用户名: 密码: 验证码:
金沙江其宗水电站高堆石坝建设适宜性的工程地质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部地区水能资源丰富,建设大型水利枢纽工程,开发西部山区的水能资源,已成为保证国民经济持续、稳定发展和缩小东西部差距的关键措施之一。但西部地区,尤其是西南山区水利枢纽的建设场地多处于地质条件复杂、岩土体工程特性不良的地质环境,水利建设存在着如何适应复杂场地的适宜性问题。拟建的金沙江其宗水电站坝址区地质条件复杂,工程开挖边坡高度大,地下洞室密集,河床覆盖层厚度大,采用高心墙堆石坝方案及其配套建筑物存在的主要工程地质问题包括坝址区千枚岩边坡、洞室的稳定性问题与坝址区河床深厚覆盖层的工程特性问题。本文针对其宗水电站坝址主要工程地质问题,以千枚岩与河床深厚覆盖层的工程特性研究为核心,从工程地质角度,评价该水电站建设高堆石坝的适宜性,同时在千枚岩与深厚覆盖层的理论研究与工程运用方面取得了一定的认识。论文主要工作与成果包括:
     (1)论文将千枚岩岩石微结构特征、微观破裂机理分析与岩体结构特征研究相结合,采用以各向异性特征分析为核心的研究方法,取得了千枚岩工程特性的规律性认识。在此基础上,运用多种手段对千枚岩工程边坡与洞室的失稳模式与稳定性进行研究,探讨在千枚岩中进行大面积人工高边坡与大型地下洞室建设的适宜性。同时,论文系统分析和总结了我国西部水电工程河床深厚覆盖层的工程特征,丰富和发展了河床深厚覆盖层的成因类型,形成了河床深厚覆盖层建坝适宜性评价的技术与方法。
     (2)通过坝址区工程地质条件调查,掌握坝址区千枚岩空间分布特征及变化规律,初步建立了千枚岩的微观结构形态、微观破裂机理与矿物成分之间的关系。千枚岩岩石矿物成分与微观断裂机理分析结果表明:一般绢云母与绿泥石含量高的岩石具鳞片变晶结构,片理面发育,千枚状构造或定向构造特征明显,在外力作用下易产生剪破裂。而石英含量较高的千枚岩,其微观结构呈现细粒状,多形成微观脆性破裂形态,在外力作用下往往产生拉破裂。
     (3)通过一系列岩体物理力学试验研究,重点分析了性状差别较大的绢云母千枚岩与硅质板状千枚岩的各向异性特征,指出千枚岩的各向异性特征的评价应基于岩石强度相对于定位角的变化,采用各向异性率定量评价各向异性的程度,提出千枚岩应区别于传统意义上的软岩的观点。在此基础上,选取有代表性的试验数据,与相关的千枚岩环境条件下的工程进行类比研究,总结其宗水电站千枚岩的工程特性,提出岩体物理力学参数的建议值,为准确分析工程边坡与地下洞室围岩的稳定性提供依据。
     (4)根据其宗水电站水工建筑布置方案,采用室内数值模拟的方法,选择了坝址典型的工程边坡与地下洞室群进行变形稳定性分析,模拟工程建设后边坡与洞室岩体的应力与变形的特征。提出其宗水电站坝址千枚岩强度相对较高,在其范围内开挖工程边坡产生坡体整体失稳的可能性很小,千枚岩具备大面积开挖的地质条件。但洞室的开挖受岩体各向异性特征的影响较大,目前水工设计的洞室轴向对洞室围岩的稳定是不利的,须合理布置,加强支护。
     (5)通过对坝址河床深厚覆盖层的组成及空间分布特征的研究,论文建立了坝址区覆盖层的空间形态与结构关系,进一步发展了河床深厚覆盖层成因的理论研究。论文提出河床深厚覆盖层的形成,适宜的地质环境是先决条件,复杂的区域构造演变、区域第四系气候和河谷形成演化历史是根本原因。深厚覆盖层是在地质构造运动和气候变化共同作用下形成的,气候因素占主导地位。覆盖层下部的冲积和冰水堆积并非形成于现代,河床深厚覆盖层的成因复杂,并非由单一的河流冲积物组成,其主体应是末次冰期间冰段河谷的产物,覆盖层之所以深厚,是因为存在非河流成因堆积物的加积作用的结果。从目前深厚覆盖层建坝的工程经验分析,其宗水电站坝址河床深厚覆盖层的物理力学参数与西部其它水电工程的取值相差不大,其粗粒土具有干密度较大,承载力较高的优势,坝基覆盖层的工程特性符合建高堆石坝的力学条件。
     (6)通过对坝址河床深厚覆盖层的稳定性计算与分析认为,坝址覆盖层深厚,以粗颗粒的卵砾石层为主,组织结构较密实,具有较高的强度,坝基产生浅层或深层滑动的可能性较小;但是,坝址覆盖层中③-1层和①层由粗粒土组成,渗透系数较大,具备发生管涌的条件;③-2层、②-2层以砂土及粉砂土为主,而②-1层夹细砂,这些部位具备发生流土的条件,坝基整体渗透变形问题比较突出;另外,坝址覆盖层中③-2层、②-2层数目众多的砂层透镜体,其厚度变化较大,埋深不一,强度相对较低,不但坝基不均匀沉降问题较严重,而且坝基承载力与液化问题也比较突出。
     (7)其宗水电站坝址地形条件对布置当地材料坝较为有利,经合理布置并加强支护,右岸横向山梁具备修建大型开敞式溢洪道、引水、泄洪、导流隧洞和地面厂房的条件;覆盖层坝基整体稳定性较好,但存在渗透变形、不均匀沉降和浅部砂层液化问题。建议挖除浅部砂层透镜体,对坝基土体进行加密、固结灌浆与夯实等措施。经妥善处理后河床覆盖层具备修建高心墙堆石坝的工程地质条件,坝址修建高心墙堆石坝是适宜的。
     本论文的研究成果达到了高坝建设适宜性工程地质研究的目标,在千枚岩各向异性的力学特征、河床深厚覆盖层的成因、工程地质特性等方面取得了一定的理论成果与规律性认识,对在千枚岩地区开挖大型工程边坡与地下洞室及高山峡谷区深厚覆盖层上建高坝、大库的工程地质理论与实践均有着指导意义。
There are plenty of hydroenergy in west China to be exploited. It is an important strategy to accelerate economic development of west China by exploiting hydroenergy in mountain area. However, hydropower station in west China, especially south west China, are mainly located in high mountain and canyon with complex geological condition and worse character of rock and soil mass. As a result, the suitability of the geological environment for the hydro-junction becomes one of the key engineering geological problems. There are some characters including complex geological condition, thick deposits under the bed river, high artificial slopes, and plenty