新型窗函数与改进FFT谐波分析方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐波的准确检测是研究电力系统谐波问题的重要内容,为谐波潮流计算、绝缘设备检测、谐波电能计量、谐波补偿与抑制等提供科学依据。基于快速傅里叶变换(fast Fourier transform,FFT)的谐波分析方法易于嵌入式系统实现而应用广泛。然而,非同步采样情况下直接采用FFT进行谐波分析时,受频谱泄漏和栅栏效应影响,谐波参数检测准确度较低。因此研究新型窗函数与改进FFT谐波分析方法,并将其在嵌入式系统中实现,对提高谐波检测准确度和实时性具有重大的理论和现实意义。
     本论文针对电力系统谐波检测中存在的问题,提出了系列新型窗函数及改进FFT谐波分析方法,研究内容主要包括:1)三角自卷积窗、余弦卷积窗和梯形自卷积窗及基于上述窗函数的改进FFT谐波分析方法;2)改进FFT谐波分析方法在谐波电能计量、介损角测量中的应用。
     论文首先分析了影响FFT谐波分析准确度的关键因素,从改善窗函数、充分抑制频谱泄漏的角度,提出并建立了三角自卷积窗及其改进FFT谐波分析方法。三角自卷积窗由三角窗进行时域自卷积运算获得,其频谱泄漏抑制能力随卷积次数的增加而迅速增强。基于三角自卷积窗的改进FFT谐波分析方法通过对离散频谱的局部峰值搜索,确定谐波频率附近的幅度最大和次大谱线,再根据两根峰值谱线的比值,并利用基于最小二乘多项式拟合方法,得到离散频谱频率偏差插值多项式和谐波参数计算式。仿真研究表明,三角自卷积窗旁瓣性能优良,可有效减少谐波对基波的泄漏干扰,提高了基波参数提取的准确度,且具有较强的抗干扰能力。
     其次,论文利用余弦组合窗的优良旁瓣特性,提出并建立了余弦卷积窗,定义了余弦混合卷积窗和余弦自卷积窗,建立了余弦卷积窗的时频特性。余弦卷积窗的主瓣宽度与参与卷积的余弦组合窗中主瓣最窄的窗相同;余弦卷积窗的旁瓣衰减速率等于参与卷积的各窗的旁瓣衰减速率之和;余弦卷积窗的旁瓣峰值电平出现在参与卷积的余弦组合窗中主瓣最窄的窗的旁瓣峰值电平处,且等于参与卷积的各窗在该处的幅度值之和。余弦卷积窗的时频特性研究为进一步深入研究基于余弦卷积窗的改进FFT谐波分析方法提供了理论依据。
     论文以Hanning窗为例,提出并建立了Hanning自卷积窗及其改进FFT谐波分析方法,建立了基于Hanning自卷积窗的离散频谱相位差校正算法。与三角自卷积窗相比,Hanning自卷积窗旁瓣性能优越,抑制频谱泄漏能力强;基于Hanning自卷积窗的改进FFT谐波分析方法提高了谐波分析的准确度,特别适合于高次谐波分量、弱幅值谐波分量的分析。
     随后,在提出三角自卷积窗和余弦卷积窗的基础上,论文提出并建立了梯形自卷积窗,分析了梯形自卷积窗时频特性,建立基于梯形自卷积窗的改进FFT谐波分析方法。论文一方面通过调整系数优化梯形窗主瓣与旁瓣性能,另一方面采用时域卷积方法使其旁瓣性能得到进一步提升。与三角自卷积窗和Hanning自卷积窗相比,梯形自卷积窗更适合于频率分辨率要求较高的场合,如间谐波分析等。
     最后,利用Hanning自卷积窗、三角自卷积窗分别适合于高次谐波分析、基波参数提取的特点,论文将所提出的改进FFT谐波分析算法应用于谐波电能计量、介损角测量中,提出了基于Hanning自卷积窗的谐波电能计量算法和基于三角自卷积窗的介损角测量算法,并利用嵌入式系统平台实现了谐波电能计量与介损角测量,研究出了基于数字信号处理器的三相多功能谐波电能表和介损角测量终端。三相多功能谐波电能表可实现高准确度谐波电能计量和实时谐波分析,谐波存在时有功电能计量达到0.2S级,且完全满足GB/T-14549-93的A类谐波测量仪器要求。介损角测量终端的仿真与模拟实验结果表明其测量结果准确度高,为进一步介损角实际测量提供了有力保证。
The accurate harmonic analysis of power system is an important task for the research of harmonic pollution, which is also the basis for the identification of excessive harmonic flow, diagnosis of high voltage insulation, measurement of harmonic electric energy, compensation and suppression of power harmonic. The FFT is the most commonly used technique for power system harmonic analysis because of its simplicity and easy implementation in embedded system. However, the direct application of FFT for harmonic analysis may lead to inaccuracies due to the spectral leakage and the picket-fence effects with asynchronous sampling. Hence, it is of great theoretic and practical importance to study and implement novel FFT-based methods for accurate and real-time harmonic analysis.
