龙潭河特大桥静力稳定性及风致抖振时域分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算技术的提高、新型材料的运用和施工技术的进步,桥梁向大跨、轻质方向发展,稳定性及抗风方面的问题日益突出。因此,对此类桥梁结构的稳定及抗风进行深入的研究将是十分必要的。本文主要以沪蓉国道主干线宜昌至恩施段一座高墩大跨连续刚构桥——龙潭河特大桥为工程背景,对其静力稳定性及风致抖振响应时域分析展开研究,包括如下四个方面的内容。
     在静力稳定性方面,通过对薄壁构件局部稳定的解析分析,给出不同约束条件下满足混凝土薄壁局部稳定的最小宽厚比的限制值。分别采用ANSYS中梁单元和壳单元建立了龙潭河特大桥在不同阶段的空间有限元模型,对其在不同施工阶段以及成桥阶段的各工况进行了第一类稳定分析;引入单边日照效应产生的初始缺陷,考虑结构几何非线性因素的影响,采用改进的Newton-Rahpson迭代法分析其在施工、成桥阶段不同荷载工况下的第二类稳定性。最后,对龙潭河特大桥的稳定安全性能作出评价。
     在风洞试验研究方面,首先通过节段模型试验和CFD计算方法确定了龙潭河大桥梁、墩截面的气动力系数。在此基础上,对龙潭河特大桥主桥结构的施工阶段最长双悬臂状态和主墩自立状态在不同风攻角和风偏角以及有背景梁情况下的驰振稳定性、涡激共振特性和抖振性能进行了试验和分析研究。
     在脉动风场随机模拟方面,首先细致的描述了脉动风场的自然特性,给出了谐波合成(WAWS)法的计算公式,证明了其模拟结果的无偏性和各态历经性,依据用FFT加速的WAWS法,绘出了编制模拟程序的流程图,并给出了模拟结果检验的数值方法。最后,用Fortran语言编制了实用的模拟程序,并利用该程序模拟了龙潭河特大桥的脉动风速场。
     在风致抖振方面,依据准定常理论抖振力计算理论,推导了实用的静风风力计算公式和抖振力计算公式;基于模拟的脉动风速场,分别模拟了成桥状态和施工状态的抖振力时程;并利用ANSYS将该荷载时程加载于有限元模型上,进行动力时程分析,求得了两种状态下的风致抖振响应分析结果。
     最后,对本文的研究工作进行了总结,给出了研究中的一些结论,并指出了在进一步研究中亟待解决的问题。
With the improvement of the calculation technique, development of the construction technique and employment of new type material, the bridge structures gradually develop towards the long span and light weight aspects, the problem about stability and wind-induced response of the great bridge increasingly represent prominent. Therefore, it is very necessary to conduct the comprehensive and systemic investigation on the bridge stability and wind-induced response. In this paper, combined with the a long-span continuous rigid frame bridge with thin-wall high piers-Long-Tan River Long-Span bridge which is a part of the Shanghai-Chengdu express way in the west Hubei province (from Yichang to Enshi), the static stability and time domain analysis of wind-induced buffeting response is studied, including the following four aspects.
     On the static stability. First on all, the local stability analysis solution about the thin-wall component is obtained in order to determine the limit value of the minimum width-thin ratio under the different constrained conditions. By utilizing the great current finite element program ANSYS, two types of finite element models in different stage, i.e., beam model and shell model are established for Long-Tan River great bridge, respectively. The first kand of stability analyses are conducted for the some cases in the construction and completed bridge stage. In addition, the second kind of stability analyses are made by adopting the Modified Newton-Rahpson iterative method, the initial deflection induced by the unilateral sunlight and the geometrical nonlinearity effect are considered. Finally, the stability safety capability estimation is conducted for the Long-Tan River great bridge.
     On the wind tunnel tests. The aerodynamic force coefficients of both the girder and the pier sections of the Long-tan river bridge are measured by performing sectional model tests. The aero-elastic models of the main bridge structure are modeled in worse-case state during erection stage and only-pier state. For variating wind attack angles and yaw angles, with or without the neighborhood background girders, the galloping stability, vortex-excited resonant, and buffeting responses of the bridge are investigated respectively by performing corresponding wind tunnel tests.
