考虑残余位移和土—结构相互作用的桥梁结构基于性能的抗震设计及评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在强震作用下,桥梁会因弹塑性变形而产生较大的残余位移,这就使得结构即使未发生倒塌破坏,也会因较大的残余位移而不能使用或修复。而土—结构相互作用的问题,由于地基土参数的不确定性和基础形式的多样性,一直以来都是桥梁抗震研究中的难点。因此,本文针对目前我国桥梁结构的抗震设计和性能评估方法中存在的不足,在总结和吸取以往国内外学者研究成果的基础上,以多自由度全桥结构和等效单墩模型为对象,就考虑残余位移影响的桥梁结构基于性能的抗震设计方法、考虑土—结构相互作用的桥梁结构抗震性能评估方法进行了系统的研究。主要研究工作如下:
     1.研究了土—结构相互作用对高柔桥墩弹塑性地震响应的影响,并对弹塑性反应谱进行了参数影响研究,从而建立了与《铁路工程抗震设计规范》相符的弹塑性反应谱。(1)建立了考虑地基柔性效应的高柔桥墩分析模型,研究了土—结构相互作用对高柔桥墩弹塑性地震响应的影响;(2)依据我国现行的《铁路工程抗震设计规范》,选取了四类场地的320条强震记录,系统地研究了地震动特性及恢复力模型动力参数对弹塑性反应谱的影响,进而为弹塑性反应谱的建立提供了指导依据;(3)建立了与《铁路工程抗震设计规范》相符的弹塑性加速度谱、弹塑性位移谱和残余位移谱,进而为考虑残余位移影响的桥梁结构基于性能的抗震设计方法的提供了设计谱依据。
     2.系统地研究了单自由度系统和多自由度桥梁结构的地震能量响应及其分配规律,从而建立了与《铁路工程抗震设计规范》相符的能量反应谱。(1)利用所选取的四类场地320条强震记录,采用非线性能量反应时程分析法,系统地研究了地震动特性及恢复力模型动力参数对单自由度系统地震能量响应及其分配规律的影响,为能量反应谱的建立提供了指导依据;(2)对考虑土—结构相互作用的客运专线双柱式桥墩进行了地震能量响应分析,研究了多自由度桥梁结构的地震能量响应及其分配规律;(3)建立了与我国现行的《铁路工程抗震设计规范》相符的地震总输入能量谱、滞回耗能谱等,进而为正规化累积耗能参数的研究以及桥墩结构基于能量的抗震验算方法提供了相应的谱依据。
     3.提出了考虑残余位移影响的桥梁结构基于性能的抗震设计方法,并改进了桥墩结构基于能量的抗震验算方法。(1)基于改进的Park-Ang双参数地震损伤评估模型,统计回归了四类场地的正规化累积耗能参数,得到了基于损伤性能指标的等效位移延性系数;在此基础上,以损伤指标作为性能指标,将等效位移延性系数、弹塑性位移谱和残余位移谱相结合,提出了考虑残余位移影响的桥梁结构基于性能的抗震设计方法,给出了具体的算例,并采用非线性时程分析法验证了本文所提出的抗震设计方法的可行性;(2)利用所建立的地震总输入能量谱和滞回耗能谱,对桥墩结构基于能量的抗震验算方法进行了改进,并将它应用于桥墩的设计实例中。
     4.针对我国的桥梁结构,提出了改进的简化能力谱法以及能够考虑土—结构相互作用的脆弱性分析方法。(1)建立了与我国现行的《铁路工程抗震设计规范》相符的弹塑性需求谱和强度折减系数谱,并结合ATC-40和FEMA356能力谱法的优点,提出了改进的简化能力谱法,并用客运专线双柱式桥墩工程实例检验了改进方法的计算精度;(2)以客运专线双柱式桥墩为研究对象,验证了将FEMA440考虑土—结构相互作用的能力谱法应用于我国桥梁工程抗震性能评估的可行性。(3)将FEMA440中考虑土—结构相互作用的能力谱法与结构脆弱性分析相结合,提出了综合考虑地基柔性效应、运动学效应和基础阻尼效应的桥梁结构脆弱性分析方法,并以此建立了城市高架桥的脆弱性曲线,进而与不考虑土—结构相互作用所得的计算结果进行了对比,验证了本文方法的优越性。
     5.改进了ATC-40和FEMA356中考虑多振型效应的非线性静力分析方法。在此基础上,将改进的非线性静力分析方法与结构脆弱性分析相结合,应用于考虑土—结构相互作用的高墩大跨桥梁结构的抗震性能评估中,研究了多振型效应对高墩大跨桥梁结构脆弱性分析的影响。
Residual displacement could be generated due to the elasto-plastic deformation of bridge subjected to strong ground motion. As a result, bridge will be out of commission or unrepairable even though the collapse of bridge doesn't happen. Morever, because uncertain foundation soil parameters and various foundation styles, problem about siol-structure interaction is the difficuty of seismic desigen study at all times. Consequently, according to the current shortages in the seismic design and evaluation for bridges, some important ploblems are systemically studied in this paper, including performance-based seismic design considering residual displacement, seismic evaluation method considering soil-structure interaction effects. The principle contents are as follows:
     1. Effect of soil-structure interaction on the elasto-platic seismic response of tall and slender pier is studied. Moreover, parametric study on elasto-platic response spectra is done in order to establish elasto-platic spectra which can be in accord with Seismic Design Code for Railway Engineering. (1) By establishing an analytical model considering flexiable foundation effects, nonlinear time history analysis is carried on to study the effects of soil-structure interaction on the elasto-plastic response of tall and slender pier. (2) According to the applicable Seismic Design Code for Railway Engineering,320 strong motion records of four sites are chosen. And parametric study on elasto-plastic response spectra is done by considering parameters of earthquake motion and restoring model. (3) Elasto-plastic acceleration spetra, elasto-plastic displacement spetra and residual displacement spectra are established in accord with Seismic Design Code for Railway Engineering. So, it can provide the design spectra for performance-based seismic design for bridge considering residual displacement.