of caverns at the planed Qizong hydropower station. The dam of this hydropower station is designed to be high core rockfill dam. The main engineering geological problems includes instability of phyllite rock slopes and wall rock of caverns, and the engineering character of deep and thick deposits under bed river. In this paper, the engineering characters of phyllite rock mass and deep-thick deposits are studied to discuss the treatment of the main engineering geological problems. The suitability for construction of high rockfill dam is evaluated by engineering geological method, and some cognition is obtained in the study on theory and application of phyllite and deep-thick deposit.
     (1)In this paper, microstructure of phyllite, micro-fracture mechanism and rock mass structure are studied synthesized to acquire the regularity of engineering character of phyllite by analysis on aeolotropy character. Then, the stabilities of engineering slopes and gaverns in phyllite are studied by several methods, and the suitability for construction of engineering slopes and huge caverns in phyllite is discussed. In addition, the engineering character of deep-thick deposits lied under bed river in west China is generalized and analyzed systemically which add new origin types for deep-thick deposits, and the technique of suitability evaluation for construction of dam on deep-thick deposits lied under bed river is proposed.
     (2)According to the investigation of geological conditions of the dam area, the spacial distribution and variation of phyllite are discovered, and the composition and microstructure characteristics of rock is studied, and the types of rock mass structure and the development of discontinuities are summarized. The composition and micro-defects of the phyllite are discovered. The achievements have a guiding role in the research of engineering-mechanics characteristics of phyllite and analysis of the stability of cavern and rock slope.
     (3) The anisotropy of sericite phyllite and siliceous phyllite are analyzed by series of physical and mechanical tests, which indicates that the anisotropy of phyllite is mainly reflected in the velocity of sound wave, uniaxial compression strength, triaxial compression strength, and shear strength. Qualitative evaluation of anisotropy of the rock is based on the shape of response curve of rock anisotropy, that is how the rock strength varies by the orientation angle. The anisotropy ratio is advanced to evaluate the anisotropy of phyllite, and the most influence of anisotropy on the rock strength was to uniaxial compression strength. Then, the engineering geological character of phyllite is summarized and the proposed value of physical and mechanical parameters of rock mass is put forward, according to test data and engineering geological analogy. These parameters are the basis of stability evaluation of engineering slope and underground cavern.
