高速铁路桥梁桩基础变形性状试验与工后沉降研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路高速度、高舒适度、高安全性和高密度连续运营的特点,要求轨道结构具有持久稳定的高平顺性,因而对工后沉降和差异沉降提出十分严格的要求。桥梁在整个线路中占的比重很大,有的占到线路总长80%以上,且几乎都采用桩基础。因此桩基工后沉降控制成为了高速铁路设计和施工最为关键的技术之一。但是,目前桥梁基础工后沉降的研究较少,积累的资料不多,计算理论还不成熟,研究滞后于工程实践的需要。面对当前方兴未艾高速铁路建设,确定合理的铺轨时间、保障工后沉降在规定限值内是一项十分重要的工作,因而深入开展桥梁基础工后沉降机理和预测方法研究具有重要的理论意义和工程实用价值。
     本文针对高速铁路桥梁桩基长期沉降变形观测方法、桩基沉降发展规律、工后沉降产生机理、桩基(长期)工后沉降计算方法、预测理论和满足桥梁基础工后沉降限值的合理辅轨时间等重要问题,应用现场测试、室内试验和理论分析相结合的方法,进行了系统深入地研究。主要的工作和成果如下:
     (1)编制了武广高速铁路、京沪高速铁路桥梁桩基沉降变形观测方案,通过研究和实践提出了桥梁基础变形沉降监测的具体实施技术,包括基本要求、技术标准、测点布置方法、基点复测、水准路线图、桥墩基础观测系统整体布置方法和保障获得各种可靠监测数据的具体措施。现场试验研究表明变形观测方法行之有效,观测元件和设备可靠,有良好的推广价值。
     (2)提出了精密水准联合静力水准监测桥梁桩基沉降的方法,并在武广高速铁路和京沪高速铁路典型试验工点得到成功应用。获得了翔实可靠的高速铁路桥梁桩基长期沉降数据、桩身压缩变形数据。基于此揭示了高速铁路桥梁桩基沉降发展规律,桩身轴力、桩侧摩阻力随工况(荷载)的变化规律,探讨了高速铁路桥梁桩基沉降的机理。
     (3)针对京沪高速铁路典型软土区长大桩基特点,提出了沉降计联合应变计监测桥梁桩基桩底压缩层变形的方法,研究了长大桩桩底压缩层沉降计的安装埋设工艺,为测试桩底压缩层变形提供一种可靠的技术方法。在国内外首次于现场获取了大量长大桩桩底土层压缩变形数据,揭示了深厚软土地段长大桩桩底土层压缩变形随荷载、时间的发展规律。
     (4)通过室内蠕变试验获取了京沪试验工点长大桩桩底试验土样在各级荷载作用下的应力-应变-时间关系曲线。研制了蠕变参数反演程序(CPIP),对比分析表明Schiffman粘弹性模型能较好地描述桩底土层的变形特性。
     (5)基于Schiffman模型,建立了多级加载情况下单面和双面透水边界多层粘弹性地基一维固结方程,推导了桩底压缩层在多级加载作用下的有效应力和沉降的计算公式。
     (6)改进了桥梁群桩沉降计算“三维复合分析方法Ⅰ”使其能模拟高速铁路桥梁桩基实际的受荷情况和考虑桩底压缩层的蠕变特性。编写了相应计算程序PG3DSII,对京沪高速铁路桥梁桩基沉降的计算结果与现场实测值的对比分析表明,该方法能提高桩基长期沉降的计算精度。
     (7)基于铺轨前桩基沉降观测值与PG3DSII计算程序,运用坐标轮换法分组迭代反演桩基底土层主要参数,编制了桩底土层参数反演计算程序PBAP,提出了基于反演参数的桥梁桩基长期沉降计算方法。对比分析表明,该方法计算的长大桩基沉降误差小,比基于室内土工参数计算的沉降更为“真实”可靠。
     (8)提出了计算高速铁路桥梁桩基工后沉降和满足桥梁桩基工后沉降限值所需最短休工时间的计算方法,进而提出了最佳铺轨时间的确定方法,研制了相应的计算程序PTLT。可为满足桥梁基础工后沉降限值的合理辅轨时间的确定提供直接参考。
     (9)通过对常用预测模型预测效果的评价指标分析,指出了客运专线铁路无砟轨道铺设条件评估技术指南中评价预测模型合理性仅局限于相关系数指标的不足,建议引入均方误差MSE、平均绝对误差MAE和平均绝对百分表误差MAPE指标进行综合评价,并提出了这些评价指标的参考值。
     (10)提出了加权组合预测模型进行高速铁路桥梁工后沉降预测的方法,研制了桥梁桩基沉降加权组合预测程序BriFSCF。通过多个实例验证表明,最小二乘准则下最优组合预测法效果较好,可作为的预测优选模型。研究成果可为客运专线铁路无砟轨道铺设条件评估技术指南的修订、完善提供重要依据。
Enduring stability and smoothness of track are very important for high-speed railway due to the high level of speed, comfort, security and contiuous operation, consequently strict settlement after acceptance and differential settlement requirements are proposed. Bridge possesses a significant proportion in the whole line, sometimes larger than 80%, most of which adopt pile foundation. As a result, settlement after acceptance controlling of pile foundation becomes a key technology in design and construction of high-speed railway. Unfortunately, research on settlement after acceptance of pile foundation and relative materials are insufficient, meanwhile, calculation theory remains immature and lagged. Considerring the vigorous construction of high-speed railway, further study on the mechanism and prediction method of settlement after acceptance is of theoretical and practical significance.