     2. Seismic energy response and its distributions of SDOF system and MDOF bridges are systematically study. And energy response spectra are established in accord with Seismic Design Code for Railway Engineering. (1) Based on nonlinear energy response analysis,320 strong motions are used to study the effect of parameters of earthquake motion and restoring model on seismic energy response and its distributions of SDOF system. (2) Nonlinear energy response analysis is carried on to research seismic energy response and its distributions of a double-column pier of passenger dedicated line considering soil-structure interaction. (3) Seismic input energy spetra and dissipation energy spectra are established in accord with Seismic Design Code for Railway Engineering. So, it can provide energy response spectra data for normalized parameters of cumulative dissipation energy and seismic checking method based on energy index.
     3. Performance-based seismic design for bridge considering residual displacement is proposed. And seismic checking method based on energy index is improved. (1) Based on Park-Ang seismic damage model, normalized parameters of cumulative dissipation energy are statistically calculated. So, equivalent ductility coefficients in accord with damage indexes are obtained. Furthermore, based on damage index, performance-based seismic design for bridge considering residual displacement is proposed by associating equivalent ductility coefficients with elasto-plastic displacement spetra and residual displacement spectra. Meanwhile, specific examples are provided to show the detailed design procedures. And the feasibility of proposed seismic design is confirmed by the nonlinear time history analysis. (2) According to seismic input energy spetra and dissipation energy spectra, seismic checking method based on energy index is improved and applied in the checking calculation for the seismic design result.
     4. To be aimed at Chinese bridges, improved simplified capacity spectrum method and vulnerability analysis considering soil-structure interaction effects are proposed. (1) Elasto-plastic demand spetra and strength reduction factor spectra are established in accord with Seismic Design Code for Railway Engineering. So, improved simplified capacity spectrum method is proposed by combining with the merits of ATC-40 and FEMA356. Meanwhile, proposed method is applied in a double-column pier of passenger dedicated line to do accuracy checking. (2) Based on the capacity spectrum method (CSM) considering soil-structure interaction (SSI) in FEMA440, one double-column pier of passenger dedicated line is chosen to be subject investigated. And the practicability of applying CSM considering SSI in bridge seismic evaluation is certified. (3) By combining CSM considering SSI in FEMA440 with vulnerability analysis, a new bridge vulnerability analysis considering flexible foundation effects, kinematic effects and foundation damping effects is proposed and applied in the vulnerability analysis of viaduct. By comparing with the vulnerability analysis without considering soil-structure interaction, the superiority of proposed method is confirmed.
     5. Nonlinear static procedures (NSP) considering the multiple-modes effects in ATC-40 and FEMA356 is improved. Furthermore, by combing with vulnerability analysis, the improved NSP is applying in seismic evaluation for super high-rise pier considering soil-structure interaction effects. And effect of multiple-modes effects on vulnerability analysis for super high-rise is studied.
引文
[1.1]王克海.桥梁抗震研究[M].中国铁道出版社,2007.
    [1.2]J.P.Moehle. Displacement-based design of RC structures subjected to earthquakes[J]. Earthquake spectra,1992,8(3):403-427.
    [1.3]J.P. Moehle. Displacement-Based Seismic Design Criteria[C].11th WCEE, Paper No.2125, 1996.
    [1.4]T.Paulay, M. J.N.Priestley. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. John Wiley & Sons, New York,1992.
    [1.5]H.Bachmann, P.Linde and T.Wenk. Capacity Design and Nonlinear Dynamic Analysis of Earthquake Resistant Structures[C].10th European Conference on Earthquake Engineering, Duma (ed.), Balkema, Rotterdam,1995,11-20.
    [1.6]何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计[J].地震工程与工程振动,2000,20(2):31-38.
    [1.7]欧进萍,何政等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.
    [1.8]潘龙.基于推倒分析方法的桥梁结构地震损伤分析和性能设计[D].同济大学博士学位论文,2001.
    [1.9]YJ.Park, A.H-S.Ang. Seismic damage analysis of reinforced concrete buildings[J]. Journal of Structural Engineering,1985,112(2):102-109.
    [1.10]P Fajfar. Equivalent ductility factors, taking into account low-cycle fatigue[J]. Earthquake Engineering and Structural Dynamics,1992,21:837-848.
    [1.11]A Teran-Gilmore. Performance-based earthquake-resistant design of buildings using energy concepts[D]. Department of Civil Engineering, University of California at Berkeley,1996.
    [1.12]A.Kiyama. Earthquake Resistant Limit-State Design for Buildings[M]. University of Tokyo Press,1985.
    [1.13]V.V.Bertero. State-of-the-art Report on Design Criteria[C].11th WCEE, Paper No.2005,1996.