     (4)According to the layout of the hydraulic architecture of Qizong hydropower station, some typical phyllite slopes and phyllite caverns are selected to analyze their stabilities by numerical simulation method. The distribution of stress and deformation of the slopes and caverns are studied under excavation. This study indicates that: 1)the rock mass strength of phyllite at Qizong hydropower station is high, and the whole engineering slope is stable, 2) the instabilities of caverns are influenced by the anisotropy of the phyllite, and the designed axial of the caverns put the stability of wall rock at a disadvantage. As a result, some suggestions such as reasonable arrangement and strengthening supporting can make the right bank meet the requirements of the layout of hydraulic architecture.
     (5)In this paper, the relationship between spacial distribution and structure of the deposits at the dam area is studied. And conclusion is obtained as follow: 1) The origin of deposits of the riverbed at the dam area is complex. The deposits include boulder and glaciofluvial accumulation of block stone and reduced stone of Late Pleistocene epoch, deposit formed by mudflow, diluvium and circulation flow, and accumulation of sand, boulder, reduced stone with silty clay interbedded and silt. 2) The deposits are with high thickness, better stratum, better water permeability, low compressibility, high mechanics strength and high bearing capacity. 3)The most important layer to dam is the lenticle sand seam in the boulder and gravel stratum, which is with little thickness, discontinuity, middle water permeability, middle compressibility, low mechanics strength, and low bearing capacity. According to the existed dam engineering experience in the deep and thick deposits, the physical and mechanical parameters of the deposits at Qizong hydropower station is similar to other engineering in west China, and there are some advantages that the dry density of the coarse-grained soil is larger, and the bearing capacity is greater. As a result, the engineering characteristics of the deposits at Qizong hydropower station meet the geological conditions of high rockfill dam construction.
     (6)The result of stability analysis of the deposit at the dam site indicated that, 1) sliding of the dam foundation is in low possibility because deep and thick deposits are mainly composed of boulder and gravel stratum with compact structure and high strength; 2) the stratum of③-1 and①might generate failure by piping because of their coarse grain and high permeability coefficient; 3) the dam foundation could generate seepage deformation because of quicksand in the③-2 stratum and②-2 stratum with sand soil and silty soil, and the②-1 stratum with fine sand; 4) there are some engineering geological problems, such as non-uniform settlement of the dam foundation, low bearing capacity of dam foundation, and liquification of the dam base, in the③-2 stratum and the②-2 stratum with plenty of lenticle sand seam with variation of thickness and depth of burial.
     (7)The topographic feature at the dam site is suitable for rockfill dam. Large open style spillway, seepage tunnel, rapid flood passage tunnel, training tunnel and ground factory could be arranged on the cross ridge on the right bank after strengthened supporting. The whole stability of the dam foundation is stable, however, there are some engineering geological problems such as seepage deformation, non-uniform settlement, and liquidation of sand seam in the upper part. Propose was advanced that the lenticle sand seam be excavated in the upper part, the soil of dam base be treated by consolidation grouting and tamping. The deposits’engineering characteristics after treatment can meet the engineering condition of core rockfill dam with 350m height. And as a result, it is suitable for the studied area to construct high core rockfill dam.
     The research has achieved aims of suitability study for high dam of Qizong hydropower station. And some theoretical and regular achievement are obtained in anisotropy mechanical character of phyllite, origin and engineering character of deep and thick deposits lied under bed river. These achievements can direct excavation of artificial slopes and caverns in the phyllite area, and construction of high dam in the deep and thick deposit.
引文
[1]黄润秋,王士天,胡卸文等.澜沧江小湾水电站高拱坝坝基重大工程地质问题研究[M].成都:西南交通大学出版社, 1996.
    [2]成都理工大学地质灾害防治与地质环境保护国家专业实验室.金沙江溪洛渡水电工程岩体结构模型及其工程应用研究[R].成都:成都理工大学, 2003.
    [3]陈祖安主编.中国水利发电工程(工程地质卷)[M].北京:中国电力出版社, 2000.
