用户名: 密码: 验证码:
黄土高原流域土壤侵蚀下垫面特征及其对水土流失的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地貌形态、土地覆盖、景观格局是流域侵蚀环境的重要下垫面条件和区域水土流失的主导因素。如何科学合理的对流域下垫面特征进行量化,建立适合于描述黄土高原地区侵蚀环境的下垫面指标体系,研究各种量化参数与流域侵蚀产沙的作用关系与耦合机制,是黄土高原流域水土流失规律研究的重要内容。本研究以黄土高原典型流域大理河为研究对象,采用地貌学、景观生态学、水文学、土壤侵蚀学、分形理论、数理统计学及RS/GIS技术等多学科交叉,对流域土壤侵蚀下垫面特征及与水土流失的关系进行了研究。主要结论如下:
     (1)构建了大理河流域地理空间数据库,阐明了流域土壤侵蚀空间分布的下垫面特征。以RS/GIS为平台,结合遥感数据成图与空间信息叠加分析,对大理河流域土壤侵蚀的基本特征、土壤侵蚀空间分布的分形特征、地形特征以及土地利用/土地覆被的地形分异性进行了研究,初步揭示了流域土壤侵蚀空间分布的下垫面特征及其复杂性。
     (2)建立了流域地貌特征分形布朗运动量化模型,开发了相关的计算程序。针对以往地貌分形计算过程主观随意性较大和分形特征缺乏有效检验手段的问题,根据分形布朗运动理论,结合流域DEM特点,提出了基于移动窗口法的流域地貌分形布朗运动量化模型。阐明了地貌特征FBM分形维数对流域地貌表面形态的表征意义,并对流域地貌形态的分形布朗运动特征进行了检验,探讨了流域地貌特征分形布朗运动量化的实现方法,编写并调试了相关计算程序。
     (3)揭示了大理河流域地貌分形布朗运动特征的空间变异性,探讨了地貌特征的尺度转换的途径,阐明了地貌特征FBM分形维数与传统地貌量化参数的关系。以流域地貌特征分形布朗运动量化模型为基础,对大理河流域上中下游各子流域地貌分形布朗运动特征进行计算,运用回归与多元回归的方法,建立了地貌特征FBM分形维数的沿程变化方程及其与流域面积的相关关系方程,揭示了流域地貌形态的空间变异特征及其变化规律。对地貌特征FBM分形维数与传统地貌量化参数的关系进行了探讨,阐明了地貌特征FBM分形维数对流域地貌特征的整体性、综合性表征。
     (4)建立了流域植被覆盖及植被格局特征量化模型,并用以评价区域植被的水土保持效应。以多期多源的TM/ETM影像为基础信息源,在完成几何校正、辐射校正、切割裁剪和图像增强等处理过程的基础上,提取了大理河流域各期NDVI植被指数的空间分布特征。通过数据挖掘建模提出了基于均值化NDVI植被指数的流域植被覆盖特征量化指标和基于植被格局FBM分形维数的植被空间分布特征量化模型,并在GIS/RS平台下进行相应的计算程序开发,初步建立了反映植被水土保持作用、易于遥感提取、适合区域研究的植被水土保持功能评价指标。
     (5)研究了大理河流域植被覆盖的时空变化特征。利用多年的TM/ETM影像资料,提取了流域多期植被覆盖信息,通过对大理河流域上中下游各子流域均值化NDVI植被指数、植被格局FBM分形维数以及不同高程上不同等级NDVI植被指数的计算,定量的分析了大理河流域地表植被覆盖随时间和空间的变化规律及其垂直分布特征,揭示20年来大理河流域植被状况的变化特征和动态变化规律。
     (6)揭示了流域下垫面特征与流域侵蚀产沙的耦合关系。收集并分析处理大理河流域38场降雨的径流泥沙资料,以流域次降雨径流侵蚀功率为流域水蚀过程侵蚀输沙动力,构建了地貌形态、植被覆盖、植被格局等流域下垫面特征与降雨侵蚀产沙之间的动态耦合关系。通过对不同下垫面输入参数的比选,阐明了流域地貌特征FBM分形维数、均值化NDVI植被指数和植被格局FBM分形维数作为流域降雨侵蚀产沙预报模型下垫面特征量化参数的合理性与可行性。
Geomorphology, land use/land cover and landscape pattern are the important underlying surface conditions of watershed erosion environment and the dominant factors of regional soil and water loss. It is the important things for the soil erosion research on Loess Plateau to quantify the characteristics of the underlying surface in watershed scientifically and rationally, to establish the index system of underlying surface suited to the Loess Plateau, and to study the coupling relationship between the quantitative parameters and sediment yield. According to the inter-disciplinary theories such as hydrology, sediment transport mechanics, soil and water conservation, ecology, fractal theory, geomorphology and RS/GIS technology etc, by using the integration of theoretical analysis and numerical simulation methods, together with taking typical watersheds on Loess Plateau as study objects, with the data of rainfall process and watershed underlying surface, the characteristics of soil erosion underlying surface in watershed and the relationship with soil and water loss on Loess Plateau was analyzed in the paper. The main conclusions are as follows:
     (1)Dalihe River Geospatial Database was constructed, and the characteristics of the underlying surface in which was studied. Based on geographic information system (GIS) and remote sensing (RS), combined with RS data extraction technology and the spatial information data overlay analysis, the basic character of soil erosion in Dalihe River, the fractal characters and topographic characters of regional soil erosion spatial distribution, and the topographic characters of land use/land cover spatial distribution was researched, which revealed the initial characteristics of the underlying surface in Dalihe River.
     (2) The theory and method on describing the topographic FBM characteristics of watershed by using Fractional Brownian Motion theory was established, and the calculation software system is developed. According to the subjective arbitrariness in the fractional calculation process and the lack of effective testing means for fractal characteristics, based on the Fractional Brownian Motion theory, combined with watershed digital elevation model, the topographic feature FBM quantitative model was suggested by the fixed size moving window analysis. By studying the increments'probability distribution, statistical self-similarity, and the fractal character, the FBM characteristics of watershed topographic feature was proved. The realization method of topographic feature FBM quantitative model was discussed, and the model was established by the correlative calculation program compiled and debugged.