    [1.14]A.Kiyama. A Prospect for Future Earthquake Resistant Design[J]. Engineering Structures, 1997,20(4):447-451.
    [1.15]胡冗冗,王亚勇.基于瞬时输入能量的SDOF弹塑性结构最大位移反应分析[J].世界地震工程,2002,18(4):155-158,
    [1.16]肖明葵等.基于滞回耗能的抗震结构最大位移反应[J].重庆大学学报,2003,26(3):133-137.
    [1.17]Lieping Ye, Shunsuke Otani. Maximum seismic displacement of inelastic systems based on energy concept[J]. Earthquake Engineering and Structural Dynamics,1999,28:1483-1499.
    [1.18]V.V.Bertero. Tri-service manual methods. In Vision 2000, Part 2. Structural Engineers Association of California,1995.
    [1.19]Gupta B, Kunnath S K. Adaptive spectra-based pushover procedure for seismic evaluation of structures[J]. Earthquake Spectra,2000,16 (2):367-391.
    [1.20]Kilar V, Fajfar P. Simplified pushover analysis of asymmetric buildings[J]. Earthquake Engineering and Structure Dynamics,1997,26:233-249.
    [1.21]Fajfar P, Gaspersic P. Capacity spectrum method based on inelastic demand spectra[J]. Earthquake Engineering and Structure Dynamics,1999,28:979-993.
    [1.22]Joonam P, Barry G, Ann B and James C. Probabilistic decision analysis for seismic rehabilitation of a regional building system[C].13th WCEE, Paper No.2254,2004.
    [1.23]Omer O.ERBAY, Daniel P.Abrams. A metholodgy to assess seismic risk for populations of unreinforced masonry buildings[C].13th WCEE, Paper No.2445,2004.
    [1.24]Aslani H, Miranda E. Probabilistic response assessment for building-specific loss estimation [R]. PEER 2003/03, Berkeley, CA, USA:PEER, University of California,2003.
    [1.25]M.A.ERBERIK, A.S.ELNASHAI. Vulnerability analysis of flat slab structures[C].13th WCEE, Paper No.3102,2004.
    [1.26]Seiichiro F, Harumi Y. Seismic Performance level of buildings considering risk financing[C]. 13th WCEE, Paper No.41,2004.
    [1.27]Pierre M. et al. The European RISK-UE project:An advanced approach to earthquake risk scenarios[C].13th WCEE, Paper No.3329,2004.
    [1.28]Basoz N, Kiremidjian AS. Evaluation of bridge damage data from the Loma Prieta and Northridge[R]. CA earthquakes, Report No.127. Stanford:John A Blume Earthquake Engineering Center, Stanford University,1997.
    [1.29]Yamazaki F, Onishi J, Tayama S. Earthquake damage assessment of expressway structures in Japan[C]. Proceedings of Asian-Pacific Symposium on Structural Reliability and its Applications,1999.
    [2.1]谢旭.桥梁结构地震响应分析与抗震设计[M].人民交通出版社,2006.
    [2.2]N.M.Newmark, W.J.Hall. Seismic Design Criteria for Nuclear Reactor Facilities[C]. Proc.4th WCEE, Vol.2:37-50,1969.
    [2.3]抗震结构的延性谱[R].清华大学抗震抗爆工程研究报告.清华大学出版社,1980.
    [2.4]Chen Dan. Ductility Spectra and Collapse Spectra for Earthquake Resistant Structures[C]. Proc.7th European Conference on Earthquake Engineering,1982.
    [2.5]韦承基.弹塑性结构的位移比谱[J].建筑结构学报,1983,Vol.4(2):40-48.
    [2.6]Cheng Mingxian. Residual strength spectra for Earthquake Resistant Structures[C]. Proc.1st Conference on Design, Construction and Repair of Building Structures in Earthquake Zones, 1987.
    [2.7]Ye L.P, Otani S.Maximum. Seismic Displacement of Inelastic Systems Based on Energy Concept[J]. Earthquake Engineering and Strucutral Dynamics. Vol.28:1483-1499,1999.
    [2.8]Fajfar.P, Fischinger.M. Earthquake Design Spectra Considering Duration of Ground Motion[C], Proc.4th U.S.NCEE, California, Vol.2:15-24,1990.
    [2.9]Tolis S.V, Faccioli E. Displacement Design Spectra[J]. Journal of Earthquake Engineering, Vol.3(1):107-125,1999.
    [2.10]GB50111-2006,铁路工程抗震设计规范[S].中华人民共和国铁道部,北京,2006.
    [2.11]朱晞等.高墩大跨连续梁桥结构延性性能及地震反应分析[R].北方交通大学研究报告,土建学院工程抗震研究室,2001.
    [2.12]翟东武.高墩桥梁结构非线性地震行为及基于位移的抗震设计方法[D].北方交通大学博士学位论文,2001.
    [2.13]翟东武,朱晞.重力式钢筋混凝土桥墩的弹塑性地震行为[J].北方交通大学学报,1999,23(4):29-33.
    [2.14]TB1002.5-99,铁路桥涵地基和基础设计规范[S].中华人民共和国铁道部,北京,2000.
    [2.15]http://peer.berkeley.edu/smcat/search.html
    [2.16]JTG/TB02-01-2008,公路桥梁抗震设计细则[S].中华人民共和国交通部,北京,2008.