     This dissertation proposes new kinds of windows and improved FFT-based harmonic analysis methods, especially on the Triangular self-convolution window (TRISCW), the cosine-combined convolution window(CCCW), the Hanning self-convolution window(HSCW), the Trapezoid self-convolution window(TRASCW), the improved FFT-based harmonic analysis methods with these proposed windows, the application of the proposed methods in harmonic electric energy measurement and dielectric loss angle online measurement.
     Firstly, the key factors of the FFT-based harmonic analysis method are analyzed. The TRISCW is proposed, which is constructed by self-convolutions of the Triangular window in time domain. With the increase of the self-convolution times, the spectral leakage can be more efficiently suppressed by using the TRISCW. The improved FFT-based harmonic analysis method based on the TRISCW is presented, where the harmonic parameters are calculated by spectral interpolation accurately.
     Then, the CCCW is proposed, and the cosine-combined cross-convolution window and the cosine-combined self-convolution window are defined and studied. The CCCW has the same major lobe width with the window who is one of the original window and also has a narrow major lobe width. The peak side lobe level and side lobe roll-off rate of the CCCW are the sum of the original windows. The study of the CCCW paves the way for the FFT-based harmonic analysis with the CCCW.
     This dissertation takes the Hanning window for example, proposes the HSCW and the improved FFT-based harmonic analysis method. The HSCW has a low peak side lobe level, a high side lobe roll-off rate. Hence, leakage errors and harmonic interferences can be considerably reduced. The improved FTT-based harmonic analysis method with the HSCW achieves better performance for applications where the spectral leakage is a main problem, such as the weak harmonic analysis of power system.
     Subsequently, based on the proposed TRISCW and CCCW, the TRASCW is proposed. The Trapezoid window is optimized by adjusting the window parameters, and the TRASCW with better sidelobe behavior is then obtained by self-convolutions in time domain. The TRASCW has narrow major lobe width, which makes it suitable for applications where the high frequency resolution is required, such as the inter-harmonic analysis.
     Finally, the proposed FFT-based harmonic analysis methods are implemented to the harmonic electric energy measurement and dielectric loss angle measurement. The harmonic electric energy measurement algorithm based on the HSCW and the dielectric loss angle measurement algorithm based on the TRISCW are proposed and realized in the embedded system, i.e. the digital signal processor. The testing and application results show that the three phase multi-function harmonic power energy meter achieves a precision of grade 0.2S for electrical power measurement, and completely fulfills the requirements for class A power harmonics measurement stated in GB/T14549-1993 Power Quality, Harmonics in Public Power Grid, the terminal can perform high accuracy of the dielectric loss angle online measurement, which can provide a basis for further practical application.