     Aiming at the observation method and development law of long-term settlement of pile foundation, mechanism of the settlement after acceptance, calculation and prediction means, as well as determination of reasonable time for laying tracks which satisfing the settlement after acceptance threshold, field tests, laboratory experiments and theoretical analysis are adopted systematically in this research. Following are some main issues and achievements:
     (1)Bridge foundation settlement monitoring schemes of Wuhan-Guangzhou and Beijing-Shanghai high speed railway were laid out respectively. The specific implementing technologies of pile foundation deformation monitoring such as the basic requirements, the technical standards, layout of benchmark, re-observation of base point, the leveling line, overall layout of deformation monitoring system and specific measures to obtain reliable field data were proposed through research and practice. Field test results showed that the monitoring method for deformation was effective and the components and instruments were reliable, thus it is worth promoting.
     (2)The combined monitoring method of precise leveling and hydrostatic leveling was proposed to observe the settlement of bridge pile foundation, which was successfully applied in the typical section of the Wuhan-Guangzhou high-speed railway and the Beijing-Shanghai high-speed railway. Based on reliable settlement and compression data of piles, the law of pile foundation settlement and the axial force, skin friction of pile varying with load were put forward, subsequently the settlement mechanism was explained.
     (3)Considering location of long and large pile foundation on the soft clay on the Beijing-Shanghai high-speed railway, the joint monitoring method of the settlement gauge and strain gauge was firstly proposed to observe the compression of soil layer under pile foundation. Installing technique of settlement gauge was studied and a reliable technical method for monitoring the thickness of compressible soil layer beneath pile foundation was presented. Based on lots of compression data, the development law of compression of soil layer varying with load and time were illustrated
     (4)The stress-strain-time curves of soil samples under different load, beneath the long and large pile foundation of the typical section on the Beijing-Shanghai high-speed railway, were obtained through creep test. CPIP, a computer program for creep parameter back-analysis, was developed. The Schiffman viscoelastic model, identified by CPIP, fit the deformation characteristic of soil layer better.
     (5)By using the Schiffman model, one-dimensional consolidation equation of multi-layered soil was established with single drainage and double drainage under multilevel loading. Moreover, the formulas,used to calculate effective stress and settlement,were derived.
     (6) Three-dimensional composite analysis methodⅠof the bridge group piles was improved to simulate actual load conditions of pile foundation and to take creep characteristics of soil layer beneath the piles into account. A corresponding program called PG3DSⅡwas developed. Comparison between calculation and measured data of settlement of pile foundation on Beijing-Shanghai high-speed railway indicated that the method could effectively improve the calculation precision of long-term settlement of pile foundation.
     (7)Based on the pile foundation settlement of field test and the programme PG3DSⅡthe main parameters of soil layer were iterated back-analyzed by using coordinate alternation method, and the calculation programe for back-analysis PBAP was developed. Long-term settlement calculation method, which was based on back-analysis results, was presented. Research showed that it was more reliable and accurate than calculation based on lab test.
     (8)The calculating methods for the settlement after acceptance of pile foundation and the shortest intermittent time to meet the settlement after acceptance threshold were proposed, subsequently the method of determining the reasonable time for laying tracks was presented. In order to improve computational efficiency, the corresponding program called PTLT was developed, which could provide reference in determination of the reasonable time for laying tracks.
     (9)Through evaluation index analysis, the inadequacy that the expedience evaluation of prediction model was limited to the correlation coefficient index in current guide was pointed out. It was proposed that mean-square error, mean absolute percentage error and mean absolute error should be also introduced as evaluation indexes, furthermore, corresponding reference values were recommended.
     (10)Weighted combination model for settlement after acceptance prediction of the high-speed railway bridge pile foudation was proposed, based on which the corresponding program named BriFSCF was developed. It was verified that the least-squares criterion optimal combination forecast method should be regarded as the preferred model for its better prediction. This achievement could provide significant references for guide revising.
引文
[1]TB10621-2009高速铁路设计规范[S].北京:中国铁道出版社,2009.
    [2]张定,陈竹昌,姚笑青.桩的施工方法对桩基沉降的影响[J].同济大学学报,1999,27(6):723-727.
    [3]王凤池,朱浮声.基础长宽比对压缩层深度的影响[J].沈阳建筑大学学报(自然科学版),2006,22(1):57-61.
    [4]铁建设[2006]15号.客运专线铁路无砟轨道铺设条件评估技术指南[S].北京:中国铁道出版社,2006.
    [5]《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995.13-156.
    [6]O'Nell M W,Hawkins R S,Mahar L J.Load transfermechanisms in pile and pile groups.J.GeotechnicalEngineering,ASCE,1982,108(12):1605-1623.
    [7]刘金砺,黄强,李华等.竖向荷载下群桩变形性状及沉降计算[J].岩土工程学报,1995,17(6):1-13.