    [2.17]Mahmoud M.Hachem. BISPEC:Interactive Software for the Computation of Unidirectional and Bidirectional Nonlinear Earthquake Spectra.2004 Structures Congress.
    [2.18]Mahmoud M.Hachem. Bispec Help Manual[M]. www.ce.berkeley.edu/-hachem/bispec,2000.
    [2.19]胡聿贤.地震工程学[M].地震出版社,1988.
    [2.20]GB50011-2001.建筑抗震设计规范[S].中华人民共和国建设部,北京,2001.
    [2.21]李新乐.近断层区桥梁结构的设计地震与抗震性能研究[D].北京交通大学博士学位论文,2004.
    [2.22]周锡元等.1999年9月21日台湾集集地震中不同场地上峰值加速度的衰减特征[C].大型复杂结构的关键科学问题及设计理论研究论文集,2001,No.406413.
    [2.23]Miranda E, Bertero, V.V. Evaluation of strength reduction factors for earthquake resistant design[J]. Earthquake Spectra,1994, Vol.10(2):357-379.
    [2.24]Miranda E. Nonlinear Response Spectra for Earthquake Resistant Design[C]. Proc.10tth WCEE, Madrid, Balkema, Rotterdam:I-AEE,1992, Vol.10:5835-5840.
    [2.25]Miranda E. Evaluation of Site-Dependent Strength-Reduction Factors[J]. Journal of Structural Engineering,ASCE,1993, Vol.119(12):3503-3519.
    [2.26]夏洪流.基于频域响应统计特性等效的结构等效线形化的方法研究[D].重庆建筑大学博士学位论文,1999.
    [2.27]张川.钢筋混凝土框架——抗震墙结构的抗震性能及模型化方法研究[D].重庆建筑大学博士学位论文,1994.
    [2.28]K Kawashima, G.A MacRae etal. Residual displacement response spectrum[J]. Journal of Structural Engineering, ASCE,1998, Vol.124(5):523-530.
    [2.29]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[D].重庆大学博士学位论文,2004.
    [3.1]Housner G.W. Limit Design of Structures to Resist Earthquake[C]. Proceedings of 1st Conference on Earthquake Engineering, Berkeley,1956.
    [3.2]Akiyama H. Earthquake Resistant Design Based on the Energy Concept [C]. Proceedings of 9th WCEE,905-910,1988.
    [3.3]Michel Bruneau, Niandi Wang. Some aspects of energy methods for the inelastic seismic response of ductile SDOF structures[J]. Engineering Structures,1996,18(1):1-12.
    [3.4]Luis D.Decanini, Fbrizio MollaioliTTiandi. An energy-based methodology for the assessment of seismic demand[J]. Soil Dynamics and Earthquake Engineering,2001,21:113-137.
    [3.5]史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估[D].西安建筑科技大学博士学位论文,2002.
    [3.6]李菊芳.建筑结构基于能量的地震反应分析及设计方法[D].西安建筑科技大学硕士学位论文,2004.
    [3.7]史庆轩,杨文星,门进杰.单自由度体系非线性地震能量反应分析[J].建筑科学与工程学报,2005,Vol.22(2):25-29.
    [3.8]熊仲明,史庆轩.框架结构基于能量地震反应分析及设计方法的理论研究[[J].振动与冲击,2003,Vol.22(4):8-12.
    [3.9]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[D].重庆大学博士学位论文,2004.
    [3.10]Anindya Dutta. Bridge on Energy Based Seismic Analysis and Design of Highway[D]. Faculty of the Graduate School of the State University of New York at Buffalo,1999.
    [3.11]江辉.近场地震下桥梁结构基于性能抗震设计的能量方法[D].北京交通大学博士学位论文,2007.
    [3.12]杨风利.铁路桥梁减隔震设计方法及设计参数研究[D].北京交通大学学位博士论文,2007.
    [3.13]Mahmoud M.Hachem. BISPEC:Interactive Software for the Computation of Unidirectional and Bidirectional Nonlinear Earthquake Spectra.2004 Structures Congress.
    [3.14]Mahmoud M.Hachem. Bispec Help Manual[M]. www.ce.berkeley.edu/-hachem/bispec,2000.
    [3.15]GB50111-2006,铁路工程抗震设计规范[S].中华人民共和国铁道部,北京,2006.
    [3.16]JTG/TB02-01-2008,公路桥梁抗震设计细则[S].中华人民共和国交通部,北京,2008.
    [3.17]胡聿贤.地震工程学[M].地震出版社,1988.
    [3.18]]Uang CM, Bertero V.V. Use of energy as a design criterion in earthquake resistant design[R]. Earthquake Engineering Research Center, University of California at Berkeley,1988, No.UCB/EERC-88/18.
    [3.19]Uang CM, Bertero V.V. Evaluation of seismic energy in structures[J]. Earthquake Engineering and Structural Dynamics,1990, Vol.19:77-90.
    [3.20]范立础.桥梁抗震[M].同济大学出版社,1997.
    [3.21]TB1002.5-99,铁路桥涵地基和基础设计规范[S].中华人民共和国铁道部,北京,2000.
    [3.22]Ucfyber:Cross Section Analysis Software for Structural Engineers. University of California at Berkeley,2000.