    [4]黄润秋,张倬元等.中国西南地壳浅表层动力学过程及其工程环境效应研究[M].成都:四川大学出版社, 2001.
    [5]黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社, 1991.
    [6]李广诚,王思敬.浅论工程地质的决策与方法[J].工程地质学报, 2000(18).
    [7]李怀祖.决策理论导引[M].北京:机械工业出版设, 1993.
    [8]魏宏森.开创复杂性研究的新学科-系统科学纵览[M].成都:四川教育出版社, 1991.
    [9]崔政权.系统工程地质导论[M].北京:水利电力出版社, 1992.
    [10]唐胜传.复杂场地高坝建设适宜性的工程地质研究[D].成都理工大学博士学位论文, 2002.
    [11]水利电力部成都勘测设计研究院.金沙江溪落渡水电站可行性研究报告(第三篇工程地质)[R]. 1998.
    [12]谷德振,岩体工程地质力学基础[M].北京:科学出版社, 1979.
    [13]孙玉科等,边坡岩体稳定性分析[M].北京:科学出版社, 1988.
    [14]孙广忠,岩体结构力学.北京:科学出版社, 1988.
    [15]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社, 1993.
    [16]成都理工大学地质灾害防治与地质环境保护国家专业实验室.其宗水电站河床深厚覆盖层的工程地质及建坝适宜性研究[R].成都:成都理工大学, 2008.
    [17]中国水电顾问集团昆明勘测设计研究院[R],其宗水电站筑坝技术可行性研究专题报告.
    [18]中国水电顾问集团成都勘测设计研究院[R],川西岷江、大渡河及雅砻江及其支流水电勘测报告, 1970-2008.
    [19]吴俊峰.金沙江其宗水电站深厚覆盖层工程特性研究[D].成都理工大学硕士学位论文, 2009 .
    [20]巨能攀.大跨度高边墙地下洞室群围岩稳定性评价及支护方案的系统工程地质研究[D].成都理工大学博士学位论文, 2005.
    [21]房东恒.大渡河长河坝水电站下坝址建高堆石坝适宜性研究[D].成都理工大学硕士学位论文, 2005.
    [22]王仁民等.变质岩石学[M].北京:地质出版社, 1989.
    [23]水利水电科学研究院等.岩石力学参数手册[M].北京:水利水电出版社, 1991.
    [24]张文珍,左辉.黄壁庄水库大理岩、千枚岩工程地质特性[J].土工基础, 2006, 20(2): 51-54.
    [25]何振海,宋少军,曹宗明.眼前山铁矿上盘千枚岩边坡研究[J].中国矿业, 2000, 9(49): 97-102.
    [26]陈唯一,乌鞘岭隧道千枚岩地层初期支护参数研究[J].铁路工程学报, 2006(3): 37-39.
    [27]王丙堤,乌鞘岭隧道岭脊段千枚岩变形特征及施工方法[J].现代隧道技术, 2006(1): 77-80.
    [28]邓荣贵,张倬元.锦屏水电站坝区绿片岩结构及力学特性研究[J].成都理工学院学报, 2001, 28(1): 93-97.
    [29]王和平,吕占彪,尚峰等.宝泉抽水蓄能电站坝基软弱夹层的工程地质特性[J].华北水利水电学院学报, 1999, 20(3): 44-46.
    [30]孙小伟.引洮工程红层软岩隧洞工程地质研究[D].兰州大学博士学位论文, 2008.
    [31]巫德斌.层状岩体边坡工程力学参数研究[D].河海大学博士学位论文, 2004.
    [32]张贵科.节理岩体正交各向异性等效力学参数与屈服准则研究及其工程应用[D].河海大学博士学位论文, 2006.
    [33]顾洪源,陈寿根.高地应力条件下千枚岩地段隧道稳定性分析[J].吉林水利, 2008, 314(7): 51-54.
    [34]刘少华,罗四秀,郭绵传.下溪水利枢纽引水隧洞围岩泥化夹层的工程特性[J].江西水利科技, 2008, 34(2): 151-155.
    [35]张宇.隧道三维变形规律研究及其在乌鞘岭隧道工程中的应用[D].西南交通大学硕士学位论文,2006.
    [36]王彪.昌北千枚岩风化程度的模糊综合评判及桩基承载力分析[D].华东交通大学硕士学位论文, 2007.