     (3)The spatial variability and the scale effect on watershed topographic FBM characteristics in Dalihe River were studied. Based on the topographic feature FBM quantitative model, the topographic feature FBM fractal dimensions of sub-watersheds on upstream, midstream and downstream and sub-watersheds with different area were calculated. The regression and multiple regression methods were used to establish the equation of FBM fractal dimensions variation along the river and the equation of correlation between the FBM fractal dimensions and the watershed area, which reveal the spatial variability and the scale effect on watershed topographic. And the relationship between the FBM fractal dimensions and the traditional topographic feature quantitative model was discussed as well.
     (4)The quantitative model for the watershed characteristics of vegetation cover and vegetation pattern is established, and the corresponding calculation program is also developed in this paper. Using the TM/ETM remote sensing image data of many periods as the basic information sources, based on the geometric correction, radiometric correction, image subset and radiometric enhancement, the space distributing features of the NDVI vegetation index in the Dalihe watershed are extracted. Through the data mining models, the quantitative indexes of watershed vegetation cover characteristics based on the mean NDVI vegetation index, and the quantitative models of space distributing features of the vegetation based on the vegetation pattern FBM fractal dimension, are proposed, the responding calculation program is developed under the GIS/RS platform, and then the evaluating indexes for the soil and water conservation function of regional vegetation, which can reflect the soil and water conservation effect of the vegetation and is easy to be obtained by remote sensing technology, is primarily established.
     (5)To describing the temporal and spatial varying characteristics of the vegetation cover of Dalihe watershed, the TM/ETM remote sensing image data of many years was used to extract the vegetation cover information of many periods in this watershed. Through the calculation of mean NDVI vegetation index, the vegetation pattern FBM fractal dimension, and the NDVI vegetation indexes of different grades and different elevation in the sub-watershed of the upper middle and lower reaches of Dalihe watershed, the temporal and spatial varying regulations and its vertical distribution features of the land vegetation cover in Dalihe watershed are quantitatively analyzed, and the dynamic varying feature and regulations of the vegetation conditions in Dalihe watershed of the d 20 years passed are revealed in this paper.
     (6)The coupling correlation, between the characteristics of the underlying surface and the sediment yield of the watershed, is discussed, and the runoff and sediment data of 38 rainfalls in the Dalihe Watershed is collected and analyzed in this paper. Using the runoff erosion and sediment power of the single rainstorm in the watershed as the dynamics of erosion and sediment transportation in the process of water erosion, the BP Neural Network Model was used to construct the dynamic coupling relationship between the underlying surface characteristics of geomorphology, land cover and landscape patterns and the rainfall erosion and sediment. By the comparison and selection of the inputting parameter for different underlying surfaces, the rationality and feasibility, using the topographic feature FBM fractal dimension, mean NDVI vegetation index, and the vegetation pattern FBM fractal dimension as the quantitative parameters of the underlying surface characteristics for the rainfall erosion and sediment forecasting model, are expressed in this paper.
引文
【1】彭珂珊.中国水土流失问题的初探[J].北京联合大学学报(自然科学版),2004,18(1):20-26.
    【2】中华人民共和国水利部.全国水土流失公告[R].北京:中华人民共和国水利部,2002
    【3】 SKUKLA J, NOBRE C, SELLERS P. Amazonian deforestation and climate change [J]. Science,1990 (247):1322-1325
    【4】史培军,宫鹏,李晓兵.土地利用/覆盖变化研究的方法与实践[M].北京:科学出版社,2000
    【5】李秀彬.全球环境变化的了新领域—土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,51(6):142-160
    【6】陈泮勤,孙成权.国际全球变化研究核心计划(二)[M].北京:气象出版社,1994
    【7】 PERMER J E. Atmospheric chemistry and air quality[C]. Meyer W B. Changes in Land Use and Land Cover-A Global Perspective. Cambridge:Cambridge University press,1994
    【8】中国水利学会.水利学科发展报告[M].北京:中国科学技术出版社,2008
    【9】朱永清.黄土高原典型流域地貌形态分型特征与空间尺度转换研究[D].西安:西安理工大学,2006
    【10】蒋德麒.黄河中游丘陵沟壑区沟道小流域的水土流失及治理[J].中国科学,1978,11(6):15-20
    【11】蒋德麒,赵诚信,陈章霖.黄河中游小流域径流泥沙来源初步分析[J].地理学报,1966,32(1):20-35
    【12】常茂德.陇东黄土高原沟道小流域的土壤侵蚀[J].水土保持通报,1986(3):56-60
    【13】 FLANAGAN D C, NEARING M A. USDA-Water Erosion Prediction Project:Hill slope Profile and Watershed Model Documentation[R]. West Lafayette:USDA-ARS National Soil Erosion research Lab,1995