    [3.23]http://peer.berkeley.edu/smcat/search.html
    [3.24]Akiyama H. Earthquake-resistant limit-state design for buildings[M]. Japan:University of Tokyo Press,1985.
    [3.25]Gaetano Manfredi. Evaluation of seismic energy demand[J]. Earthquake Engineering and Structural Dynamics,2001, Vol.30:485-499.
    [3.26]Mario Ordaz, Benjamin Huerta. Exact computation of input-energy spectra from fourier amplitude spectra[J]. Earthquake Engineering and Structural Dynamics,2003, Vol.32: 597-605.
    [3.27]公茂盛,谢礼立,章文波.地震动输入能量衰减规律的研究[J].地震工程与工程振动,2006,Vol.23(3):15-24.
    [3.28]公茂盛,翟长海,谢礼立,章文波.地震动滞回能量谱衰减规律研究[J].地震工程与工程振动,2004,Vol.24(2):8-14.
    [3.29]熊仲明,史庆轩,王社良.结构能量分析非线性地震反应的理论研究[J].西安建筑科技大学学报,2005,Vol.37(2):204-209.
    [3.30]Fajfar P. Consistent Inelastic Design Spectra:Hysteretic and Input Energy[J]. EESD,1994, Vol.23:523-537.
    [3.31]肖明葵,刘纲,白绍良,赖明.抗震结构的滞回耗能谱[J].世界地震工程,2002,Vol.18(3):110-115.
    [3.32]GB50011-2001.建筑抗震设计规范[S].中华人民共和国建设部,北京,2001.
    [4.1]范立础.桥梁抗震[M].同济大学出版社,1997.
    [4.2]N.J.M谱瑞斯特雷等.桥梁抗震设计与加固[M].人民交通出版社,1997.
    [4.3]J.P. Moehle. Displacement Based Design of RC Structures[C]. Proceedings of the 10th World Conference on Earthquake Engineering,1992,4297-4302.
    [4.4]M.J.Kowalsky, M.J.N.Priestley. Displacement-based design of RC bridge columns in seismic regions[J]. Earthquake Engineering and Structural. Dynamics,1995,24:1623-1643.
    [4.5]A.K.Chopra, R.K.Goel. Direct Displacement-based Design:Use of Inelastic vs. Elastic Deign Spectra[J]. Earthquake Spectra,2001,17:47-64.
    [4.6]倪永军,朱晞.弹塑性结构基于位移的抗震设计[J].地震工程与工程振动,2000,Vol.20,180-184.
    [4.7]弓俊青,朱晞.以位移为基础的钢筋混凝土桥梁墩柱抗震设计方法[J].中国公路学报,2001,14(4):42-46.
    [4.8]翟东武.高墩桥梁结构非线性地震行为及基于位移的抗震设计方法[D].北方交通大学博士学位论文,2001.
    [4.9]黄建文,朱晞.近场地震作用下钢筋混凝土桥墩基于位移的抗震设计[J].土木工程学报,2005,Vol.38(4):84-90.
    [4.10]肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[D].重庆大学博士学位论文,2004.
    [4.11]江辉.近场地震下桥梁结构基于性能抗震设计的能量方法[D].北京交通大学博士学位论文,2007.
    [4.12]Housner G.W. Limit Design of Structures to Resist Earthquake[C]. Proceedings of 1st Conference on Earthquake Engineering, Berkeley,1956.
    [4.13]P. Fajfar, P. Gaspersic. A Simplified Nonlinear Method for Seismic Evaluation of RC Bridge[C]. Proceedings of 6th U.S. National Conference on Earthquake Engineering,1998.
    [4.14]H.Babon etal. Seismic Damage in Reinforced Concrete Frames[J]. ASCE,1981, Vol.107, No.ST9.
    [4.15]P.Fajfar. Equivalent Ducility Factors Taking into Account Low-cycle Fatigue[C]. Earthquake Engineering and Structural Dynamics,1992, Vol.21.
    [4.16]Djordje Landjinovic, Radomir Folic. Application of Improved Damage Index for Designing of Earthquake Resistant Structures[c]. Proceedings of 13WCEE, Vancouver, B.C, Canada, 2004, Paper No.2135.
    [4.17]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠性分析与设计[J].地震工程与工程振动,1990,Vol.10(4):27-37.
    [4.18]牛狄涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,Vol.16(4):44-54.
    [4.19]王东升,冯启民.低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,Vol.37(11):41-49.
    [4.20]傅剑平,王敏,白绍良.对用于钢筋混凝土结构的Park-Ang双参数破坏准则的识别和修正[J].地震工程与工程振动,2005,Vol.25(5):73-79.
    [4.21]Y.J Park, A.H-S Ang. Mechanistic Seismic Damage Model for Reinforced Concrete[J],. Journal of Structural Engineering,1985, Vol.111(4):722-739.
    [4.22]刘伯权等.抗震结构的破坏准则评述及探讨[J].重庆建筑工程学院学报,1993,Vol.15(4):1-8.
    [4.23]刘鸣.结构地震破坏影响因素与结构分类[J].西北建筑工程学院学报,2000,Vol.17(2):16-20.
    [4.24]李应斌.钢筋混凝土结构基于性能的抗震研究及破坏评估[D].西安建筑科技大学博士学位论文,2001.
    [4.25]王振宁,刘晶波.建筑结构地震损伤评估的研究进展[J].世界地震工程,2001,Vol.17(3):43-48.