引文
[1]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿.北京:机械工业出版社, 1998
    [2] Emanuel A, Orr J, Cyganski D, et al. A survey of harmonic voltages and currents at distribution substations. IEEE Transactions on Power Delivery, 1991, 6 (4): 1883-1890
    [3] Stratford R. Harmonic pollution on power systems - A change in philosophy. IEEE Transactions on Industry Applications, 1980, 16 (5): 617-623
    [4]李令冬,陈国生.电能质量标准与电能质量监督管理.电世界, 2002, 43 (7): 1-3
    [5] IEC555-1982. Disturbances in supply systems caused by household appliances and similar electrical equipment part 2: harmonics. 1982
    [6] IEEE519-1992. IEEE recommended practices and requirements for harmonic control in electrical power system.1992
    [7] GB/T14549-93.电能质量公用电网谐波标准. 1993
    [8] IEC61000-4-7. Testing and measurement techniques-general guide on harmonics and interharmonics measurements and instrumentation for power supply systems and equipment connected thereto. 2002
    [9] IEC61000-4-30. Testing and measurement techniques-power quality measurement methods. 2003
    [10]李威,王建赜.一种新的电力系统暂态波形检测方法.电力系统自动化, 2002, 26 (5): 45-48
    [11]周文晖,李青.采用小波分辨率信号分解的电能质量检测.电工技术学报, 2001, 16 (6): 81-84
    [12]吴小培,李晓辉,孔敏,等.基于独立分量分析的谐波估计和消除.电工技术学报, 2003, 18 (4): 56-60
    [13] Emanuel A. On the assessment of harmonic pollution of power systems. IEEE Transactions on Power Delivery, 1995, 10 (3): 1693-1698
    [14] Yilmaz AS, Alkan A, Asyali MH. Applications of parametric spectral estimation methods on detection of power system harmonics. Electric Power Systems Research, 2008, 78 (4): 683-693
    [15]王东,马伟明,顾伟峰,等. 12/3相双绕组感应发电机的谐波不对称分析.中国电机工程学报, 2004, 24 (5): 148-152
    [16] Martzloff F, Gruzs T. Power quality site surveys: facts, fiction, and fallacies. IEEE Transactions on Industry Applications, 1988, 24 (6): 1005-1018
    [17]薛军,汪鸿.非线性负荷及其对电力系统的影响.高压电器, 2001, 37 (6): 21-23
    [18]郎维川.供电系统谐波的产生危害及其防护对策.高电压技术, 2002, 28 (6): 30-31
    [19]杜雄.电力谐波有源补偿新方法的研究.重庆:重庆大学, 2005: 1-4
    [20] Domijan Jr A, Embriz-Santander E, Gilani A, et al. Watthour meter accuracy under controlled unbalanced harmonic voltage and current conditions. IEEE Transactions on Power Delivery, 1996, 11 (1): 64-72
    [21] Situations IWGoN. A survey of North American electric utility concerns regarding nonsinusoidal waveforms. IEEE Transactions on Power Delivery, 1996, 11 (1): 73-78
    [22]陈振生.电网谐波的危害及抑制技术.电气开关, 2003, 41 (6): 1-5
    [23]温伯银.谐波的危害及其抑制措施.建筑电气, 2006, 25 (3): 4-10
    [24] MIL-STD-461B U. Electromagnetic emission and susceptibility requirements for the control of electromagnetic interference. 1980
    [25] CIGRE36-05. Harmonics, characteristic parameters, methods of study, estimates of existing values in the network. 1981
    [26]吕润余,李平之,许暇.澄清谐波国标对用户谐波电流指标分配计算中的有关问题.中国电力, 2002, 25 (11): 60-64
    [27] IEC61000-3-2. Electromagnetic compatibility part 3: section 2: Limits for harmonic current emissions (equipment input current≤16A perphase). 1995
    [28] IEC61000-3-4. Electromagnetic compatibility part 3:section 4: Limits for harmonic current emissions (equipment input current >16A perphase). 1995
