002,115: 37-47
    [105]Wendel JF. Olson PD, Stewart JM. Genetic diversity, introgression and independent domestication of Old WorldCultivated cottons. Am J Bot.1989,76:1795-1806
    [106]Williams J.G.K., Kubelik A.R., Livak K.J., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acid Res.1990,18:6531-6534
    [107]Wu MQ, Zhang XL, Nie YC, et al. Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar. Acta Genetica Scinica,2003,30:443-452
    [108]XU ZS, CHEN M, LI LC, et al. Functions o f theERF transcription factor fam ily in plants[J]. Canadian Journal of Botany.2008,86(9):969-977
    [109]Yu Y, Yuan D, Liang S, et al. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between G. hirsutum and G. barbadense. BMC Genomics. 2011,12:15
    [110]Zhang J, Guo WZ, Zhang TZ. Molecular linkage map of allotetraploid(Gossypium hirsutum L.× Gossypium barbadense L.) with a haploid population. Theor. Appl. Genet.2002,105:1166-1174
    [111]Zhang H, Zhang D, Chen J, et al. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol.2004,55:825-834
    [112]Zhang TZ, Yuan YL, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor. Appl. Genet.2003,106:262-268
    [113]Zhao XP, Si Y, Hanson RE, et al. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res.1998,8:479-492
    [114]Zhang ZS, Hu MC, Zhang J, et al. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in(Gossypium hirsutum L.). Mol Breed.2009,24:49-61
    [115]Zhang ZL, Xing P, Zou X, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cell[J].Plant Physiol.2004,134:1500-1513
    [116]Zhang ZS, Xiao YH, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica.2005,144:91-99
    [117]Zhu YL, Song QL, Hyten SM, et al. Single-nucleotide polymorphism in soybean [J]. Genetics.2003, 163:1123-1134
    [118]Zhang TZ, Yuan YL, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor. Appl. Genet.2003,106:262-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700