     On the wind field simulation. The fluctuating velocities of wind fields is depicted by the statistical characteristics, like power spectral density functions, mean velocities, etc. These are firstly given here. As far as the weighted amplitude wave superposition (WAWS) method for simulation of the wind fields is concerned, its formula are derived. The simulated wind fields will be unbiased and ergodic, that is, the estimated first and second order moments are equal to the corresponding targets not only in the ensemble sense, but also in the temporal sense. The computation efficiency can be improved by the FFT technique. Flow chart of the simulation procedure is given, as well as the numerical methods to obtain statistics from the simulated results. The FORTRAN language is employed to program the formulas of the WAWS method, so that fluctuating velocities of the wind field around the Long-tan river bridge are simulated.
     On the time domain buffeting analysis. Practical formulas for evaluating the static and buffeting aerodynamic loading on the bridge decks are derived, on the basis of the quasi-steady aerodynamic theories. The loading time histories, both during the construction stage and the full stage, are then calculated from the simulated wind fields. Using the ANSYS software, FE (finite element) models of the bridge is established and loaded. Then, the wind-induced time domain buffeting responses of the bridge during the two stages are predicted, by conducting the time history dynamic analysis.
     Finally, the work in this paper is summarized and some conclusions about the study are drawn, besides, the further research problems are indicated.
引文
[1] 李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1996
    [2] 马保林.高墩大跨连续刚构桥.北京:人民交通出版社,2001
    [3] 周军生,庄鸿.大跨径混凝土连续刚构桥的现状和发展趋势.中国公路学报,2000(1):31-37
    [4] Kim M. C., Chang K. C., and Lee G. C. Elastic and inelastic buckling analysis of thin-walled tapered members. Journal of Engineering Mechanics,1997,123(7): 727-737
    [5] Bazant Z. P., and Nimeiri, M. E.(1973). "Large-deflection spatial buckling of thin-walled beams and frames". Journal of Structure Engineering, ASCE, 1999, 126(12): 1259-1281
    [6] Darío J. Aristizábal-Ochoa. Elastic stability and second-order analysis of three-dimensional frames: Effects of column orientation. Journal of Engineering Mechanics,2003, 129(11):1254-1267
    [7] 张开敬,马庭林,童兵. 百米箱形高墩柱模型试验与分析. 桥梁建设,1997(2): 49-54
    [8] 王清明. 花土坡特大桥施工过程中桥墩抗风受力分析. 桥梁,2002(3): 6-7
    [9] 郭银亮. 架桥机架梁对柔性高墩影响的分析. 科技情报开发与经济,2002, 12(4): 148-150
    [10] 刘进,邹银生,湛发溢. 弹性地基桥墩稳定性分析. 山西建筑,2004, 4(30): 107-108
    [11] 王银辉,吴剑敏,刘东. 变截面空心薄壁墩的稳定计算. 公路,2004(1): 7477
    [12] 王振阳,赵煜,徐兴. 高墩大跨桥梁稳定性. 长安大学学报(自然科学版), 2003(7):38-40
    [13] 项海帆等. 现代桥梁抗风理论与实践. 北京: 人民交通出版社, 2005
    [14] Gunter Schewe, Allan Larsen. Reynolds number effects in the flow around a bluff bridge deck across section. Journal of Wind Engineering and Industrial Aerodynamics. 1998,74-76:829-838
    [15] 陈政清,项海帆等. 桥梁风工程. 北京: 人民交通出版社, 2005
    [16] 同济大学土木工程防灾国家重点实验室. 苏通大桥抗风性能研究报告之一. 上海,2004
    [17] 同济大学土木工程防灾国家重点实验室. 苏通大桥抗风性能研究报告之四. 上海,2004
    [18] Deodatis G. Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics, ASCE, 1996, 122(8): 778-787