    [29] SD126-84.电力系统谐波管理暂行规定. 1984
    [30]吕骞.供电质量的指标释义及标准.农村电气化, 2004, (5): 6-7
    [31] Duffey C, Stratford R, Inc P, et al. Update of harmonic standard IEEE-519: IEEE recommended practicesand requirements for harmonic control in electric power systems. IEEE Transactions on Industry Applications, 1989, 25 (6): 1025-1034
    [32]林海雪.从IEC电磁兼容标准看电网谐波国家标准.电网技术, 1999, 23 (5): 64-67
    [33] Reid W, Inc Q, Pittsburgh P. Power quality issues-standards and guidelines.IEEE Transactions on Industry Applications, 1996, 32 (3): 625-632
    [34] Thomson D. Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 1982, 70 (9): 1055-1096
    [35] Sutherland P. Harmonic measurements in industrial power systems. IEEE Transactions on Industry Applications, 1995, 31 (1): 175-183
    [36] Andrews D, Bishop M, Witte J, et al. Harmonic measurements, analysis, and power factor correction in a modern steel manufacturing facility. IEEE Transactions on Industry Applications, 1996, 32 (3): 617-624
    [37]李红,杨善水.傅立叶电力系统谐波检测方法综述.现代电力, 2004, 21 (4): 39-44
    [38] Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement. IEEE Transactions on Industrial Electronics, 1999, 46 (5): 960-971
    [39]谢小荣,韩英铎.电力系统频率测量综述.电力系统自动化, 1999, 23 (3): 54-58
    [40] Arrillaga J, Bollen M, Watson N. Power quality following deregulation. Proceedings of the IEEE, 2000, 88 (2): 246-261
    [41]肖雁鸿,毛筱.电力系统谐波测量方法综述.电网技术, 2002, 26 (6): 61-64
    [42] Miller A, Dewe M. Multichannel continuous harmonic analysis in real-time. IEEE Transactions on Power Delivery, 1992, 7 (4): 1813-1819
    [43] Henderson R, Rose P, Inc R, et al. Harmonics: the effects on power quality and transformers. IEEE Transactions on Industry Applications, 1994, 30 (3): 528-532
    [44]马晓蕾,尹忠东,周丽霞,等.电力系统谐波检测综述.四川电力技术, 2008, 31 (2): 53-58
    [45]李芬华,胡建军.一种单相电路谐波及基波电流检测方法.电测与仪表, 2005, 42 (8): 18-20.
    [46] Kim H, Blaabjerg F, Bak-Jensen B, et al. Instantaneous power compensation in three-phase systems by using pqr theory. IEEE Transactions on Power Electronics, 2002, 17 (5): 701-710
    [47]马莉,周景海.一种基于dq变换的改进型谐波检测方案的研究.中国电机工程学报, 2000, 20 (10): 55-58
    [48]许德志,刘跃,杨勇.一种改进型ip-iq三相畸变电流检测法的仿真研究.电测与仪表, 2005, 42 (11): 5-8
    [49] Xie R, Zhang B, Qiu D, et al. An inter-harmonic detecting algorithm based onthe generalized dk-qk coordinate transform. In: IEEE 38th Annual Power Electronics Specialists Conference, Orlando, 2007, 1126-1131
    [50]彭玉华.小波变换与工程应用.北京:科学出版社, 1999
    [51] Pham V, Wong K. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms. IEE Proceedings Generation, Transmission and Distribution, 1999, 146 (3): 249-254
    [52] Barros J, Diego R. A new method for measurement of harmonic groups in power systems using wavelet analysis in the IEC standard framework. Electric Power Systems Research, 2006, 76 (4): 200-208
    [53]王群,吴宁,王兆安.一种基于人工神经网络的谐波测量方法.电网技术, 1999, 23 (1): 29-32
    [54] Osowski S. Neural network for estimation of harmonic components in a power system. IEE Proceedings Generation, Transmission and Distribution, 1992, 139 (2): 129-135