    【14】 SHARPLEY A N, WILLIAMS J R. EPIC-Erosion/Productivity Impact Calculator:Model Documentation. U.S. Department of Agriculture Technical Bulletin[R]. Washington D. C. U.S. Government Printing Office,1990
    【15】 SAXTON K E. User's Manual for SPAW:A Soil-plant-Atmosphere-Water Model[R]. Pullman: USDA-ARS,1992
    【16】 KOELLIKER J K. User's Manual of Potential Yield Model Revised[R]. Manhattan, Kansas: Kansas State University, Department of Biological and Agricultural Engineering,1994
    【17】谢云,刘燕,张岩.通用土壤流失方程的发展与应用[J].地理科学进展,2003.22(3):279-287
    【18】 SIMUNEK J, SEJNA M, VAN GENUCHTEN M T. HYDRUS-2D:Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media with Full-color, High-resolution Graphics User Interface[R]. Riverside:U.S. Salinity Laboratory, USDA/ARS,2007
    【19】 MISHRA S K, SINGH V P. Soil Conservation Service Curve Number (SCS-CN) Methodology[R]. Dordrecht, Netherlands:Kluwer Academic,2003
    【20】 ARNOLD J G, WILLIAMS J R, NICKS A D, et al. SWRRB-A Basin Scale Simulation Model for Soil
    and Water Resources Management[M].College Station, Texas:Texas A&M University Press, 1990
    【21】陈国祥.土壤侵蚀与流域产沙的物理过程及预报模型[C].全国泥沙基本理论研究学术研讨会会议论文集.北京:中国水利水电出版社,1995,1378-1387
    【22】刘秉正,吴发启.土壤侵蚀[M].西安:陕西人民出版社,1997
    【23】王占礼.中国土壤侵蚀影响因素及其危害分析[J].农业工程学报,2000(4):32-36
    【24】蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997
    【25】肖学年,崔灵周,王春.模拟流域地貌发育过程的空间数据获取与分析[J].地理科学,2004,24(4):439-443
    【26】孙家炳.遥感原理与应用[M].武汉:武汉大学出版社,2003
    【27】陈述彭,童庆禧,郭东华.遥感信息机理研究[M].北京:科学出版社,1998
    【28】陈伟涛,张志,王焰新.矿山开发及矿山环境遥感探测研究进展[J].国土资源遥感,2009(2):1-8
    【29】李亚云,杨秀春,朱晓华,等.遥感技术在中国土地荒漠化监测中的应用进展[J].地理科学进展,2009,28(1):55-62
    【30】路京选.水利遥感应用技术研究进展回顾与展望[J].中国水利水电科学研究院学报,2008,6(3):224-230
    【31】陈或,徐瑞松,蔡睿,等.遥感技术在地震研究中的应用进展[J].地球物理学进展,2008,23(4):1273-1281
    【32】岳跃民,王克林,张兵,等.高光谱遥感在生态系统研究中的应用进展[J].遥感技术与应用,2008,23(4):471-478
    【33】张立福.通用光谱模式分解算法及植被指数的建立[D].武汉:武汉大学,2005
    【34】倪金生,蒋一军,张富民.遥感图像处理理论与实践[M].北京:电子工业出版社,2008
    【35】李德仁.论21世纪遥感与GIS的发展[J].武汉大学学报(信息科学版),2003,28(2):127-131
    【36】 PARUELO J M, GOLLUSCIO R A. Range assessment using remote sensing in Northwest Patagonia Argentina[J]. Journal of Range Management,1994,47(6):498-502
    【37】 WILLIAMSON H D, ELDRIDGE D J. Pasture status in a semi-arid grassland [J]. International Journal of Remote Sensing,1993,14(13):2535-2546
    【38】 PRINCE S D, ASTLE W L. Satellite remote sensing of rangelands in Botswana I:Landsat MSS and herbaceous vegetation[J]. International Journal of Remote Sensing,1986,7(11): 1533-1553
    【39】 PICKUP G, CHEWINGS V H, NELSON D J. Estimating changes in vegetation cover over time in arid rangelands using Landsat MSS data. Remote Sensing of Environment,1993,43:243-263
    【40】 BOYD W E. Correlation of rangelands brush canopy cover with Landsat MSS data. Journal of Range Management,1986,39(3):268-271
    【41】 MCDANIEL. Assessing mesquite grass vegetation condition from Landsat MSS [J]. Photogram metric Engineering and Remote Sensing,1982,48:441-450
    【42】 GRAETZ PECH. The assessment and monitoring of sparsely vegetated rangelands using calibrated Landsat data[J]. International Journal of Remote Sensing,1988,9(7):1201-1222
    【43】YANG, PRINCE. Remote sensing of savanna vegetation changes in Eastern Zambia 1972-1989 [J]. International Journal of Remote Sensing,2000,21(2):301-322
    【44】 MERRILL E H, BRAMBLE-BRODAHL M K, MANS R W, et al. Estimation of green herbaceous phytomass from Landsat MSS data in Yellowstone National Park[J]. Journal of Range Management,1993, 46(2):151-157
    【45】 LARSSON H. Analysis of variations in land cover between 1972 and 1990, Kassala Province, Eastern Sudan, using Landsat MSS data[J]. International Journal of Remote Sensing, 2002,23 (2):325-333
    【46】 MCCLOY K R, HALL K A. Mapping the density of woody vegetative cover using Landsat MSS digital data[J]. International Journal of Remote Sensing,1991,12(9):1877-1885
    【47】 RINGROSE S, MUSISI-NKAMBWE S, COLEMAN T, et al. Use of Landsat Thematic Mapper data to seasonal rangeland changes in the Southeast Kalahari, Botswana[J]. Environmental 1999,23(1):125-138
    【48】 SALTZ D, SCHMIDT H, ROWEN M, et al. Assessing grazing impacts by remote sensing in hyperacid environments[J]. Journal of Range Management,1999,52(5):500-507
    【49】 LANGLEY S K,CHESHIRE H M, HUMES K S..A comparison of single date and multi-temporal satellite image classifications in a semi-arid grassland[J]. Journal of Arid Environments,2000,49:401-411
    【50】HIRATA M, KOGA N, SHINJO H, et al. Vegetation classification by satellite image processing in a dry area of north-eastern Syria[J]. International Journal of Remote Sensing,2001,22(4):507-516
    【51】 EGBERT S L, PRICE K P, NELLIS M D, et al. Developing a land cover modeling protocol for the High Plains using multi-seasonal Thematic Mapper imagery[C]. ACSM IASPRS,1995 Annual Convention and Exposition. Charlotte,1995:836-845