    [19] Rice S. O. Mathematical analysis of random noises. in: N. Wax, editor. Selected Papers on Noises and Stochastic Processes. New York: Dover, 1954. 133-294
    [20] Priestley M. B. Evolutionary spectra and non-stationary processes. Journal of Royal Statistic Society, Series B, 1965, 27(2): 204-237
    [21] Shinozuka M. Monte-Carlo solution of structural dynamics. Computers and Structures, 1972, 2(5-6): 855-874
    [22] Yang J. N. Simulation of random envelope processes. Journal of Sound and Vibration, 1972, 21(1): 73-85
    [23] Shinozuka M. Digital simulation of random process in engineering mechanics with the aid of FFT technique. in: S. T. Ariaratnamm, H. H. E. Leipholtz, editors. Stochastics problems in mechanics. Waterloo: University of Waterloo Press, 1974. 277-286
    [24] Shinozuka M., Deodatis G. Simulation of stochastic processes by spectral representation. Apply Mechanics Review, 1991, 44(4): 191-204
    [25] Shinozuka M., Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Applied Mechanics Reviews, 1996, 49(1): 29-53
    [26] Soong T. T., Grigoriu M. Random vibration of mechanical and structural systems. Englewood Cliffs, New Jersey: P T R Prentice-Hall, Inc., 1993
    [27] Li Y., Kareem A. Stochastic decomposition and application to probabilistic dynamics. Journal of Engineering Mechanics, 1995, 121(1): 162-174
    [28] Spanos P. D., Zeldin B. A. Monte Carlo treatment of random fields: A broad perspective. Applied Mechanics Reviews, 1998, 51(3): 219-237
    [29] Cao Y., Xiang H., Zhou Y. Simulation of stochastic wind velocity field on long-span bridges. Journal of Engineering Mechanics, ASCE, 2000, 126(1): 1-6.
    [30] Yang W. W., Chang T. Y. P. Numerical simulation of turbulent fluctuations along the axis of a bridge. Engineering Structures, 1998, 20(9): 837-848
    [31] Yang W. W., Chang T. Y. P., Chang C. C. An efficient wind field simulation technique for bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 697-708
    [32] Di Paola M. Digital simulation of wind field velocity. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76(1): 91-109
    [33] Di Paola M., Gullo I. Digital generation of multivariate wind field processes. Probabilistic Engineering Mechanics, 2001, 16(1): 1-10
    [34] Minh N.N., Miyata T., Yamada H., et al. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83: 301-315
    [35] Rossi R., Lazzari M., Vitaliani R. Wind field simulation for structural engineering purposes. International Journal for Numerical Methods in Engineering, 2004, 61(5): 738-763
    [36] 王之宏. 风荷载的模拟研究. 建筑结构学报, 1994, 15(1): 44-52
    [37] 刘春华. 大跨度桥梁抖振响应的非线性时程分析[博士学位论文]. 上海: 同济大学, 1995
    [38] 曹映泓, 项海帆, 周颖. 大跨度桥梁随机风场的模拟. 土木工程学报, 1998, 31(3): 72-79
    [39] 曹映泓. 大跨度桥梁非线性颤振和抖振时程分析[博士学位论文]. 上海: 同济大学, 1999
    [40] 李永乐, 周述华, 强士中. 大跨度斜拉桥三维脉动风场模拟. 土木工程学报, 2003, 36(10): 60-65
    [41] Li Y., Liao H., Qiang S. Simplifying the simulation of stochastic wind velocity fields for long cable-stayed bridges. Computers and Structures, 2004, 82(20-21): 1591-1598
    [42] 丁泉顺. 大跨度桥梁耦合颤抖振响应的精细化分析[博士学位论文]. 上海: 同济大学, 2001
    [43] 苏成, 韩大建, 颜全胜, 等. 大跨度桥梁风场模拟及气动力计算. 华南理工大学学报(自然科学版), 1999, 27(11): 36-43
    [44] 邹小江. 斜拉桥风振响应时域分析及静风稳定性研究[博士学位论文]. 广州: 华南理工大学, 2003
    [45] 曾宪武, 韩大建. 大跨度桥梁风场模拟方法对比研究. 地震工程与工程振动, 2004, 24(1): 135-140