    [55]危韧勇,李志勇.基于人工神经元网络的电力系统谐波测量方法.电网技术, 1999, 23 (12): 20-23
    [56] Dash P, Swain D, Routray A, et al. Harmonic estimation in a power system using adaptive perceptrons. IEE Proceedings Generation, Transmission and Distribution, 1996, 143 (6): 565-574
    [57]曾喆昭,文卉,王耀南.一种高精度的电力系统谐波智能分析方法.中国电机工程学报, 2006, 26 (10): 23-27
    [58]郭世才. BP神经网络在谐波测量中的应用研究.中国测试技术, 2005, 31 (6): 38-40
    [59] Mori H, Itou K, Uematsu H, et al. An artificial neural-net based method for predicting power system voltage harmonics. IEEE Transactions on Power Delivery, 1992, 7 (1): 402-409
    [60]付光杰,曲玉辰,郭静. RBF神经网络在谐波检测中的应用.大庆石油学院学报, 2005, 29 (6): 76-79
    [61]李承,杨博,程炜,等.几种基于神经网络的谐波测量方法比较研究.自动化与仪器仪表, 2006, (4): 1-3
    [62] Vapnik V. The nature of statistical learning theory. New York: Springer, 2000
    [63]占勇,丁屹峰,程浩忠,等.电力系统谐波分析的稳健支持向量机方法研究.中国电机工程学报, 2004, 24 (12): 43-47
    [64] Zhan Y, Cheng H. A robust support vector algorithm for harmonic and interharmonic analysis of electric power system. Electric Power SystemsResearch, 2005, 73 (3): 393-400
    [65]郑连清,何立新.基于支持向量回归机的谐波分析.电力自动化设备, 2008, 28 (2): 73-75
    [66]乐叶青,徐政.电力系统间谐波及其检测方法综合分析.电气应用, 2006, 25 (12): 110-113
    [67] Leonowicz Z, Lobos T, Rezmer J. Advanced spectrum estimation methods for signal analysis in power electronics. IEEE Transactions on Industrial Electronics, 2003, 50 (3): 514-519
    [68] Girgis A, Quaintance III W, Qiu J, et al. A time-domain three-phase power system impedance modeling approachfor harmonic filter analysis. IEEE Transactions on Power Delivery, 1993, 8 (2): 504-510
    [69] Lobos T, Kozina T, Koglin HJ. Power system harmonics estimation using linear least squares method and SVD. IEE Proceedings Generation, Transmission and Distribution, 2001, 148 (6): 567-572
    [70]高培生,谷湘文,吴为麟.基于求根多重信号分类和遗传算法的谐波间谐波频谱估计.电工技术学报, 2008, 23 (6): 109-113
    [71] Georgiou T. Signal estimation via selective harmonic amplification: MUSIC, Redux. IEEE Transactions on Signal Processing, 2000, 48 (3): 780-790
    [72] Lobos T, Rezmer J, Koglin HJ. Analysis of power system transients using wavelets and Prony method. In: IEEE Power Tech Proceedings, Porto, 2001, 10-14
    [73] Lobos T, Rezmer J, Schegner J. Parameter estimation of distorted signals using Prony method. In: IEEE Power Technique Conference Proceedings, Bologna, 2003, 23-26
    [74]黄云江,谢维波.基于迭代Prony算法的高精度谐波检测.电气应用, 2007, 26 (4): 97-100
    [75] Pisarenko V. The retrieval of harmonics from a covariance function. Geophysical Journal International, 1973, 33 (3): 347-366
    [76] Larimore M. Adaptation convergence of spectral estimation based on Pisarenko harmonic retrieval. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1983, 31 (4): 955-962
    [77] Roy R, Paulraj A, Kailath T. ESPRIT--A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, 34 (5): 1340-1342
    [78]周晓勤,王文才,孔繁森.基于互四阶累积量的谐参数联合估计的TLS-ESPRIT方法.北京工业大学学报, 2008, 34 (8): 792-799
    [79]齐国清.几种基于FFT的频率估计方法精度分析.振动工程学报, 2006, 19 (1): 86-92