    [37]郑海君.软岩特性研究及其对边坡影响的敏感性分析[D].成都理工大学硕士学位论文, 2005.
    [38]李长虹.九甸峡坝址区河床深厚覆盖层的特性研究[J].甘肃水利水电技术, 2008, 44(6): 444-446.
    [39]李正顺,李燕奎,杨智勇.某水电站深厚覆盖层渗透特性研究[J].山西建筑, 2008, 34(26): 352-353.
    [40]贺如平.四川西部河谷覆盖层的抗渗特性研究[J].水电工程研究, 1994, 1: 79-84.
    [41]杨春璞,宣树学.西藏旁多水利枢纽坝基深厚覆盖层渗透稳定性研究[J].东北水利水电, 2009, 299(6): 4-7.
    [42]孟永旭.下坂地水库坝址深厚覆盖层工程特性及主要地质问题初步评价[J].陕西水利水电技术, 2000, 78(2): 48-51.
    [43]夏万洪,魏星灿,杜明祝.冶勒水电站坝基超深厚覆盖层Q3的工程地质特性及主要工程地质问题研究[J].水电站设计, 2009, 25(2), 81-87.
    [44]薛云飞.覆盖层上筑坝技术研究[J].东北水利水电, 2008, 26(9): 13-14.
    [45]王启国.金沙江虎跳峡河段河床深厚覆盖层成因及工程意义[J].岩石力学与工程学报, 2009, 28(7): 1455-1466.
    [46]熊德全,王昆.金沙江其宗水电站坝址深厚覆盖层钻探技术和孔内试验实践[J].云南水电技术, 2009, 166(1): 25-30.
    [47]李长虹,刘洪平.九甸峡坝址区河床深厚覆盖层的试验研究[J].岩土工程技术, 2007, 21(4): 193-201.
    [48]乔国锋.九甸峡水电站坝基深厚覆盖层工程地质特性研究[J].甘肃水利水电技术, 2006, 42(4): 419-420.
    [49]王自高,高健,王昆.其宗水电站坝址河床深厚覆盖层工程地质特性及建坝适宜性研究[J].云南水电技术, 2009, 168(3): 60-65.
    [50]熊德全,王昆,马加禹.其宗水电站深厚覆盖层钻孔旁压试验应用研究[J].云南水电技术, 2009, 168(1): 56-60.
    [51]杨天俊.深厚覆盖层岩组划分及主要工程地质问题[J].水利发电, 1998, 6: 17-19.
    [52]孙耀明,王运生,吴俊峰等.西南某水电站谷底深厚覆盖层与卸荷松弛带特征及其成因机制分析[J].工程地质学报, 2008, 16(2): 169-172.
    [53]邹波忠.仁宗海堆石坝在填筑过程中的变形分析与坝坡稳定性研究[D].成都理工大学硕士学位论文, 2009.
    [54]王志强.甘肃引洮工程重大工程地质问题研究[D].兰州大学博士学位论文, 2006.
    [55]汪波.金沙江虎跳峡水电站龙蟠坝址区建坝条件的工程适宜性研究[D].成都理工大学硕士学位论文, 2003.
    [56]严祖文,杨建民.坝基地震液化特性及动力稳定性分析[J].世界地震工程, 2008, 24(3):140-145.
    [57]郝永刚.横泉水库坝基粗粒土渗透稳定性评价[J].水利规划设计, 2006, 1: 43-45.
    [58]金仁祥.某水库坝基渗透稳定性研究[J].岩土力学, 2004, 25(1): 157-159.
    [59]陈世伟.松塔水库坝基粗粒土渗透稳定性评价[J].山西水利科技, 2009, 173(3): 15-17.
    [60]廖明亮,刘仕勇.西藏达嘎水电站河床覆盖层坝基的稳定性评价与计算[J].水电站设计, 2000, 16(4): 88-93.
    [61]何满潮,薛延河等.工程岩体力学参数确定方法的研究[J].岩石力学与工程学报, 2001, 20(2): 225-229.
    [62] Jaeger 3C. Shear failure of anisotropic rocks[J]. Geology Magazine, 1960, 97: 65-72.
    [63] Pariseau WCx Plasticity theory for anisotropic rocks and soils[A]. Proceedings of the 10th Symposium on Rock Mechanics (AIME)[C]. 1972, 267-295.
    [64]何昌荣.冶勒坝基土的动力特性[J].四川水力发电, 1991, 2: 40-47.