    [8]王浩,周健,邓志辉.桩-土-承台共同作用的模型试验研究[J]岩土工程学报,2006,28(10),1253-1257.
    [9]张鹤年,汤劲松,何立明.桩基础非线性工作性状的室内模型试验分析[J]岩土工程技术,2005.,19(2),87-92.
    [10]张武.高层建筑桩筏基础模型试验研究.[博士学位论文].北京:中国建筑科学研究院,2002.
    [11]刘春波,李晓红,王成.粘土中超长单桩的模型试验研究[J].地下空间与工程学,2005,1(7):1118-1121.
    [12]叶真华,周健,唐世栋.粘土中不同桩端条件下桩承载性状的模型试验[J].同济大学学报(自然科学版),2009,37(6):732-737.
    [13]丁佩民,肖志斌.松砂中大型静压沉桩模型试验研究桩基挤土加密效应[J].工业建筑,2003,33(3):44-48.
    [14]叶琼瑶,黄绍铿.软岩嵌岩桩的模型试验研究[J].岩石力学与工程学报,2004,23(03):461-461.
    [15]熊智彪,王启云,谷淡平.红砂岩嵌岩桩模型试验研究[J].建筑结构,2010(4):91-95.
    [16]江浩,汪稔,吕颖慧,孟庆山.钙质砂中模型桩的试验研究[J].岩土力学,2010,31(3):780-784.
    [17]张述涛,李镜培.成层地基中静压桩挤土效应模型试验研究[J].地下空间与工程学报2009,5(2):1557-1561.
    [18]周淑芬,匡虹.桥长群桩竖向承载群桩效应模型试验研究[J].延边大学学报:自然科学版,2009,35(2):171-173.
    [19]陈志坚,刘艳军.超长灌注桩对桩周土挤密作用的模型试验研究[J].岩土力学,2008,29(12):3277-3281.
    [20]刘汉龙,谭慧明,彭劫等.大型桩基模型试验系统的开发[J].岩土工程学报,2009,31(3):452—457.
    [21]孔纲强,杨庆,郑鹏一,栾茂田.考虑时间效应的群桩负摩阻力模型试验研究[J].岩土工程学报,2009,31(12):1913-1919.
    [22]张建新,鹿群,吴东云,孙世光.基于模型试验的静压群桩引起的土体变形分析[J].岩土力学,2010,31(4):1243-1246.
    [23]江杰,黄茂.重复加卸载下桩筏基础沉降分析与离心模型试验[J].岩土工程学报,2009,31(12):1811-1817.
    [24]王年香,章为民.超大型群桩基础承载特性离心模型试验研究[J].世界桥梁,2006(3):45-48.
    [25]唐飞.桥梁桩基承载特性的离心模型试验研究.[硕士学位论文],长安,长安大学,2006.
    [26]徐亚利,刘增.黄土地基中大直径超长群桩基础受力特性的模型实验研究[J]实验力学,2010,25(6):696-703.
    [27]Bogard D.,Matlock H..A model study of axially loaded piles including pore pressure measurements.Report to the American Petroleum Insititute.The University of Texas, Austin, TX,1979.
    [28]Grosh J.J.,Resse L.C..Field tests of small-scale pile segments in a soft clay deposit under repeated axial loading.Proceedings,12th Annual Offshore Technology Conference,Houston,Paper No.3869,1980.
    [29]Earth Technology Coproration.Foundamental aspects of frictional pile capacity in soft clay.Report to the Civil Engineering Depatment, Louiisiana State University, Baton Rouge, LA,1983.
    [30]R. P. L. Mcanoy, A. C. Cashman.Cyclic tensile testing of a pile in glacial till."近海桩基工程数值计算法”国际会议论文集,1982.
    [31]Poulos.Influence of cyclic loading on axial pile response.'近海桩基工程数值计算法"国际会议论文集,1982.
    [32]Hudson Matlock,Lino cheang.A laboratory study of axially loading piles groups including pore pressure measurements.Boss'85.
    [33]Chan S.,Hanna T..Repeated loading on single piles in sand. ASCE,1980, GT2
    [34]Al-Douri R.H.,Poulos H.G..Predicted and observed cyclic performance of piles in calcareous sand.Journal of Geotechnical Engineering,ASCE,1995, 121(1):1-16.
    [35]De Rosa M.A.,Maurizi M.J..Dynamic analysis of multi step piles on Pasternak soil subjected to axial tip forces.Journal of Sound and Vibration, 1999,219(5):771-783.
    [36]Lehane B.M., Jardine R.J., McCabe B.A..One-way axial cyclic tension loading of driven piles in clay.BGA International Conference on Foundations, Innovations, Observations, Design and Practice,2003,493-505.
    [37]Ayse Yiiksel, Yes im C elikoglu, Esin C evik,et al.Jet scour around vertical piles and pile groups.Ocean Engineering,2005,32(3-4):349-362.
    [38]徐和,陈竹昌,任陈宝.在轴向循环荷载作用下砂土中模型桩的试验研究.岩土工程学报,1989,11(4):64-71.
    [39]陈竹昌.轴向循环荷载下确定粘土中桩承载力的方法.海洋工程,1990.