    [80]胡广书.数字信号处理理论,算法与实现.北京:清华大学出版社, 2003
    [81]杨冠鲁,姚若苹,余尤好.采用加窗插值FFT与逐幅谐波消去法的电机谐波算法.福州大学学报:自然科学版, 2006, 34 (3): 352-356
    [82]张伏生,耿中行.电力系统谐波分析的高精度FFT算法.中国电机工程学报, 1999, 19 (3): 63-66
    [83]潘文,钱俞寿.基于加窗插值FFT的电力谐波测量理论:(I)窗函数研究.电工技术学报, 1994, 9 (1): 50-54
    [84] Li YF, Chen KF. Eliminating the picket fence effect of the fast Fourier transform. Computer Physics Communications, 2008, 178 (7): 486-491
    [85]潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论:(II)双插值FFT理论.电工技术学报, 1994, 9 (2): 53-56
    [86] Oppenheim AV, Schafer RW. Discrete-time signal processing. NJ: Prentice-Hall, Inc. , 1989
    [87] Harris FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 1978, 66 (1): 51-83
    [88] Adams JW. A new optimal window. IEEE Transactions on Signal Processing, 1991, 39 (8): 1753-1769
    [89] Dai XZ, Gretsch R. Quasi-synchronous sampling algorithm and its applications. IEEE Transactions on Instrumentation and Measurement, 1994, 43 (2): 204-209
    [90] Rife DC, Vincent GA. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones. Bell Syst Tech J, 1970, 49 (2): 197-228
    [91] Jain VK, Collins WL, Davis DC. High-accuracy analog measurements via interpolated FFT. IEEE Transactions on Instrumentation and Measurement, 1979, 28 (2): 113-122
    [92] Grandke T. Interpolation Algorithms for discrete Fourier transforms of weighted signals. IEEE Transactions on Instrumentation and Measurement, 1983, 32 (2): 350-355
    [93] Andria G, Savino M, Trotta A. Windows and interpolation algorithms to improve electrical measurement accuracy. IEEE Transactions on Instrumentation and Measurement, 1989, 38 (4): 856-863
    [94] Offelli C, Petri D. Interpolation techniques for real-time multifrequencywaveform analysis. IEEE Transactions on Instrumentation and Measurement, 1990, 39 (1): 106-111
    [95] Rife D, Boorstyn R. Single tone parameter estimation from discrete-time observations. IEEE Transactions on Information Theory, 1974, 20 (5): 591-598
    [96] Nuttall A. Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29 (1): 84-91
    [97]张介秋,梁昌洪,陈砚圃.一类新的窗函数——卷积窗及其应用.中国科学: E辑, 2005, 35 (7): 773-784
    [98]钱昊,赵荣祥.基于插值FFT算法的间谐波分析.中国电机工程学报, 2005, 25 (21): 87-91
    [99]卿柏元,滕召胜,高云鹏,等.基于Nuttall窗双峰插值FFT的高精度电力谐波分析方法.中国电机工程学报, 2008, 28 (2): 48-52
    [100] Agrez D. Weighted multipoint interpolated DFT to improve amplitude estimation of multifrequency signal. IEEE Transactions on Instrumentation and Measurement, 2002, 51 (2): 287-29
    [101]吴静,赵伟.一种用于分析电网谐波的多谱线插值算法.中国电机工程学报, 2006, 26 (8): 55-60
    [102] Belega D, Dallet D. Frequency estimation via weighted multipoint interpolated DFT. Science, IET Measurement & Technology, 2008, 2 (1): 1-8
    [103] Fusheng Z, Zhongxing G, Wei Y. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system. IEEE Transactions on Power Delivery, 2001, 16 (2): 160-164
    [104]丁康,谢明.提高FFT和谱分析速度及精度的方法.重庆大学学报:自然科学版, 1992, 15 (2): 51-57
    [105]丁康,江利旗.离散频谱的能量重心校正法.振动工程学报, 2001, 14 (3): 354-358
    [106]丁康,罗江凯.离散频谱时移相位差校正法.应用数学和力学, 2002, 23 (7): 729-735.