    [46] Davenport A. G. The application of statistical concepts to the wind loading of structures. ICE Journal, 1960: 449-472
    [47] Scanlan R.H. Action of flexible bridges under wind, .2. Buffeting theory. Journal of Sound and Vibration, 1978, 60(2): 201-211
    [48] Scanlan R.H. Action of flexible bridges under wind, .1. Flutter theory. Journal of Sound and Vibration, 1978, 60(2): 187-199
    [49] Scanlan R.H. Problematics in formulation of wind-force models for bridge decks. Journal of Engineering Mechanics, ASCE, 1993, 119(7): 1353-1375
    [50] Kovacs I., Svensson H.S., Jordet E. Analytical aerodynamic investigation of cable-stayed helgeland bridge. Journal of Structural Engineering, ASCE, 1992, 118(1): 147-168
    [51] Boonyapinyo V., Miyata T., Yamada H. Advanced aerodynamic analysis of suspension bridges by state-space approach. Journal of Structural Engineering, ASCE, 1999, 125(12): 1357-1366
    [52] Chen X., Kareem A. Aeroelastic analysis of bridges under multicorrelated winds: Integrated state-space approach. Journal of Engineering Mechanics, ASCE, 2001, 127(11): 1124-1134
    [53] Chen X., Kareem A. Nonlinear response analysis of long-span bridges under turbulent winds. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15): 1335-1350
    [54] Chen X., Kareem A. Advances in modeling of aerodynamic forces on bridge decks. Journal of Engineering Mechanics, ASCE, 2002, 128(11): 1193-1205
    [55] Chen X., Kareem A. Advanced analysis of coupled buffeting response of bridges: A complex modal decomposition approach. Probabilistic Engineering Mechanics, 2002, 17(2): 201-213
    [56] Chen X., Kareem A. New frontiers in aerodynamic tailoring of long span bridges: Anadvanced analysis framework. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12-15): 1511-1528
    [57] Chen X., Kareem A. Aeroelastic analysis of bridges: Effects of turbulence and aerodynamic nonlinearities. Journal of Engineering Mechanics, ASCE, 2003, 129(8): 885-895
    [58] Chen X., Kareem A., Matsumoto M. Multimode coupled flutter and buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(7-8): 649-664
    [59] Chen X., Matsumoto M., Kareem A. Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics, ASCE, 2000, 126(1): 7-16
    [60] Chen X., Matsumoto M., Kareem A. Aerodynamic coupling effects on flutter and buffeting of bridges. Journal of Engineering Mechanics, ASCE, 2000, 126(1): 17-26
    [61] Ding Q., Lee P. K. K. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computers and Structures, 2000, 76(6): 787-797
    [62] Ding Q., Lee P. K. K., Lo S. H. Time domain buffeting analysis of suspension bridges subjected to turbulent wind with effective attack angle. Journal of Sound and Vibration, 2000, 233(2): 311
    [63] Kim H. K., Shinozuka M., Chang S. P. Geometrically nonlinear buffeting response of a cable-stayed bridge. Journal of Engineering Mechanics, 2004, 130(7): 848-857
    [64] Zhu L. D., Xu Y. L. Buffeting response of long-span cable-supported bridges under skew winds. Part 1: Theory. Journal of Sound and Vibration, 2005, 281(3-5): 647-697
    [65] 周述华. 大跨度悬索桥空间非线性抖振响应仿真分析[博士学位论文]. 成都: 西南交通大学, 1993
    [66] 李明水. 连续大气湍流中大跨度桥梁的抖振响应[博士学位论文]. 成都: 西南交通大学, 1993
    [67] 卢伟. 大跨度斜拉桥抖振动力可靠性分析[博士学位论文]. 成都: 西南交通大学, 2000.