    [40]Yingcai Han,Novak M..Dynamic behavior of single piles under strong harmonic excitation.Canadian Geotechnical Journal,1988,25(3):523-534.
    [41]Yingcai Han, Novak M..Nonlinear vibration of single piles under vertical harmonic excitation.Proceeding of third International Conference on the Application of Stress-wave Theory to Piles.Ottawa,1988,399-408.
    [42]李席珍.动力机器桩基础的振动计算.地基基础工程,1999,9(4):38-47.
    [43]刘纯康.桩的竖向刚度计算方法.建筑结构,1996,17(12):23-26.
    [44]彭雄志.轴向循环荷载作用下桩的动力特性研究:[博士学位论文].成都:西南交通大学,2000.
    [45]王建华,冯士伦.桩土相互作用的振动台试验研究.岩土工程学报,2004,26(5):616-618.
    [46]徐和,陈竹昌,任陈宝.在轴向循环荷载作用下砂土中模型桩的试验研究[J].岩土工程学报,1989,11(4):64-71.
    [47]陈永福.砂土中桩在低频轴向动力荷载作用下的特性[J].长沙交通学院学报,1992,8(4):74-78.
    [48]陈竹昌,徐和.土类对轴向循环荷载下桩性状的影响[J].同济大学学报,1989,17(3):329-336.
    [49]黄雨,柏炯,周国鸣,黄清.单向循环荷载作用下饱和砂土中单桩沉降模型试 验研究[J].岩土工程学报,2009,31(9):1440-1444.
    [50]朱斌,任宇,陈仁朋.竖向下压循环荷载作用下单桩承载力及累积沉降特性模型试验研究[J].岩土工程学报,2009,31(2):186-193.
    [51]袁春辉,余云燕,鲍亦兴.桩底土与桩相互作用的模型试验研究[J].兰州交通大学学报,2010,29(1):106-111.
    [52]曾友金,章为民,王年香,郑澄锋.桩-土相互作用影响的模型试验研究[J].岩土力学,2003,24(增刊):674-680.
    [53]蒋泽中,谢涛.超大群桩基桩竖向承载力试验研究[J].四川建筑科学研究2003,29(1):47-50.
    [54]周东,杨荣才,彭海华,王业田.钻孔灌注桩桩底后压浆技术现场试验研究[J].广西大学学报,自然科学版,2004,29(4):331-33.
    [55]蔡华炳.软土地区桥梁桩基静载试验研究[J].岩土工程界,2005,8(3):27-29.
    [56]邱喜,尹崇清.大直径嵌岩桩承载特性的试验研究[J].铁道建筑,2008(12):60-63.
    [57]聂如松,冷伍明,李箐,杨奇.东江大桥嵌岩桩承载性能试验研究[J].岩土工程学报,2008,30(91):1410-1416.
    [58]傅长风,冷伍明,岳健,聂如松.滑坡体上桩基承载力的自平衡测试[J].土工基础,2010,24(4):99-102.
    [59]Kjell Karlsrud Torgrjr Haugen.Behavior of piles in clay under cyclic loading on the behavior of a tension pile. Offshore Technology Conference,1980,otc 387.
    [60]Alain Puech,Jean-Francois Jezequel.The effects of long time cyclic loadings on the behavior of a tension pile.Offshore Technology Conference,1980,otc 387.
    [61]Briaud J L,Felio,Guy Y.Cyclic Axial loads on piles:Analysis of existing data.Canadian Geotechnical Journal,1986,23:362-371.
    [62]冷伍明,律文田,谢维鎏,蔡华炳.基桩现场静动载试验技术研究[J].岩土工程学报,2004,26(5):619-622.
    [63]律文田,冷伍明,王永和.铁路桥梁梁墩基础体系动力测试分析[J].振动与冲击,2005,24(3):114-116.
    [64]律文田,王永和,冷伍明.预制静压桩静动载现场试验分析[J].岩土力学,2005,26(2):251-255.
    [65]律文田.静动荷载作用下铁路桥梁桩基的动力特性研究[博士学位论文].长沙:中南大学,2005.
    [66]聂如松,冷伍明,邓宗伟,杨奇.长期循环荷载作用下管桩侧阻力试验研究[J].桥梁建设,2007(3):20-23.
    [67]杨龙才,郭庆海.速铁路桥桩在轴向循环荷载长期作用下的承载和变形特性试验研究[J].岩石力学与工程学报,2005,24(13),2363-2368.
    [68]张定,陈竹昌,姚笑青.桩的施工方法对桩基沉降的影响[J].同济大学学报,1999,27(6):723-727.
    [69]戴荣良,陈晖,喻云岩.上海高层建筑桩基土类型特性和沉降分析[J].岩土工程学报,2001,23(5):627-630.
    [70]张松岩.秦沈客运专线桥梁桩基工后沉降计算方法探讨[硕士学位论文].成都:西南交通大学,2002.
    [71]马莲从.铁路桥梁桩基工后沉降分析与计算[硕士学位论文].成都:西南交通大学,2006.
    [72]周红波,陈竹昌.上海软土地区打入桩基长期沉降性状研究[J].岩土力学,2007,28(9):1856-1860.