    【52】 PRICE K P, CROOKS T J, MARTINKO E A. Grasslands across time and scale:a remote sensing perspective[J].. Photogram metric Engineering and Remote Sensing,2001,67(4):414-420
    【53】 GUO X, PRICE K P, STILES J M. Modeling biophysical factors for grasslands in Eastern Kansas using Landsat TM data[J]. Transaction of the Kansas Academy of Science,2000, 03 (3-4):122-138
    【54】 ANDERSON G L, HANSON J D HASS R H. Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands[J]. Remote Sensing of Environment,1993,45:165-175
    【55】 JUSTICE C O, HIERNAUX P H. Monitoring the grasslands of the Sahel using NOAA/AVHRR data:Nigerl983[J]. International Journal of Remote Sensing,1986,7(11):1475-1497
    【56】 FRIEDL M A, MICHAELSEN J, DAVIS F W, et al. Estimating grassland biomass and leaf area index using ground and satellite data[J]. International Journal of Remote Sensing,1994,15 (7):1401-1420
    【57】 TODD S W, HOFFER R M, MILEHUNAS D G. Biomass estimation on grazed and unglazed rangeland using spectral indices[J]. International Journal of Remote Sensing,1998,19(3):427-438
    【58】 PICKUP G. A simple model for predicting herbage production from rainfall in rangelands and is calibration using remotely-sensed data[J]. Journal of Arid Environment,1995,30: 227-245
    【59】 IKEDA H, OLCAMOTO K, FUKUHARA M. Estimation of aboveground grassland phytomass with a growth model using Landsat TM and climate data[J]. International Journal of Remote Sensing,1999,20(11):2283-2294
    【60】 JUSTICE C 0, TOWNSHEND J R G, HOLBEN B N, et al. Analysis of the phonology of global vegetation using meteorological satellite data[J]. International Journal of Remote Sensing,1985,6(8):1271-1318
    【61】 TUCKER C J, FUNG I Y, KEELING C D, et al. Relationship between atmospheric C02 variations and a satellite-derived vegetation index[J]. Nature,319,195-199
    【62】 ANDERSON M, NEALE C, LI F, NORMAN J, et al. Up scaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery[J]. Remote Sensing of Environment.2004(92):447-464
    【63】 MOLEELE N M, RINGROSE S, ARNBERG W, et al. Assessment of vegetation indexes useful for browse (forage) prediction in semi-arid rangelands [J]. International Journal of Remote Sensing,2001,22(5):741-756
    【64】 PUREVDORJ T, TATEISHI R, ISHIYAMA T, et al. Relationship between percent vegetation cover and vegetation indices[J]. International Journal of Remote Sensing,1998,19(18): 3519-3535
    【65】 RASMUSSEN M S. Developing simple, operational, consistent NDVI-vegetation models by apply environmental and climatic information:Part Ⅰ. Assessment of net primary production[J]. International Journal of Remote Sensing,1998,19(1):97-117
    【66】 TANSER F C, PALMER A R. The application of a remotely-sensed diversity index to monitor degradation patterns in a semi-arid, heterogeneous, South African landscape [J]. Journal of Arid Environments,1999,43:477-484
    【67】李建龙,戴若兰,任继周.遥感技术在新班阜康县草地估产中的应用研究[J].中国草地,1998(1):11-14
    【68】邹亚荣,赵晓丽,张增祥,等.遥感与GIS支持下的中国草地动态变化分析[J].国士资源遥感,2002(1):29-33
    【69】陈全功,卫亚星,梁天刚.青海省达日县退化草地研究I退化草地遥感调查[J].草业学报,1998,7(2):58-63
    【70】刘志明,晏明,王贵卿,等.基于卫星遥感信息的吉林省西部草地退化分析[J].地理科学,2001,21(5):452-456
    【71】涂军,熊燕,石德军.青海高寒草甸草地退化的遥感技术调查分析[J].应用与环境生物学报,1999,5(2):113-135
    【72】于嵘.基于遥感时序数据的中国陆地植被覆盖变化分析研究[D].北京:中国科学院研究生院,2006
    【73】 DI LI-PING, RUNDQUIST D C, HAN LUO-HENG. Modeling relationships between NDVI and precipitation during vegetative growth cycles[J]. International Journal of Remote Sensing,1994,15(10):2121-2136
    【74】 SMITH R C G, CHOUDHURY B J. Analysis of normalized difference and surface temperature observations over southeastern Australia[J]. International Journal of Remote Sensing,1991,12(10):2021-2044
    【75】 GOWARD S N, MARKHAM B, DYE D G. Normalized difference vegetation index measurements from the advanced very high resolution radiometer[J]. Remote sensing of environment,1991,35(2-3):257-277
    【76】 WIEGAND C L, RICHARDSON A J, JACKSON R D. Development of agro meteorological crop model inputs from remotely sensed information[J]. Transactions on Geosciences and Remote Sensing,1986,24(1):90-97
    【77】 CIHLAR J,ST LAURENT L, DYER J. The relationship between the Normalized Difference Vegetation Index and ecological variables[J]. Remote Sensing of Environment,1991,35: 279-298
    【78】 CHOUDHURY B J, GOLUS R E. Estimating soil wetness using satellite data[J]. International Journal of Remote Sensing,1988,9(7):1251-1257
    【79】 DI LI-PING. Regional-scale soil moisture monitoring using NOAA/AVHRR data [D]. Lincoln: University of Nebraska at Lincoln,1991
    【80】 BUDDE M E, TAPPAN G, ROWLAND J. Assessing land cover performance in Senegal, West Africa using 1-km integrated NDVI and local variance analysis [J]. Journal of Arid Environments, 2004,59(3):481-498