    [65]王汝恒,贾彬,邓安福等.砂卵石土动力特性的动三轴试验研究[J].岩石力学与工程学报, 2006, 25(2): 4059-4064.
    [66]王峻,王兰民,李兰.饱和砂土液化的动三轴试验判断与评价[J].西北地震学报, 2004, 26(3): 285-288.
    [67]李燕,史三元.动三轴试验分析饱和粉土的液化性[J].煤炭工程, 2004, 3: 40-42.
    [68]孙锐,袁晓铭,刘晓键.动剪切模量比与剪切波速对地震动影响及等量关系研究[J].岩土工程学报, 2009, 31(8): 1267-1274.
    [69] Tien YM, Kuo MC. A failure criterion for transversely isotropic rocks[J], International Journals of Rock Mechanics&Mining Science. 2001, 38(5): 399-412.
    [70] J.F. Shao. Poroelastic behavior of brittle rock materials with anisotropic damage[J]. Mechanics of materials. 1998 (30):,41-53.
    [71] J.F. Shao, D. Hoxhab, M. Barta. Modeling of induced anisotropic damage in granites[J]. International Journals of Rock Mechanics&Mining Science. 1999, 36: 1011-1012.
    [72] S. Pietruszczak, D. dzba, J.F. Shao. Modeling of inherent anisotropy in sedimentary rocks[J]. International Journal of Solids and Structures. 2002, 39: 637-648.
    [73] D. Lydzba, S. Pietruszczak, J.R Shao. On anisotropic of stratified rocks: homogenization and fabric tensor approach[J]. Computers and Geotechnics, 2003, 30: 289-302.
    [74] Pietruszczak S, Mroz Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26: 105-112.
    [75]杨强,陈新,周维垣.基于二阶损伤张量的节理岩体各向异性屈服准则[J].岩石力学与工程学报,2005, 24(8): 1275-1282.
    [76] Kanatani K. Distribution of directional data and fabric tensors[J]. Int. J. Engng. Sci., 1984, 22: 149-164.
    [77] Yang Q, Li Z K, Thaw L C. An explicit expression of second-order frabric-tensor dependent elastic compliance tensor[J]. Mechanics research communications. 2001, 28: 255-260.
    [78] T.Ramamurthy等.千枚岩的工程性能(译)[J]. Engineering Geology, 33(1993): 209-225.
    [79]何振海.眼前山铁矿边坡变形破坏的基本特征及其防治[J].矿业工程, 2006, 4(4): 7-9.
    [80]李正顺.大渡河丹巴水电站坝基深厚覆盖层工程地质研究[D].成都理工大学硕士学位论文, 2008.
    [81]杨光伟.闸坝深厚覆盖层基础处理研究[M].成都:四川人学出版社, 2003.
    [82]覃新闻,王继柏,宋玉才等.下坂地坝基深厚覆盖层帷幕灌浆现场试验工艺研究[J].工程地质学报, 2006(3): 419-423.
    [83]柳新根,蒯圣堂.水布娅左岸防淘墙深厚覆盖层固结灌浆[J].人民长江, 2005, 36(11): 6-7.
    [84]党发宁,胡再强.深厚覆盖层上高土石坝的动力稳定分析[J].岩石力学与工程学报, 2005, 24(12): 2041-2047.
    [85]孙大伟,郦能惠.深覆盖层上面板堆石坝关键技术研究进展与展望[J].水力发电, 2005, 31(8): 67-69.
    [86] Satoru S, Moroto N. A new classification chart for sand liquefaction Porc 1st int Conf on Earthquake Geotechnical Engineering[C]. 1995.
    [87] Timothy D S, Gholamreza M. Undrained shear strength of liquefied sand for stability analysis[J]. Geotechnical Engineering, 1992.
    [88] Oh-okan H T, Mori S. Shear module and liquefaction strength of a diluvial sand. Proc 6th Japan-U.S workshop on earthquake resistant design of lifeline facilities and countermeasure against soil liquefaction[C]. 1996.
    [89]石兆吉等.剪切波速的液化势判别的机理和应用[R].地震联合基金会报告, 1991.
    [90]吴世明等.振冲碎石桩粉砂坝基地震液化简化分析与波速检测[A].第三届全国土动力学会议文集, 1993.