    [73]周红波.高层建筑钻孔桩基长期沉降特性分析[J].建筑技术,2007,38(3):183-185.
    [74]饶波.高速铁路桥梁桩基础沉降分析[硕士学位论文].长沙:中南大学,2004.
    [75]邹丹.基于荷载传递法的桩基沉降计算方法研究[硕士学位论文].长沙:湖南大学,2005.
    [76]吴麟,袁建新.桩基蠕变效应的计算分析[J].岩土力学,1988,9(4):41-49.
    [77]安关峰.桩基沉降的时效分析[J].地下空间,2000,20(6):86-91.
    [78]张松岩.秦沈客运专线桥梁桩基工后沉降计算方法探讨[硕士学位论文].成都:西南交通大学,2002.
    [79]张松岩,胡德贵,罗书学.群桩工后沉降计算探讨[J].铁道勘察,2004(6):15-17.
    [80]胡德贵,轴向荷载作用下群桩基础的沉降研究[硕士学位论文].成都:西南交通大学,2001.
    [81]胡德贵,罗书学,赵善锐.群桩基础工后沉降计算方法研究[J].交通运输工程与信息学报2004,3(2):48-52.
    [82]王非.高层建筑桩基础荷载传递规律与长期沉降变形研究[硕士学位论文].南京:东南大学,2006.
    [83]周健,曾庆有.由桩底土蠕变引起的桩基沉降简易计算方法[J].地下空间,2004(3):421-422.
    [84]曾庆有,周健,屈俊童.考虑应力应变效应的桩基长期沉降计算方法[J].岩土力学,2005,26(8):1283-1287.
    [85]陆建飞,王建华,沈为平.考虑固结和流变的群桩的积分方程解法[J].岩土工程学报,2000,22(6):650-653.
    [86]祝彦知.桩基础长期沉降与变形的粘弹性分析理论及应用[R].上海:同济大学,2006.
    [87]赵春彦.静载和循环荷载作用下软土地基中桩基长期沉降研究[博士学位论文].上海:同济大学,2008.
    [88]韩福才.软土地基上桩筏基础在竖向荷载作用下的时间效应[硕士学位论文].天津:天津大学,2005.
    [89]周红波.基于土体固结流变的桩基长期沉降数值模拟[J].工业建筑.2006,36(11):76-822.
    [90]程泽海,凌道盛,陈云敏.桩筏基础在竖向荷载作用下的时间效应[J].土木工程学报,2004,37(2):73-77.
    [91]林心,房营光.软土地基上群桩基础沉降的流变效应研究[J].建筑监督检测与造价,2008,1(10):8-11.
    [92]栾茂田,崔春义,杨庆.考虑流变与固结效应的桩筏基础-地基共同作用分析[J].岩土力学,2008,29(2):289-295.
    [93]John R. Booker. Harry G. Poulos Analysis of Creep Settlement of Pile Foundations Journal of the Geotechnical Engineering Division, Vol.102, No. 1, January 1976,1-14.
    [94]John R. Booker. Harry G. Poulos. Time-settlement behaviour of piled raft foundations using infinite elements [J]. Computers and Geotechnics 2008,35:187-195.
    [95]Brown P T, Booker J R.Numerical analysis of rafts on visco-elastic media using eigenvector expansions [J].International Journal for Numerical and Analytical Methods in Geomechanics,1979,3(1):63-78.
    [96]Wei D G. Visco-elastic load transfer models for axially loaded piles[J]. International Journal for numerical and analytical methods in geomechanics, 2000,24:125-163.
    [97]Taylor, D.W., Merehant, W.A theory of clay consolidation accounting for secondary compression. J.of Mathematics and Physics,19(3),167-185.
    [98]Gibson R E, and Lo K Y. A theory of consolidation for soils exhibiting secondary compression.Acta Plytechnica scandinavica,1961,296
    [99]Lo,K.Y.Secondary compression of clays.ASCE,1961,87(SM4),61-87.
    [100]陈宗基.固结及次时间效应的单向问题[J].土木工程学报.1958,5(1):1-10.
    [101]门福录.粘土固结与次时间效应单维问题的近似解[J].水利学报,1963(1):44-53.
    [102]徐志英.考虑到土骨架蠕变的三向固结理论[J].水利学报,(4).
    [103]王盛源.变荷载下的粘弹性体一维固结问题[J].水利水运科学研究,1981(2):10-17.
    [104]王盛源.饱和多孔介质粘弹性理论[J].中国科学A辑,1989(7):739-748
    [105]王盛源.饱和粘性土主固结和次固结变形分析[J].岩土工程学报,1992,14(5):70-75.
    [106]赵维炳.广义Voigt模型模拟的饱水土体一维固结理论及其应用[J].岩土工程学报,1989,11(5):78-85.
    [107]Xie,K.H,Wang,K.H.&Zeng,GX,A study on 1-D consolidation of soil exhibiting rheological characteristics with impeded boundary Porc.2th ICSSE.1996(1):357-362.Najing.
    [108]Xie,K.H.,Guo,S.,Li,B.H.&Zeng,G.X.,A theory of consolidation for soils exhibiting rheological characteristics under cyclic loading. Proc, of the 9th Int.conf.on Computer Methods and Advances in Geomechanics. 1997(2):1053-1058.Wuhan.