    【81】 WESSELS K J, DE FRIES R S, DEMPEWOLF J. Mapping regional land cover with MODIS data for biological conservation:Examples from the Greater Yellowstone Ecosystem, USA and Para State, Brazil[J]. Remote Sensing of Environment,2004,92(1):67-83
    【82】朴世龙,方精云,郭庆华.1982-1999年我国植被净第一性生产力及其时空变化[J].北京大学学报(自然科学版),2001,37(4):563-569
    【83】朴世龙,方精云.最近18年来中国植被覆盖的动态变化[J].第四纪研究,2001,21(4):294-302
    【84】杨胜天,刘昌明,孙睿.黄河流域干旱状况变化的气候与植被特征分析[J].自然资源学报,2003,18(2):136-141
    【85】方精云,朴世龙,贺金生.近20年来中国植被活动在增强[J].中国科学C辑,2003,33(6):554-565
    【86】陈云浩,李晓兵,陈晋.1983—1992年中国陆地植被NDVI演变特征的变化矢量分析[J],遥感学报,2002,6(1):12-18
    【87】马明国,董立新,王雪梅.过去21a中国西北植被覆盖动态监测与模拟[J].冰川冻土,2003,25(2):232-236
    【88】杨建平,丁永建,陈仁升.长江黄河源区高寒植被变化的NDVI记录[J].地理学报,2005,60(3):467-478
    【89】刘佳雪.针阔混交林次生演替阶段土壤营养元素迁移对比分析研究[D].沈阳:东北师范大学,2005
    【90】秦富仓.黄土地区小流域森林植被格局对侵蚀产沙过程调控研究[D].北京:北京林业大学,2006
    【91】陈奇伯,费希亮.土壤侵蚀预报研究的新进展[J].中国水土保持,1996,2:20-23
    【92】唐克丽,等.黄河流域的侵蚀与径流泥沙变化.北京:中国科学技术出版社,1993
    【93】唐克丽,张科利,郑粉莉,等.子午岭林区自然侵蚀和人为加速侵蚀剖析[J].中国科学院水利部水土保持研究所集刊,1993(17):17-28
    【94】 ZINGG A W. Degree and length of land slope as it affects soil loss in runoff[J]. Agricultural Engineering,1940,21(2):59-64
    【95】 MUSGRAVE G W. The Quantitative Evalution of Factors in Water Erosion-A First Approximation[J]. Journal of Soil and Water Conservation.,1947,2(3):133—138
    【96】 SMITH D D,WISCHMEIER W H. Rainfall erosion[J]. Advance in Agronomy,1958,14
    【97】LINE D E, MEYER L D. Evaluating interrill and rill erodibilities for soils of the different textures[J]. Transaction of the ASAE,1989,32(6):1995-1999
    【98】 DEGENS B P. Macro-aggregation of soils by biological bonding and binding and the factors affecting these:a review[J]. Australian Journal of Soil Research,1997,35:431-459
    【99】 SHERIDAN G J, SO H B, LOCH R J, et al. Estimation of erosion model erodibility parameters from media properties[J]. Australian Journal of Soil Research,2000,38:265-284
    【100】 SHERIDAN G J, SO H B, LOCH R J, et al. Use of laboratory-scale rill and interrill erodibility measurement for the prediction of hill slope-scale erosion on rehabilitated coal mine soils and overburdens [J]. Australian Journal of Soil Research,2000,38:285-297
    【101】 CERDA A. Soil erosion after land abandonment in a semiarid environment of southern Spain[J]. Arid Soil Research and Rehabilitation,1997,11:163-176
    【102】 CARROLL C, MERTON L, BURGER P. Impact of vegetation cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queen lands coal mines[J]. Australian Journal of Soil Research,2000,38:313-327
    【103】郭忠升.水土保持林有效覆盖度及其确定方法的研究[J].土壤侵蚀与水土保持学报,1996,2(3):67-72
    【104】焦菊英,王万中,李靖.黄土高原林草水土保持有效盖度分析[J].植物生态学报,2000,24(5):8-12
    【105】朱显谟,田积莹.强化黄土高原土壤渗透性及抗冲性的研究[J].水土保持学报,1993,7(3):1-10
    【106】朱显谟.黄土区植被因素对水土流失的影响[J].土壤学报,1960,8(2):2-8
    【107】周佩华.黄土高原土壤侵蚀特点与植被对土壤侵蚀影响的研究[J].水土保持通报,1991,11(5):26-31
    【108】杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992
    【109】卢金发,黄秀华.土地覆被对黄河中游流域泥沙产生的影响[J].地理研究,2003,22(5):571-578
    【110】查轩,唐克丽,张科利,等.植被对土壤特性及土壤侵蚀的影响[J].水土保持学报,1992,6(2):52-58
    【111】黄录基,MUNRO D S,张绍贤,等.降水、蒸发和径流的坡向效应[J].水土保持学报1994,8(1):18-25
    【112】张振克.人为裸露坡面植被自然恢复的初步研究[J].水土保持通报,1998,18(1):26-28
    [113]罗杰斯,舒姆.稀疏植被覆盖对侵蚀和产沙的影响[J].中国水土保持,1992,(4):18-20
    【114】水建国,柴锡周,张如良.红壤坡地不同生态模式水土流失规律的研究[J].水土保持学报,2001,15(2):33-36
    【115】张华嵩.植被恢复过程与防止水土流失效果的研究[J].林业科学,1989,25(1):40-50
    【116】张兴昌,刘国彬,付惠芳.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,2000(6):16-19
    【117】吴钦孝,赵鸿雁,韩冰.黄土丘陵区草灌植被的减沙效益及其特征[J].草地学报,2003,11(1):23-26
    【118】郭忠升.水土保持林有效覆盖率(ECR)的初步研究[J].西北林学院学报,1997,12(1):97—100
    【119】郭百平,王子科,阎晋民等.沙棘林郁闭度对产流产沙过程影响的研究[J].山西水土保持科技,1997,2(25):19-22
    【120】 RUTTER A J, MORTON A J. A predictive model of rainfall interception in forests Ⅲ Sensitivity of the model to stand parameters and meteorological variables [J]. Journal of Apply Ecology,1977,14:567-588
    【121】 CZARNOWSKI M S, OLSZEWSKI J L. Rainfall interception by a forest canpoy[J]. Oikos,1968,19:345-350
    【122】 GASH J H C. An analytical model of rainfall interception by forests[J].0. J. R. Met. Soc.,1979,105:43-55
    【123】SHARMA M M. Factors controlling thestability of colloid-stabized emulsion[J]. J colloid Interface sci,1993,157:244-253
    【124】 GHIDEY F, ALBERTS EE. Plant root effects on soil erodibility, splash detachment, soil strength, and aggregate stability[J]. Transaction of the ASAE,1997,40(1):129-135
    【125】 VEERLE VANACKER. The effect of short-term socio-economic and demographic change on landuse dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment Ecuador. Landscape Ecology,2003,18(1):1-15
    【126】 KIEPE P. No runoff, no soil loss:soil and water conservation in hedgerow barrier system[D]. Wageningen:Agricultural University of Wageningen,1995
    【127】黄委会西峰水土保持试验站.1956-1962年子午岭林区测验结果总结[C].黄河流域水土保持科学研究工作会议汇编,1964
    【128】候喜禄,梁一民,曹清玉.黄土丘陵沟壑区主要水保林类型及草地水保效益的研究[J].中科院水利部西北水土保持研究所集刊,1991(4):96-103