    [4.26]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程,1991,Vol.7(3):52-58.
    [4.27]Y.J. Park, A H-S Ang. A mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, ASCE,1985.
    [4.28]Y.J. Park, A.H-S. Ang. Seismic damage analysis of reinforced concrete buildings[J],. Journal of Structural Engineering,1985, Vol.112(2):102-109.
    [4.29]S.Williams, R.G.Sexsmith. Seismic damage indices for concrete structures:A State-of-art Review[J]. Earthquake Spectra,1995, Vol.11:319-349.
    [4.30]吕大刚,王光远等.工程结构与系统抗震优化设计的使用方法[M].中国建筑工业出版社,1999.
    [4.31]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,Vol.16(4):44-54.
    [4.32]GB50111-2006,铁路工程抗震设计规范[S].中华人民共和国铁道部,北京,2006.
    [4.33]JTG/TB02-01—2008,公路桥梁抗震设计细则[S].中华人民共和国交通部,北京,2008.
    [4.34]P Fajfar. Equivalent ductility factors, taking into account low-cycle fatigue[J]. Earthquake Engineering and Structural Dynamics,1992, Vol.21:837-848.
    [4.35]P Fajfar, P Gaspersic. The N2 method for the seismic damage analysis of RC buildings[J]. Earthquake Engineering and Structural Dynamics,1996, Vol.25:31-46.
    [4.36]A Teran-Gilmore. Performance-based earthquake-resistant design of buildings using energy concepts[D]. Department of Civil Engineering, University of California at Berkeley,1996.
    [4.37]L.D Decanini, F Mollaioli. Toward the definition of the relation between hysteretic and input energy[C].6NCEE, Oakland, California,1998, pp12.
    [4.38]L Decanini, F Mollaioli and R Saragoni. Energy and displacement demands imposed by near-source ground motions[C].12WCEE, Auckland, New Zealand, Reference No.1136.
    [4.39]L.D Decanini and F Mollaioli. An energy-based methodology for the assessment of seismic demand[J]. Soil Dynamics and Earthquake Engineering,2001, Vol.21:113-137.
    [4.40]T Zahrah, J Hall. Earthquake energy absorption in SDOF structures[J]. Journal of Structural Engineering,1984, Vol.110(8):1757-1772
    [4.41]H Kuwamura and T.V Galambos. Earthquake load for structural reliability[J]. Journal of Structural Engineering, ASCE,1989, Vol.115:1446-1462.
    [4.42]P. Fajfar. Equivalent Ductility Factors, Taking into Account Low-Cycle Fatigue[J]. Earthquake Engineering and structural Dynamics,1992, Vol.21:837-848.
    [4.43]欧进萍,何政等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,Vol.19(1):21-30.
    [4.44]倪永军.桥梁结构抗震设计的设计地震与基于位移的抗震设计方法[D].北京交通大学博士学位论文,2001.
    [4.45]黄建文.近场地震作用下桥梁结构基于位移的抗震设计方法[D].北京交通大学博士学位论文,2004.
    [4.46]范立础,王志强.桥梁延性抗震设计[M].人民交通出版社,2001.
    [4.47]GB50011-2001.建筑抗震设计规范[S].中华人民共和国建设部,北京,2001.
    [4.48]欧进萍,何政等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,Vol.19(1):21-30.
    [4.49]潘龙.基于推倒分析方法的桥梁结构地震损伤分析和性能设计[D].同济大学博士学位论文,2001.
    [4.50]SEAOC. Appendix B:Conceptual framework for performance-based seismic design, Vision 2000, Structural Engineers Association of California,1996.
    [4.51]Y.Hose, P.Silva, F.Seible. Development of a Performance Evaluation Database for Concrete Bridge Components and Systems under Simulated Seismic Loads[J]. Earthquake Spectra, 2000.
    [4.52]A.H-S.Ang, W.J.Kim and S.B.Kim. Damage Estimation of Existing Bridge Structures[C],. Structural Engineering in Natural Hazards Mitigation:Proc. ASCE Structures Congress,1993, Irvine CA, Vol.2:1137-1142.
    [4.53]G.M.Calvi. A Displacement-Based Approach for Vulnerability Evaluation of Classes of Buildings[J]. Journal of Earthquake Engineering,1999, Vol.3(3):411-438.
    [4.54]K Kawashima, G.A MacRae etal. Residual displacement response spectrum[J]. Journal of Structural Engineering, ASCE,1998, Vol.124(5):523-530.
    [4.55]K Kawashima. Seismic design and retrofit of bridges[C]. Proceedings of 12WCEE, New Zealand,2000, Reference No.2828.
    [4.56]Japan Road Association. Design specifications of highway bridges[S]. Part V:Seismic design, Tokyo, Japan,1996.
    [4.57]TB10002.1-99.铁路桥涵设计基本规范[S].中华人民共和国铁道部,1999.
    [4.58]Eurocode 8[S]:Design Provisions for Earthquake Resistance of Structures, Part 1.1 General Rules-Seismic Actions and General Requirements for Structures, Part 2 Bridges.1996.
    [4.59]Ucfyber:Cross Section Analysis Software for Structural Engineers. University of California at Berkeley,2000.
    [4.60]GM Calvi, GR Kingsley. Displacement-based Seismic Design of Multi-degree-of-freedom Bridge Structures[J]. Earthquake Engineering and Dynamic Structures,1995, Vol.24: 1247-1266.