    [109]王奎华,谢康和,曾国熙.双面半透水边界的一维粘弹性固结理论[J].岩土工程学报,1998,20(2):34-36.
    [110]蔡袁强,徐长节,袁海明.任意荷载下成层黏弹性地基的一维固结[J].应用数学和力学,2001,22(3):307-313.
    [111]蓝柳和.成层软粘土地基非线性流变固结性状研究[博士学位论文].杭州:浙江大学,2002.
    [112]李西斌.软土流变固结理论与试验研究[博士学位论文].杭州:浙江大学,2005.
    [113]李西斌,贾献林,谢康和.变荷载下软土一维流变固结解析理论[J].岩土力学.2006,27(Supp)140-145.
    [114]夏森炜.循环荷载作用下饱和软粘土一维固结性状研究.[硕士学位论文].杭州:浙江大学,2005.
    [115]魏丽敏.软土路基双重非线性流-固耦合仿真分析与沉降预测研究[博士学位论文].长沙:中南大学,2005.
    [116]刘加才,赵维炳,宰金珉.双层黏弹性地基一维固结分析[J].岩土力学,2007,28(4):743-746.
    [117]杨林德等.岩土工程问题的反演理论与工程实践[M].北京:科学出版社 1996.
    [118]Karanagh,K,Clough,R.W Finite element application in the characterization of elastic solids[J].Int.J.solids structures,1971,7:11-13.
    [119]李立新,石程云.岩土工程位移反分析方法综述[J].沈阳建筑工程学院学报,1996,12(7):354-358.
    [120]刘勇健,李子生.岩土工程位移反分析的智能反演综述[J].地下空间.2004,24(1):84-89.
    [121]杨志法.有限元法图谱[M].北京:科学出版社1988.15-42.
    [122]孙钧,蒋树屏,袁勇.岩土力学反演问题的随机理论与方法[M].汕头:汕头大学出版社,1996.
    [123]刘怀恒,王芝银.软岩洞库稳定性监控及分析[J].西安矿业学院学报,1986.
    [124]Sakurai S,Takeuchi K.Back analysis of measured displacements of tunnels. Rock Mech Rock Eng 1983; 16:173-180.
    [125]Gens A,Ledesma A,Alonso EE. Estimation of parameters in geotechnical back analysis.2.Application to a tunnel excavation problem.Comput Geotech 1996; 18(1):29-46.
    [126]Gioda G,Locatelli L.Back analysis of the measurements performed during the excavation of a shallow tunnel in sand. Int J Numer Anal Meth Geomech 1999;23:1407-1425.
    [127]Lecampion B,Constantinescu A,Nguyen Minh D.Parameter identification for lined tunnels in viscoplastic medium.Int J NumerAnal Meth Geomech 2002;26:1191-1211.
    [128]董学晟,李迪,叶查贵.新滩滑坡位移反分析[J].岩石力学与工程学报.11(1):44-52.
    [129]吕培印,张家良,王芝银.软土深基坑工程位移反分析及工程应用[J].辽宁工学院学报,1997,17(3):36-52.
    [130]Finno RJ,Calvello M.Supported excavations:observational method and inverse modeling Geotech Geoenviron Eng 2005; 131 (7):826-836.
    [131]C.Reche,S.Levasseur, R.Finno.Inverse analysis techniques for parameter identification in simulation of excavation support systems[J] Computers and Geotechnics,2008 (35):331-345.
    [132]Arai K,Ohta H,Kojima K.Application of back analysis to several test embankments on soft clay deposits.Soil Found 1986;26(2):60-72.
    [133]Finno RJ, Chung CK.Stress-strain-strength responses of compressible Chicago glacial clays.J Geotech Geoenviron Eng,ASCE 1992; 118(10): 1607-1625.
    [134]Honjo Y,Wen-Tsung L,Guha S.Inverse analysis of an embankmenton soft clay by extended Bayesian method.Int J Numer Anal Meth Geomech 1994;18:709-734.
    [135]Honjo Y,Wen-Tsung L,Guha S.Inverse analysis of an embankment on soft clay by extended Bayesian method.Int J Numer Anal Meth Geomech 1994;18:709-34.
    [136]周健,曾庆有.由桩底土蠕变引起的桩基沉降简易计算方法[J].地下空间,2004(3):421-422.
    [137]周健,闫东霄,贾敏才,等.某深水港土层固结系数反演及工后长期沉降预测[J].岩土力学,2008,29(5):1407—1410.
    [138]岳红宇,陈加付,王良国.一种高速公路软基沉降预测的反演计算方法[J].公路交通科技,2001,18(6):3-8.
    [139]谭昌明,徐日庆,周建.龚晓南软粘土路基沉降的一维固结反演与预测[J].中国公路学报.2002,15(4):14-17.
    [140]谭昌明,黄绍槟.软土地基沉降的二维非线性粘弹性反演与预测[J].岩土力学,2002,23(1):67-72.
    [141]李彬.软粘土地基沉降计算及其预测反演分析[硕士学位论文].西安:西安科技大学,2003.