    【129】侯喜禄,梁一民.黄土丘陵沟壑区水土保持林体系建设及效益分析[J].水土保持研究,1991,2:38-41
    【130】侯喜禄.陕西黄土区不同森林类型水土保持效益的研究[J].西北林学院学报,1994,9(2):20-24
    【131】石生新.高强度人工降雨条件下地面坡度、植被对坡面产沙过程的影响[J].山西水利科技,1996(3):77-80
    【132】袁彝媛,凌有求.人工模拟降雨研究及其应用[J].水文,1992(5):12-17
    【133】罗伟祥,白立强,宋西德.不同覆盖度林地和草地的径流量与冲刷量[J].水土保持学报,1990(1):30-34
    【134】王秋生.植被控制土壤侵蚀的数学模型及其应用[J].水土保持学报,1991,(4):28-32
    【135】唐克丽.中国土壤侵蚀与水土保持的态势和土壤科学的任务[C].中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇),2004
    【136】江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究[J].中国水土保持,1983(3):32-36
    【137】董荣万.定西黄土丘陵沟壑区土壤侵蚀规律研究[J].水土保持通报,1998,18(3):1-9
    【138】李孝地.黄土高原不同坡向土壤侵蚀分析[J].中国水土保持,1988,8:52-54
    【139】侯喜禄,白岗拴,曹清玉.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验[J].水上保持学报,1995,9(3):90-95
    【140】胡建忠,范小玲.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通 报,1998,18(2):29-34
    【141】牟金泽,熊贵枢.陕北小流域产沙量预报及水土保持措施拦沙计算[C].河流泥沙国际学讨论会论文集,1980,第1卷
    【142】熊贵枢,张胜利.大理河流域减水减沙效益初步分析[J].人民黄河,1983,(1):45-49
    【143】刘元保,唐克丽,查轩,等.坡耕地不同地面覆盖的水土流失试验研究[J].水土保持学报,1990,4(1):25-29
    【144】蒋定生.黄土高原水土流失严重地区综合治理的新进展[J].水土保持研究,1994,1(1):23-28
    【145】傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246
    【146】魏天兴,朱金兆,朱清科,等.黄土陡坡地农林复合经营设计与水土保持效益研究[J].土壤侵蚀与水土保持学报,1998,5(4):45-51
    【147】杨文治,田均良.黄土高原土壤干燥化问题探源[J].土壤学报,2004,41(1):1-6
    【148】 RAI S C, SHARMA E. Comparative assessment of runoff characteristics under different land use patterns within a Himalayan watershed[J]. Hydrological Process, 1998b,12:2235-2248.
    【149】 NOY MEIR I. Desert ecosystems:environment and Producers, Annual Review of Ecology and Systems[M]. Princeton, New Jersey:Princeton University Press,1986
    【150】 HILL R D, PEART M R. Land use, runoff, erosion and their control:A review for southern China[J]. Hydrological Process,1998,12:2029-2042
    【151】傅伯杰,汪西林.DEM在研究黄土丘陵沟壑区土壤侵蚀类型和过程中的应用[J].水土保持学报,1994,8(3):17-21
    【152】喻权刚.遥感信息研究黄土丘陵区土地利用与水土流失[C].黄土高原水土保持实践与研究(二).郑州:黄河水利出版社,1998:84-92
    【153】惠振德,孙虎,李晓玲.陕南土壤侵蚀特征及时空分布规律[J].水土保持通报,1997,17(2):1-6
    【154】符素华,段淑怀,李永贵.北京山区土地利用对土壤侵蚀的影响[J].北京师范大学学报,2002,12(1):108-112
    【155】王军,傅伯杰,邱扬等.黄土高原小流域土壤养分的空间分布格局[J].地理研究,2003,22(3):373-379
    【156】陈松林.基于GIS的土壤侵蚀与土地利用关系研究[J].福建师范大学学报,2000,(1):34-37
    【157】唐克丽,贺秀斌.第四纪黄土坡面多元古土壤形成发育信息的揭示[J].土壤学报,2002,39(5):609-617
    【158】郑粉莉,贺秀斌.黄土高原植被破坏与恢复对土壤侵蚀演变的影响[J].中国水土保持,2002,7:21-25
    【159】 MOORE J D, BURCH G.J. Physical basis of the Length-slope factor in the universal soil loss equation[J]. Soil Science Society of America Journal,1986,50:1294-1298
    【160】 HAYES J C,BAFIELD B J, BARNHISEL R L. Performance of grass filters under laboratory and field conditions[J]. Transactions of the ASAE,1984,27(5):1321-1331
    【161】 SCHELLINGER G R, CLAUSEN J C. Betetative filter treatment of dairy barnyard runoff in cold regions[J]. Journal of Environmental Quality,1992,21(1):40-45
    【162】蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998
    【163】 LAL R. Soil erosion and its relation to productivity in tropical soils [C]. ELSWAIFY S A, MOLDENHAUER W C, LO A. Soil Erosion and Conservation. Ankeny, lowa:SCSA,1985: 237-247
    【164】王有科,傅左,李立.坡面水土流失观测分析[J].中国科学院水利部西北水土保持研究所集刊,1991.14:104-109
    【165】江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].水土保持学报,1996,2(1):1-9
    【166】魏天兴,朱金兆,朱清科.黄土陡坡地农林复合经营设计与水土保持效益研究[J].土壤侵蚀与水土保持学报,1998,5(4):45-51
    【167】HURNI H, NUNTAPONG S. Agro-forestry improvements for shifting cultivation systems, soil conservation research in northern Thailand[J]. Mountain Research Development,1983,3: 338-345
    【168】 PIMENTAL. World agriculture and soil erosion-erosion threaten world food production [J]. Bioscience,1987,37(4):277-283
    【169】 GILLEY J E, DORAN J W, KARLEN D L. Runoff, erosion and soil quality characteristics of a farmer conservation reserve program site[J]. Journal of Soil and Water Conservation, 1997,52 (3):189-193
    【170】 LUDWIG J,TONGWAY D, FREUDENBERGER D. Landscape ecology, Function and Management: Principles from Australia Rangelands[M]. Collingwood:CSIRO Publishing Melbourne,1997
    【171】 PIERCE F J, FORTIN M C, STATON M J. Periodic plowing effects on soil properties in a no-till farming systems[J]. Soil Science Society of America Journal,1994,58:1782-1787
    【172】 UNGER P W. Straw-mulch effect on soil water storage and sorghum yield[J]. Soil Science Society of America Journal,1978,42:480-491
    【173】 LI YONG, YANG JUN-CHENG, ZHOU YONG-YI. Using 137Cs and 210Pb to assess the sediment sources in a dam reservoir catchments on the Loess Plateau China[C]. China Nuclear Science and Technology Report. Beijing:Atomic Energy Press,1997
    【174】 LOUGHRAN R J. The measurement of soil erosion[J]. Progress in Physical Geography, 1990,13:216-233
    【175】 Forman R T. Gordon M. Landscape Ecology[M]. New York:John Wiley and Sons,1986
    【176】 LONG D S. Spatial auto regression modeling of site-specific wheat yield[J]. Gendarme, 1998,85:181-197.