    [4.61]SHIBATA A, SOZEN M. Substitute structure method for seismic design in RC[J]. Structural Engineering, ASCE,1988, Vol.114:1804-1826.
    [4.62]KOWALSKY M.J. A Displacement-based Approach for the Seismic Design of Continuous Concrete Bridges[J]. Earthquake Engineering and Structural Dynamics,2002, Vol.31:719-747.
    [4.63]Uang, Bertero. Use of Energy as a Design Criterion in Earthquake-resistant Design[R]. EERC Report No.UCB/EERC-88/18, November,1988.
    [4.64]Yousef BOZORGNIA, Vitelmo V.BERTERO. Damage Spectrum and Its Applications to Performance-Based Earthquake Engineering[C]. Proceedings of 13th World Conference on Earthquake Engineering, Vancouver B.C, Canada, August 1-6,2004. Paper No.1497.
    [4.65]朱建华,沈蒲生.基于能量原理的钢筋混凝土框架结构层间弹塑性位移求解[J].工程抗震与加固改造,2005.,Vol.27(5):14.
    [4.66]S. K. Kunnath, Y.H. Chai. Cumulative damage-based inelastic cyclic demand spectrum[J]. Earthquake Engineering and Structural. Dynamics,2004, Vol.33:499-520.
    [5.1]Freeman S.A. Prediction of Response of Concrete Buildings to Severe Earthquake Motion[C]. Proceedings of Douglas McHenry International Symposium on Concrete and Concrete Structures, Publication SP-55, American Concrete Institute, Detroit, Michigan, U.S.A,1978.
    [5.2]Deierlein GG, Hsieh S.H. Seismic response of steel frames with semi-rigid connections using the capacity spectrum method[C]. Proceedings of 4th U.S. National Conference on Earthquake Engineering,1990, Vol.2:863-72.
    [5.3]Freeman S.A. Development and use of capacity spectrum method[C]. Proceedings of 6th U.S. National Conference on Earthquake Engineering, Seattle,1998.
    [5.4]Chopra A.K, Goel B.K. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures:SDOF Systems[R]. Pacific Earthquake Engineering Research Center, University of California at Berkeley,1999, Report No.PEER-1999/02.
    [5.5]Iwan W.D, Gates N.C The effective period and damping of a class of hysteretic structures[J]. Earthquake Engineering and Structural Dynamics,1979, Vol.7(3):199-212.
    [5.6]小古俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,Vol.30(6):3-9.
    [5.7]FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings[R]. Federal Emergency Management Agency, Washington DC,2000.
    [5.8]Eurocode 8. Design of structures for earthquake resistance[S]. General rules, seismic actions and rules for buildings. EN 1998-1:2003, British Standards Institution, London.EC8,2003.
    [5.9]Fajfar P. Capacity Spectrum Method Based on Inelastic Demand Spectra[J]. Earthquake Engineering and Structural Dynamics,1999, Vol.28:979-993.
    [5.10]Hudson D.E. Equivalent viscous friction for hysteretic systems with earthquake-like excitations[C]. Proceedings of 3rd World Conference on Earthquake Engineering,1965, Vol.2: 185-202.
    [5.11]Jennings P.C. Equivalent viscous damping for yielding structures[J]. Journal of the Engineering Mechanics,1968,Div.94(EM1):103-116.
    [5.12]叶献国.多层建筑结构抗震性能的近似评估[J].工程抗震,1998,Vol.21(4):10-14.
    [5.13]Miranda E, Bertero V.V. Evaluation of Strength Reduction Factors for Earthquake-Resistant Design[J]. Earthquake Spectra,1994, Vol.10:357-379.
    [5.14]Peter Fajfar. Simple Push-Over Analysis of Buildings Structures[C]. Proceedings of 11th World Conference On Earthquake Engineering,1996.
    [5.15]Peter Fajfar. Towards a New Seismic Design Methodology for Buildings[R]. Faculty of civil Engineering and Geodesy, Institute of Structural and Earthquake Engineering,1996.
    [5.16]Chopra A K, Goel R K..A Modal Pushover Analysis Procedure for estimating seismic demands for buildings[J]. Earthquake Engineering and.Structure.Dynamics,2002, Vol.31(3):561-582.
    [5.17]龚胡广.基于性能的抗震设计方法及其在高层混合结构抗震评估中的应用[D].湖南大学博士学位论文,2006.
    [5.18]Bracci J M, Kunnath S K, Reinborn A M. Seismic Performance and Retrofit Evaluation for Reinforced Concrete Structures[J]. Structure.Engineering, ASCE.1997, Vol.123(1):3-10.
    [5.19]王克海.基于模态分析的Pushover方法在桥梁抗震分析中的应用[J].铁道学报,2006,Vol.28(2):80-84.
    [5.20]ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology Council, Red Wood City, California,1996.
    [5.21]FEMA 440. Improvement of Nonlinear Static Seismic Analysis Procedures[R]. Federal Emergency management Agency, Washington D.C,2005.
    [5.22]Fajfar P. Capacity Spectrum Method Based on Inelastic Demand Spectra[J]. Earthquake Engineering and Structure Dynamics,1999, Vol.28 (7):979-993.