    [142]吕庆,尚岳全,陈允法.高填方路堤粘弹性参数反演与工后沉降预测分析[J].岩石力学与工程学报,2005,24(7):1231-1235.
    [143]陈益峰,周创兵.基于正交设计的复杂坝基弹塑性力学参数反演[J].岩土力学,2002,23(4):450-455.
    [144]谭昌明,周建,黄广龙.多层软土地基沉降的分层迭代反演综合预测法[J].中国公路学报,2001,14(4):28-32
    [145]俞亚南,张仪萍,高庆丰.成层软土地基黏弹性参数反演及沉降预测[J].土木工程学报,2005,38(7):112-115.
    [146]史旦达,周健.考虑蠕变性状的港区软土地基参数反演和长期沉降预测[J].岩土力学.2009,30(3):746-750.
    [147]魏丽敏,何群,王永和.软土参数反分析方法及其在沉降预测中的应用[J].中国铁道科学,2007,28(4):1-6.
    [148]任铭宇,程健.软土地基路堤工后沉降时参反演和预测[J].中南公路工程,2006,31(4):47-52.
    [149].程健.软土地基路基工后沉降时参反演和预测[硕士学位论文].杭州:浙江大学,2005.
    [150]田明俊,周晶.岩土工程参数反演的一种新方法[J].岩石力学与工程学报,2005,24(9)1492-1497.
    [151]谢乔木.软土固结沉降反分析研究[硕士学位论文].南京.东南大学,2006.
    [152]曹文贵,李鹏,程哗.考虑时效的高填石路堤工后沉降有限元及反馈分析研究[J].岩土力学.2005(26)supp:175-179.
    [153]曹文贵,李鹏,程晔.高填石路堤蠕变本构模型及其参数反演分析与应用[J].岩土力学,2006,27(8):1299-1305.
    [154]李鹏.高填石路堤蠕变模型与参数反演分析及具应用研究[硕士学位论文].长沙:湖南大学,2005.
    [155]刘芙蓉.高层建筑基础沉降计算方法探讨及反演分析[硕士学位论文].东营:中国石油大学,2009.
    [156]D.T.Bergado,A.S.Enriquez.Inverse analysis of geotechnic parameters on improved soft Bangkok clay[J]. Journal of Geotechnical Engineering, 1992,118(7):1012-1030.
    [157]Yuzhen Yu, Bingyin Zhang, Huina Yuan. An intelligent displacement back-analysis method for earth-rockfill dams[J].Computers and Geotechnics 2007 (34):423-434.
    [158]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [159]赵国堂,马建林,彭声应,高速铁路CFG桩不同结构形式下地基沉降-时间发展规律的试验研究与预测[J].铁道建筑,2009(7):62-65.
    [160]乔世范,方理刚,刘宝琛.GM(1,1)模型与指数模型在基桩沉降预测中的应用[J].中国铁道科学,2005,26(3):53-55.
    [161]王志亮,郑明新.增长曲线模型在路基沉降预测中的应用研究[J].岩土力学,2004,25(6).902-904.
    [162]余闯,刘松玉.路堤沉降预测的Gompertz模型应用研究[J].岩土力学,2005,26(1):82-86.
    [163]宋宇鹏,徐贺文,孟伶俐.生长模型在地基沉降全过程预测中的应用[J].铁道建筑,2006(3),62-64.
    [164]肖治宇,陈昌富.软土路基沉降预测Richards模型方法[J].公路交通科技,2008,25(11):29-32.
    [165]邢黎峰,孙明高,王元军.生物生长的Richards模型[J].生物数学学报,1998,13(3):348-353.
    [166]王志亮.软基路堤沉降预测和计算[博士学位论文].南京:河海大学,2004.
    [167]蔡君君,王星华.基于灰色理论的桥梁群桩基础工后沉降预测[J].桥涵工程,2009(4):28-31.
    [168]张永清.桥梁墩台的沉降观测和沉降值的预测[J].西安公路交通大学学报,2001,20(1):61-63.
    [169]刘庆华.桩基础沉降预测分析[J].山西建筑,2006,32(21):107-108.
    [170]Bates J M, Granger C W J. Combination of forecasts [J].Operations Research Quarterly,1969,20(4):451-468.
    [171]唐小我,曾勇,曹长修.变权组合预测模型研究[J].预测,1993(3):46-49.
    [172]Lam KF, Mui H W, Yuen H K. A note on minimizing absolute percentage error in combined forecasts [J]. Computers&Operations,Research,2001, 28(11):1141-1147.
    [173]王应明.基于相关性的组合预测方法研究[J].预测,2002,21(2):58-627
    [174]陈华友.基于相关系数的优性组合预测模型研究[J]系统工程学报,2006,21(4):353-360.
    [175]孙李红,沈继红.基于相关系数的加权几何平均组合预测模型的性质[J].系统工程理论与实践,2009,29(9):84-91.
    [176]赵明华,刘建华,陈炳初.边坡变形及失稳的变权重组合预测模型[J].岩土力学,2007(10),28(Supp):553-557.
    [177]吴清海,李惠芳.变权组合模型在沉降预测中的应用[J].测绘科学技术学报,2009,26(2).118-124.