    【177】 ROOT T L, SCHNEIDER S H. Ecology and climate:research strategies and implications[J]. Science,1995,269:334-341
    【178】 MUNOZ, CARPENA R, PARSONS J E, et al. Numerical approach to the overland flow process in vegetative filter strip[J]. Transactions of the ASAE,1993,36(3):761-770
    【179】卢宗凡,张文军.黄土丘陵区水土保持措施的研究[J].水土保持学报,1988,2(1):23-27
    【180】卢宗凡,张文军,苏敏.几种水土保持指标的分析与评价[J].水土保持学报,1988,2(4):60-65
    【181】朱新美译.普通地貌学[M].北京:人民教育出版社,1982
    【182】李志林,朱庆.数字高程模型(第二版)[M].武汉:武汉大学出版社,2003
    【183】 HORTON R E. Erosional Development of Streams and Their Drainage Basins, Hydrophsical Approach to Quantitative Morphology[J]. Geological Society of America Bulletin, 1945,156:275-370
    【184】 STRAHLER A N. Dynamic Basis of Geomorphology[J]. Geological Society of America Bulletin, 1952,163:923-938
    【185】 SCHUMM S A. The Evolution of Drainage Systems and slope in Badland at Perth Amboy New, Jersey[J]. Geological Society of America Bulletin,1956,167:596-646
    【186】SCHUMM S A, KHAN H R. Experiment study on channel patterns. Geological Society of America Bulletin,1972.183(6):1755-1770
    【187】 SCHUMM S A. The Role of Creep and Rain-wash on the Retreat of Badland Slopes [J]. American Journal of Science,1956,1254:693-706
    【188】 SCHUMM S A. The Fluvial System[M]. New York:Wiley,1977
    【189】 MORISAWA M E. Quantitative Geomorphology of Some Watersheds in the Appalachian Platoon[J]. Geological Society of America Bulletin,1962,73(9):1025-1046
    【190】 MORISAWA M E. Development of Drainage systems on an upraised lake Floor[J]. American Journal of Science,1964,262:341-354
    【191】罗来兴等.划分晋西、陕北、陇东黄土区域沟间地与沟谷地的地貌类型,地理学报[J].1955.22(3):201-221
    【192】陈永宗.黄河中游黄土丘陵区的沟谷类型.地理科学[J].1984.4(4):322-327
    【193】白占国.黄土高原(塬区)沟壑系统演变的研究[D].杨陵:中国科学院水利部水土保持研究所,1991
    【194】陈浩.陕北黄土高原沟道小流域地态特征分析.地理研究[J].1986,5(1):82-91
    【195】秦富仓,郑明军,孙旭.小流域地貌要素相关关系的研究.水土保持研究[J].1998,5(3)30-33
    【196】 ANDRLE R. Estimating fractal dimension with the divide method in geomorphology. Geomorphology[J].1992,5(1):131-141
    【197】 DUBUC B, ZUCKER S W, TRICOT W. Evaluating the fractal dimension of surface[J]. Proc. Roy. Soc. London,1989,425:113-127
    【198】 FALCONER K J. The Hausdorff dimension of self-affine fractals[J]. Math proc Comb Phil Soc,1988,103:339-350
    【199】王身立.耗散结构理论向何处去.北京:人民出版社,1989
    【200】 GLEICK J. CHAOS[M]. New York:Viking Penguin Inc,1988
    【201】 NICOLIS G, PRIGOGINE I. Self-Organization in Non equilibrium Systems[J]. New York: Wiley,1977
    【202】 PRIGOGINE I. From Being To Becoming[M]. San Francisco:W. H Freeman and Company,1980.
    【203】 HAKEN H. Synergetic. Berlin, Springer-Verlag,1978.
    【204】 KLINKENBERG B, GOODCHILD M F. The Fractal Property of Topography, A comparison of methods[J]. Earth Surface Processes and Landforms,1992,17:217-234
    【205】 ANDRLE R, ABRAHAMS A D. Fractal techniques and the surface roughness of talus slope [J]. Earth Surface Processes and Landforms,1989,14(2):191-209
    【206】 BREYER S P, SNOW S. Drainage basin Perimeters, a fractal significance [J]. Geomorphology, 1992,5(1):143-157
    【207】 GOODCHILD M F. Fractals and accuracy of geographical measures[J]. Math. Geol, 1980,12(2):85-98
    【208】 MARK D M, ARONSON P B. Scale-dependent fractal dimension of topographic surface[J]. Math Geol,1984,16(7):671-684
    【209】 VENEZIANO D, NIEMANN J D. Self-similarity and multifractality of topography surface at basin and sub basin scale[J]. J, Geophysics. Res,1999,104(12):797-812
    【210】 NAOKAZU Y, KAZUIKO Y. Fractal-Based Analysis and Interpolation of 3D Nature Surface Shapes and Their Application to Terrain Modeling[J]. Computer Vision Graphics Image Processing,1989,46:284-302
    【211】朱晓华,间国年.地质灾害中的分形研究进展[J].中国地质灾害与防治学报,2000,11(1):11-14
    【212】陈勇,艾南山.城市结构的分形研究[J].地理学与国土研究,1994,10(4):18-23
    【213】 BATTY M, LONGLEY P A. The Fractal Simulation of Urban Structure[J]. Environment and planning A,1986,18,1143
    【214】 BATTY M,LONGLEY P A. Fractal-based Description of Urban Form[J]. Environment and planning B,1987,14:123-124
    【215】 BATTY M. Generating Urban forms from Diffusive Growth[J]. Environment and planning A,1991,23:511
    【216】冯平,冯焱.河流形态特征的分维计算方法[J].地理学报,1997,52(4):324-329
    【217】朱晓华.海岸线分维数计算方法及其比较研究[J].黄渤海海洋,2002,(6):31-35