    [107]朱小勇,丁康.离散频谱校正方法的综合比较.信号处理, 2001, 17 (1): 91-97
    [108]柴旭峥,文习山,关根志,等.一种高精度的电力系统谐波分析算法.中国电机工程学报, 2003, 23 (9): 67-70
    [109]刘敏,王克英.基于FFT和神经网络的高精度谐波分析.继电器, 2007, 35 (2): 40-44
    [110]向东阳,王公宝,马伟明,等.基于FFT和神经网络的非整数次谐波检测方法.中国电机工程学报, 2005, 25 (9): 35-39
    [111] JunZhe Y, ChihWen L. A new family of measurement technique for tracking voltage phasor, local system frequency, harmonics and DC offset. In: Power Engineering Society Summer Meeting, 2000, 1327-1332
    [112]薛蕙,杨仁刚.基于FFT的高精度谐波检测算法.中国电机工程学报, 2002, 22 (12): 106-110
    [113]李庚银,宁宇.快速傅里叶变换的两种改进算法.电力系统自动化, 1997, 21 (12): 37-40
    [114]刘进明,应怀樵.频率在FFT谱上位置对加窗泄漏的影响.应用力学学报, 1998, 15 (2): 25-31
    [115]李圣清,朱英浩,周有庆,等.电网谐波检测方法的综述.高电压技术, 2004, 30 (3): 39-42
    [116]张俊敏,田微.基于瞬时无功功率理论谐波检测方法的研究.电力系统保护与控制, 2008, 36 (18): 33-36
    [117]李占友,潘蕾.基于瞬时无功功率理论的电网谐波电流检测方法仿真研究.自动化技术与应用, 2008, 27 (7): 83-86
    [118]王小华,何怡刚.一种新的基于神经网络的高精度电力系统谐波分析算法.电网技术, 2005, 29 (3): 72-75
    [119] Srinivasan D, Ng W, Liew A. Neural-network-based signature recognition for harmonic source identification. IEEE Transactions on Power Delivery, 2006, 21 (1): 398
    [120]杜天军,雷勇.基于混叠补偿小波变换的电力系统谐波检测方法.中国电机工程学报, 2005, 25 (3): 54-59
    [121] Zheng T, Makram E, Girgis A. Power system transient and harmonic studies using wavelet transform. IEEE Transactions on Power Delivery, 1999, 14 (4): 1461-1468
    [122]李涛,何怡刚.基于支持向量机与神经网络的间谐波测量混合算法.高电压技术, 2008, 34(8): 1710-1714
    [123]张旭东,陆明泉.离散随机信号处理.北京:清华大学出版社, 2005
    [124] Lobos T, Leonowicz Z, Rezmer J, et al. High-resolution spectrum-estimation methods for signal analysis in power systems. IEEE Transactions on Instrumentation and Measurement, 2006, 55 (1): 219-225
    [125] Bracale A, Carpinelli G, Lauria D, et al. On some spectrum estimation methods for analysis of nonstationary signals in power systems. Part I. Theoretical aspects. In: Harmonics and Quality of Power, 2004, 260-265
    [126] Tufts D, Kumaresan R. Singular value decomposition and improved frequency estimation using linear prediction. IEEE Transactions on Acoustics, Speech and Signal Processing, 1982, 30 (4): 671-675
    [127]叶中付.一种快速TLS-ESPRIT算法.信号处理, 1998, 14 (2): 146-149
    [128] Lobos T, Leonowicz Z, Rezmer J. Harmonics and interharmonics estimation using advanced signal processing methods. In: Proceedings Ninth International Conference on Harmonics and Quality of Power, 2000, 335-340
    [129]焦新涛,丁康.加窗频谱分析的恢复系数及其求法.汕头大学学报:自然科学版, 2003, 18 (3): 26-30
    [130]陈奎孚,张森文.对称窗函数的幅值谱特性.农业工程学报, 1999, 15 (1): 36-40