    [178]赵明华,刘煜.软土路基沉降变权重组合S型曲线预测方法研究[J].岩土力学,2005,26(9),1447-1443.
    [179]李秀珍,孔纪名你,王成华.最优加权组合模型在滑坡变形预测中的应用[J].自然灾害学报,2008,17(2):53-57.
    [180]徐进军,张民伟.几种动态测量传感器综述[J].测绘信息与工程,2005,30(2):42-44.
    [181]何庆成,方志雷.InSAR技术及其在沧州地面沉降监测中的应用[J].地学前缘,2006,13(1):179-184.
    [182]董玉森,GE Lin-lin等.基于差分雷达干涉测量的矿区地面沉降监测研究[J].武汉大学学报·信息科学,2007,32(10):888-891.[183]徐良,过静珺等.基于GPS(RTK)技术的虎门大桥位移实时监测和数据分析[J].工程勘察,2001(1):47-48.[184]李震.GPS-RTK测量技术在长大桥梁中的应用[J].铁道建筑,2008(11): 104-106.
    [185]黄俊卿,李新明.全站仪三角高程测量精度分析[J].现代测绘,2008,31(3):6-7.
    [186]于成浩,柯明,赵振堂.精密工程测量中全站仪三角高程精度分析[J].北京测绘,2006(3):26-28.
    [187]徐惠莲,张绍春.高层建筑沉降监测与观测数据综合分析[J].西安工程学院学报,1999,21(2):64-66.
    [188]韦寒波,高振林.北京某建筑地基的沉降监测与灰色预测[J].岩土工程界,2007,11(6):65-67.
    [189]陈建峰,花向红.用数字水准仪进行建筑物沉降监测与预报[J].测绘信息与工程,2006,31(6):31-33.
    [190]张永清.桥梁墩台的沉降观测和沉降值的预测[J].西安公路交通大学学报,2001,21(1):61-63.
    [191]黄腾,孙景领.地铁隧道结构沉降监测及分析[J].东南大学学报(自然科学版),2006,36(2):62-65.
    [192]符策飞.静力水准监测系统在牛路岭大坝的应用[J].大坝与安全,2006,41(2):41-42.
    [193]郭永东.静力水准在桥梁施工竖向位移监控中的应用[J].山西建筑,2008,34(20):310-311.
    [194]冷伍明,律文田等.软土地基桥梁桩基单桩动静载试验研究[R]长沙,中南大学,2003.
    [195]TB10002.5-2005.铁路桥涵地基和基础设计规范[S].北京:中国铁道出版社,2005.[196]TB10102-2004铁道工程土工试验规程[S].北京:中国铁道出版社,2004.[197]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑出版社,1999.[198]李广信.高等土力学[M].北京:清华大学出版社,2004.[199]蓝柳叶,成层软土地基非线性流变固结性状研究[博士学位论文].杭州:浙江大学,2002.[200]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2006.[201] Widder D V. The Laplace Transform. Princeton:Princeton University Press, 1946. [202] Zakian V. Numerical inversion of Laplace transform. Etron Lett,1969,5: 120-121. [203] Zakian V. Optimization of numerical inversion of Laplace transform.Etron Lett,1970,6:677-679.
    [204]Zakian V, Cannon D R. Least squares optimization of numerical inversion of Laplace transform. Etron Lett,1971,7:70-71.
    [205]Stehfest H. Numerical inversion of Lapalce transforms. Comet Acm,1970, 13:47-49.
    [206]Papoulis A. A new method of inversion of the Laplace transform. Q Appl Math,1956,14:405-414.
    [207]Bellman R, Kalaba R E, Lockett,I A. Numerical Inversion of The Laplace Transform. New York:Elsevier,1966.
    [208]Durbin F. Numerical inversion of Laplace transforms:an efficient improvement to Dubner and Abate's method, Comp J,1974,17:371-376.
    [209]Crump K S. Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation. J Asso Comp Mach,1976,23:89-96.
    [210]AL-Shuaibi A. A regularized method for the approximate inversion of Laplace transform. Approx Theor Appl,1997,13:58-66.
    [211]AL-Shuaibi A.On the Laplace transforms by the use of a regularized displacement operator. Inverse Problems,1997,13:1153-1160.
    [212]徐长节,蔡袁强,吴世明.任意荷载下成层弹性地基的一维固结[J].土木工程学报,1999,4(32):57-63.
    [213]王新辉,缪林昌,高健康等.Laplace变换解双层地基固结问题[J].岩土力学,2005,26(5):833-836.
    [214]冷伍明,魏丽敏,何群等高速铁路深厚软弱地基上桥梁基础合理形式及设计研究[R].长沙,长沙铁道学院,1998.
    [215]Poulos. Analysis of the settlement of pile groups. Geotechnique,18:449-470.
    [216]Poulos, H G. Davis, E H. Pile foundation analysis and design.New York:John Wiley and Sons.1980:71-108.
    [217]赵新铭,刘宁,张剑.岩土力学反分析的数值反演方法[J].水利水电科技进展,2003(2):55-58.
    [218]薛毅.最优化原理和方法[M]一北京:北京工业大学出版社,2005.
    [219]龚纯,王正林.精通matlab最优化计算[M].北京:电子工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700