    [68] 罗雄. 利用短期实际风速记录模拟极值风速及桥梁时域抖振分析[博士学位论文]. 成都: 西南交通大学, 2002
    [69] 黄艳, 江宜城, 李黎. 澳门-凼仔第三桥的斜拉桥风载动力特性分析. 中国市政工程, 2003, (5): 44-46
    [70] 曾宪武, 韩大建. 大跨桥梁风致抖振时域分析及在 ANSYS 中的实现. 桥梁建设, 2004, (1): 9-12
    [71] 中华人民共和国交通部. JTJ027-96 公路斜拉桥设计规范(试行). 北京:人民交通出版社,1996
    [72] 唐家祥.结构稳定理论. 北京:中国铁道出版社,1989
    [73] 陈骥. 钢结构稳定理论与设计. 北京:科学出版社,2001
    [74] 杨兴旺, 赵雷. 大跨度三塔斜拉桥稳定分析. 工程结构, 2003, 23(4): 38-40
    [75] 王仕统. 结构稳定. 广州:华南理工大学出版社,1997
    [76] 谭建国.使用 ANSYS6.0 进行有限元分析. 北京:北京大学出版社, 2002
    [77] 王瑁成. 有限单元法. 北京:清华大学出版社,2003
    [78] 克拉夫.R W,彭津 J 著. 王光远译. 结构动力学. 北京:科学出版社,1981
    [79] 过镇海. 混凝土的强度和变形——试验基础和本构关系. 北京:清华大学出版社, 1997
    [80] Hongnestad E.. Concrete Stress Distribution in Ultimate Strength Design. Journal of ACI, 1995: 455~479
    [81] 李存权.结构稳定与稳定内力. 北京:人民交通出版社,2000
    [82] 华孝良,徐光辉. 桥梁结构非线性分析. 北京:人民交通出版社,1997
    [83] Solari G. Integrated procedures in wind engineering. International Journal of Fluid Mechanics Research, 2002, 29(3-4): 323-328
    [84] Ding Q., Chen A., Xiang H. A state space method for coupled flutter analysis of long-span bridges. Structural Engineering and Mechanics, 2002, 14(4): 491-504
    [85] Ding Q., Chen A., Xiang H. Coupled buffeting response analysis of long-span bridges by the CQC approach. Structural Engineering and Mechanics, 2002, 14(5): 505-520
    [86] Ding Q. S., Chen A. R., Xiang H. F. Coupled flutter analysis of long-span bridges by multimode and full-order approaches. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 1981-1993
    [87] Augusti G., Solari G. Wind engineering: A short introduction. Meccanica, 1998, 33(3): 215-217
    [88] Solari G., Piccardo G. Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probabilistic Engineering Mechanics, 2001, 16(1): 73-86
    [89] Tubino F., Solari G. Double proper orthogonal decomposition for representing and simulating turbulence fields. Journal of Engineering Mechanics, ASCE, 2005, 131(12): 1302-1312
    [90] Carassale L., Solari G. Monte carlo simulation of wind velocity fields on complex structures. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5): 323-339
    [91] Davenport A.G. The spectrum of horizontal gustiness near the ground in high winds. Quarterly Journal of the Royal Meteorological Society, 1961, 87: 194-211
    [92] Davenport A.G. The dependence of wind loads on meteorological parameters. in: Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures. Ottawa: 1967. 19-82
    [93] Kaimal J.C., Wyngaard J.C., Izumi Y., et al. Spectral characteristics of surface layer turbulence. Quarterly Journal of the Royal Meteorological Society, 1972, 98: 563-589
    [94] Simiu E. Wind spectra and dynamic alongwind response. Journal of Structural Engineering, ASCE, 1974, 100(9): 1897-1910
    [95] Hino M. Spectrum of gusty wind. in: Proceedings of the 3rd International Conference on Wind Effects on Buildings and Structures. Tokyo, Japan: 1971. 69-77
    [96] Harris R.I. The nature of the wind. in: Proceedings of the Seminar on the Modern Design of Wind Sensitive Structures. Institution of Civil Engineers, London: 1970. 29-55
    [97] Von Karman T. Progress in the statistical theory of turbulence. Proceedings of the National Academy of Sciences of USA, 1948, 34: 530-539
    [98] Panofsky H.A., Mccormick R.A. The spectrum of vertical velocity near the surface. Quarterly Journal of the Royal Meteorological Society, 1960, 86: 546-564.
    [99] Shinozuka M., Jan C.M. Digital simulation of random processes and its applications. Journal of Sound and Vibration, 1972, 25(1): 111-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700