    [91] Maiquma T M. Geophycial and geotechnical investigation of liquefied ground in Noshiro Japan[J], Proc 6thJapan-U.S workshop on earthquake resistant design of lifeline facilities and countermeasure against soil liquefaction, 1996.
    [92]张绍民,常福庆等,黄河小浪底水利枢纽西霞院配套工程深厚覆盖层三维渗流反演分析[J].水文地质工程地质, 2000, 27(06): 12-14.
    [93]邢丁家.深厚覆盖层渗透系数三种测定方法的对比分析-以新疆下坂地水库坝址覆盖层为例[J].水文地质工程地质, 2004, 31(02): 88-92.
    [94]蔡元奇,朱以文,唐红等.在深厚覆盖层坝基上建堆石坝的防渗研究[J].武汉大学学报(工学版), 2005, 38(01): 18-22.
    [95]杨海林.深厚覆盖层基础上堆石坝防渗系统优化研究[D].河海大学硕士学位论文, 2007.
    [96]刘小明,李焯芬.岩石断口微观机理分析与实验研究[J].岩石力学与工程学报,1997,16(6): 509~513
    [97]李先炜,兰勇瑞,邹浚兴.岩石断口分析.中国矿业大学学报,1983, (1): 15~21
    [98]赵希涛,曲永新,张永双等,滇西北丽江地区石鼓古湖的发现及其在现代金沙江河谷发育中的意义[J].地质通报, 2007, 26(8): 960-969.
    [99]杨宝嘉,吕伟,滇西北三江地区新构造运动特征[J].玉溪师范学院学报, 2006, 22(7): 36-41.
    [100]赵希涛,张永双,胡道功等.玉龙山西麓更新世冰川作用[J].第四纪研究, 2007, 25(1): 35-44.
    [101]范柱国,李峰,谈树成,李保珠,丽江—大理地区新构造运动特征及环境效应[J].大地构造与成矿学, 2002, 26(1): 6-9.
    [102]王运生,黄润秋,段海澎等.中国西部末次冰期一次强烈的侵蚀事件[J].成都理工大学学报, 2006, 33(1): 73-76.
    [103]柯瀚,陈云敏.改进的判别砂土液化势的剪切波速法[J].地震学报, 2000, 22(6): 637-644.
    [104]张峰根,黄路桥,张玉珺等.怒江—澜沧江-金沙江构造地区体系及其演化程式[M].北京:地质出版社, 1987, 1-194.
    [105]国家地震局地震研究所,云南省地震厅.滇西北地区活动断裂[M].北京:地震出版社, 1990, 1-321.
    [106]张荣祥.剪切波速判别地震液化势的适用性研究[J].工程地质学报, 1996, 4(1): 53-59.
    [107]程国勇,王建华.应用剪切波速判别饱和砂土振动液化的研究现状[J].西部探矿工程, 2003, 91(12): 8-10.
    [108]罗守成.对深厚覆盖层地质问题的认识[J].水力发电, 1995, 252(4): 21-24.
    [109]许强,陈伟,张倬元.对我国西南地区河谷深厚覆盖层成因机理的新认识[J].地球科学进展, 2008, 23(5): 448-455.
    [110]李建勇,顾少娟,韩旭.金沙江塔城水电站河床深厚覆盖层的形成机制及空间分布特征的研究[J].资源环境与工程, 2009, 23(5): 683-686.
    [111]陈海军,任光明,聂德新等.河谷深厚覆盖层工程地质特性及其评价方法[J].地质灾害与环境保护, 1996, 7(4): 53-58.
    [112]周江平,土石坝抗滑稳定性与砂层地基液化的可靠度理论与应用[D].西南交通大学博士学位论文, 2004.
    [113]杨举明.粉细砂液化特性及碎石桩复合地基加固处理研究[D].西南交通大学硕士学位论文, 2008
    [114]宋宝玉,司富安.哈达山水利枢纽坝基砂层震动液化研究[J].工程地质学报, 2003, 11(3): 275-279.
    [115]赵建.黑河大孤山水电站坝址液化判别与分析[J].水利工程, 2009, 16: 34-35.
    [116]于立宏,刘德斌,刘英.苏洼龙水电站坝址区覆盖层砂土液化评价[J].岩土力学, 2008, 28(增): 204-206.
    [117]王启国,严应征,林仕祥等.王甫洲水利枢纽坝基主要工程地质问题及对策[J].人民长江, 2009, 40(5): 80-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700