    [131] Liguori C, Paolillo A, Pignotti A. Estimation of signal parameters in the frequency domain in the presence of harmonic interference: a comparative analysis. IEEE Transactions on Instrumentation and Measurement, 2006, 55 (2): 562-569
    [132] Pan W, Qian YS, Zhou E. An improved interpolated FFT algorithm and its application in power harmonics measurement. In: 1994 Proceedings of the IEEE International Conference on Industrial Technology, 1994, 273-277
    [133] Wu J, Zhao W. A simple interpolation algorithm for measuring multi-frequency signal based on DFT. Measurement, 2009, 42 (2): 322-327
    [134] Qian H, Zhao RX, Chen T. Interharmonics analysis based on interpolating windowed FFT algorithm. IEEE Transactions on Power Delivery, 2007, 22 (2): 1064-1069
    [135]丁康,张晓飞.频谱校正理论的发展.振动工程学报, 2000, 13 (1): 14-32
    [136] Subjak JJ, McQuilkin J. Harmonics-causes, effects, measurements, and analysis: an update. IEEE Transactions on Industry Applications, 1990, 26 (6): 1034-1042
    [137]罗德凌,唐朝晖.电力系统谐波检测方法的研究现状及其发展.国外电子测量技术, 2006, 25 (4): 5-8
    [138]李燕青,陈志业.电力系统谐波抑制技术.华北电力大学学报, 2001, 28 (4): 19-22
    [139] Filipski P, Labaj P. Evaluation of reactive power meters in the presence of highharmonic distortion. IEEE Transactions on Power Delivery, 1992, 7 (4): 1793-1799
    [140] Phipps J, Nelson J, Sen P, et al. Power quality and harmonic distortion ondistribution systems. IEEE Transactions on Industry Applications, 1994, 30 (2): 476-484
    [141] Liguori C, Paolillo A, Pignotti A. An intelligent FFT analyzer with harmonic interference effect correction and uncertainty evaluation. IEEE Transactions on Instrumentation and Measurement, 2004, 53 (4): 1125-1131
    [142] Reljin I, Reljin B, Papic V, et al. New window functions generated by means of time convolution-spectral leakage error. In: Electrotechnical Conference, Mediterranean, 1998, 878-881
    [143]黄纯,江亚群.谐波分析的加窗插值改进算法.中国电机工程学报, 2005, 25 (15): 26-32
    [144]丁天昌.梯形窗函数性能分析.东北重型机械学院学报, 1990, 14 (2): 20-25
    [145]周辉.线性调频信号的时域加权技术.指挥技术学院学报, 1994, 5 (1): 21-29
    [146]张维玺.梯形窗函数应用研究.四川工业学院学报, 1997, 16 (4): 60-64
    [147] Chang IC, Xu J, Wo D. Bandpass response of collinear beam acousto-optic tunable filters. In: Ultrasonics Symposium 1997 Proceedings, 1997, 745-748
    [148] Muller-Weinfurtner S. Optimum Nyquist windowing in OFDM receivers. IEEE Transactions on Communications, 2001, 49 (3): 417-420
    [149]陈向群.电能计量技能考核培训教材.北京:中国电力出版社, 2003
    [150]柴旭峥,关根志. tanδ高准确度测量的加权插值FFT算法.高电压技术, 2003, 29 (2): 32-33
    [151]徐志钮,律方成,李和明.加Blackman-Harris窗插值算法仿真介损角测量.高电压技术, 2007, 33 (3): 104-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700