    [5.23]Chopra A K, Goel R K. Capacity-demand Methods Based on Inelastic Design Spectrum[C]. Proceedings of 12th World Conference on Earthquake Engineering, New Zealand,2001.
    [5.24]曹一山,朱晞.简化的能力谱方法在桥梁结构中的应用[J].中国铁道科学,2004,Vol.25(2):20-24.
    [5.25]A A Nassar, H Krawinkler. Seismic Demands for SDOF and MDOF Systems[C]. The John a Blume Earthquake Engineering Center, Stanford University, CA,1991.
    [5.26]T Vidic, P Fajfar, M Fischinger. Consistent Inelastic Design Spectra:Strength and Displacement[J]. Earthquake Engineering and Structure Dynamics,1994, Vol.23(4):507-521.
    [5.27]M Ordaz, L E Perez-Rocha. Estimation of Strength-reduction Factors for Elasto-plastic Systems:A New Approach[J]. Earthquake Engineering and Structure Dynamics,1998, Vol.27(8):889-901.
    [5.28]GB501 11-2006,铁路工程抗震设计规范[S].中华人民共和国铁道部,北京,2006.
    [5.29]JTG/TB02-01—2008,公路桥梁抗震设计细则[S].中华人民共和国交通部,北京,2008.
    [5.30]Mahmoud M.Hachem. BISPEC:Interactive Software for the Computation of Unidirectional and Bidirectional Nonlinear Earthquake Spectra.2004 Structures Congress.
    [5.31]Mahmoud M.Hachem. Bispec Help Manual[M]. www.ce.berkeley.edu/~hachem/bispec,2000.
    [5.32]TB1002.5-99,铁路桥涵地基和基础设计规范[S].中华人民共和国铁道部,北京,2000.
    [5.33]Yarnagishi M, Kawashima K, Shoji G. Limitation of nonlinear static seismic design method for a bridge with tall columns[J]. Journal of Structural Engineering,2002, JSCE, Vol.48A: 595-605.
    [6.1]Basoz N, Kiremidjian A.S. Evaluation of bridge damage data from the Loma Prieta and Northridge[R]. CA earthquakes, Report No.127. Stanford:John A Blume Earthquake Engineering Center, Stanford University,1997.
    [6.2]Yamazaki F, Onishi J, Tayama S. Earthquake damage assessment of expressway structures in Japan[C]. Proceedings of Asian-Pacific Symposium on Structural Reliability and its Applications,1999.
    [6.3]Cornell C.A, Krawinkler H. Progress and challenges in seismic performance assessment[R]. PEER Center News Spring,2000.
    [6.4]Mackie K, Stojadinovic B. Fragility curves for reinforced concrete highway overpass bridges[C]. Proceedings of 13th World Conference on Earthquake Engineering, CD-ROM, Paper No.1553,2004.
    [6.5]Shinozuka M, Feng M, Kim H, Uzawa T and Ueda T. Statistical analysis of bridge fragility curves[R]. Multidisciplinary Center for Earthquake Engineering, Buffalo, NY,1999.
    [6.6]Dutta A, Mander J.B. Seismic fragility analysis of highway bridges[R]. Center-to-Center Project Workshop on Earthquake Engineering Frontiers in Transportation Systems, International Center for Disaster-Mitigation Engineering (INCEDE), Tokyo, Japan,1998.
    [6.7]Dutta A, Mander J.B. Seismic vulnerability analysis of highway bridges[R]. Technical Report, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY,2000.
    [6.8]Shinozuka M, Feng M Q, Kim H and Kim S.H. Nonlinear static procedure for fragility curve development[J]. Journal of Engineering Mechanics,2000, Vol.126(12):1287-1296.
    [6.9]Barron R, Reinhorn A. Spectral evaluation of seismic fragility of structures[R]. Technical Report, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY,2000.
    [6.10]Dutta A. On energy-based seismic analysis and design of highway bridges[M]. Ph.D. Dissertation, Department of Civil, Structural and Environmental Engineering, State University of New York,1999.
    [6.11]Mander J.B, Basoz N. Seismic fragility curve theory for highway bridges[R].5th US Conference on Lifeline Earthquake Engineering, ASCE, New York, USA,1999.
    [6.12]王建民.基于概率的桥梁结构抗震性能研究[D].北京交通大学博士学位论文,2006.
    [6.13]Japan Road Association. Design specifications of highway bridges[S]. Part V:Seismic design, Tokyo, Japan,1996.
    [6.14]Jorge Ruiz-Garcia. Perfomance-based assessment of existing structures accounting for residual displacements[D]. Doctor degree dissertation, Stanford University,2005.
    [6.15]ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[R]. Applied Technology Council, Red Wood City, California,1996.
    [6.16]FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings[R]. Federal Emergency Management Agency, Washington DC,2000.
    [6.17]HAZUS 99 Technical Manual[M]. National Institute of Building Sciences, Washington DC, Federal Emergency Management Agency,1999.
    [6.18]FEMA 440. Improvement of Nonlinear Static Seismic Analysis Procedures[R]. Federal Emergency management Agency, Washington D.C,2005.
    [6.19]Kent D.C, Park R. Flexural members with confined concrete[J]. Journal of Structural Engineering,1971:1969-1990.
    [6.20]过镇海.钢筋混凝土原理[M].清华大学出版社,1999.
    [6.21]Ucfyber:Cross Section Analysis Software for Structural Engineers. University of California at Berkeley,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700