    【218】 IGNACIO RODRIGUEZ-ITURBE, MARCO MARANI. Self-organized river basin landscape:Fractal and multifractal characteristics[J]. Water Resources Research,1994,30(12):3531-3539
    【219】 LA BARBERA P, ROSSO R. The fractal dimension of river networks[J]. Water Resources research,1989,25(4):735-741
    【220】 NIKOTA. Fractal Structure of River Plan Forms[J]. Water Resources Research,1991, 27(6):1327-1333
    【221】 NIKORA V I, SAPOZHNIKOV V B, NOEVER D A. Fractal geometry of individual river channels and its computer simulation[J]. Water Resources Research,1993,29(10):3561-3568
    【222】 NIKORA V I. On self-similarity and self-affinity of drainage basin [J]. Water Resources Research,1993,30(1):133-137
    【223】 MANDELBROT B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science,1967,156(3775):636-638
    【224】 KENT C, WONG J. An index of littoral zone complexity and its measurement[J]. Journal of fisheries and aquatic sciences,1982,39:847-853
    【225】 PHILPS J D. Spatial analysis of shoreline Erosion [J]. Ann. Am. Geographer,1986,76 (1): 50-62
    【226】 PAAR V, CVITAN M, OOCELIC N, JOSIPOVIC M. Fractal dimension of coastline of the Croatian island Crest[J]. Acta-Geographica-Croatica,1997,32:21-34
    【227】 JIANG J W. PLOTNICK R E. Fractal analysis of the complexity of United States coastlines[J]. Mathematical Geology,1998,30(5):535-546
    【228】巫兆聪.分形分析中的无标度区确定问题[J].测绘学报,2002,31(3):240-244
    【229】 BORIS ZEIDE. A Method for Estimation of Fractal Dimension of Tree Crowns[J]. Forest Science,1991,37(5):1253-1265
    【230】BORIS ZEIDE. Fractal geometry in forestry application[J]. Forest Ecology and Management, 1991,46(3):179-188
    【231】 ARMINL O. WINFRIED K, DOUFLASL G. Topology scaling relation and Leonardo's rule in root systems from African tree species[J]. Tree Physiology,2001,21:117-128
    【232】赖道平,吴中如,周红.分形学在大坝安全监测资料分析中的应用[J].水利学报,2004(1):100-102
    【233】吴树仁,石玲,谭成轩.长江三峡黄腊石和黄土坡滑坡分形分维分析[J].中国地质大学学报,2000,25(1):61-65
    【234】曾开华,陆兆溱.边坡变形破坏预测的混沌与分形研究[J].河海大学学报(自然科学版),1999,27(3):9-13
    【235】徐永福,史春乐.用土的分形结构确定土的水份特征曲线[J].岩土力学,1997,18(2):40-43
    【236】舒宁.卫星遥感影像纹理分析与分形分维方法[J].武汉测绘科技大学学报,1988,23(4):370-373
    【237】 RAJENDRA M. PATRIKAR. Modeling and simulation of surface roughness[J]. Applied Surface Science.2004,228:213-220
    【238】崔灵周.流域降雨侵蚀产沙与地貌形态特征耦合关系研究[D]杨凌:中国科学院水利部水土保持研究所,2002
    【239】HACK J T. Studies of longitudinal profiles in Virginia and Maryland[J]. U.S Geol. Survey profile pap,1957,294(13):53-63
    【240】 MANDELBORT B B. The Fractal Geometry of Nature[M]. New York:WH Freeman and Co.,1982
    【241】ROBERT A, ROY A G. On the fractal interpretation of the mainstream length-Drainage area Relationship[J]. Water Resources Research,1990,26(5):839-842
    【242】 TARBOTON D G, BRAS R L, RODRIGUEZ-ITUBE I A. Physical basis for drainage density[J]. Geomorphology,1992,5 (1):59-76
    【243】 FEDER J. Fractals[M]. New York:WH Freeman and Co.,1988
    【244】冯平,冯焱.河流形态特征的分维计算方法[J].地理学报,1997,52(4):324-329
    【245】王协康,方绎.流域地貌系统定量研究的新指标[J].山地研究,1998,16(1):8-12
    【246】何隆华,赵宏.水系的分形维数及其含义[J].地理科学,1996,16(2):124-128
    【247】李后强,艾南山.分形地貌学及发育的分形模型[J].自然杂志,1991,15(7):516-519
    【248】 BROADBENT S R, HAMMERSLEY J M. Percolation processes I Crystals and mazes[J]. Proc. Camb. Philos. Soc,1957,53,629-641
    【249】崔灵周,朱永清,李占斌.基于分形理论和GIS的黄土高原流域地貌形态量化及应用研究[M].郑州:黄河水利出版社,2006
    【250】杨玉荣.基于分形理论的地貌表达[J].武汉测绘科技大学学报,1996,21(2):154-158
    【252】邹宁,柳健,周曼丽.基于分形的地形分类技术及其在导航中的应用[J].华中理工大学学报,1999,27(5):21-25
    【252】肖高瑜,周源华.基于分形插值的地貌生成技术[J].上海交通大学学报,2000,34(5):705-707
    【253】李锰,朱令人.地形等高线的分形特征及其动力学含义[J].西北地震学报,2002,24(2):97-103
    【254】屈建军,常学礼,董光荣,等.巴丹吉林沙漠高大沙山典型区风沙地貌的分形特性[J].中国沙漠,2003,23(4):361-365
    【255】崔灵周,李占斌,肖学年.岔巴沟流域地貌形态分形特征量化研究[J].水土保持学报,2004,18(2):41-44
    【256】沈中原,李占斌,武金慧.流域地貌形态分形布朗运动(FBM)分维数研究[J].西安建筑科技大学学报(自然科学版),2007,39(5):711-715
    【257】 B. B. MANDELBORT. Turbulence of Fluid and Plasma[J]. J. Fluid Mech,1974(62):331
    【258】 GOODCHILD M F. Fractals and accuracy of geographical measures[J]. Math. Geol, 1980,12(2):85-98
    【259】 MARK D M, ARONSON P B. Scale-dependent fractal dimension of topographic surface[J]. Math.Geol.1984,16(7):671-684
    【260】 ANDRLE R, ABRAHAMS A D. Fractal techniques and the surface roughness of talus slopes [J]. Earth. Surf. Proc. Landform,1989,14(4):197-209
    【261】 MATSUSHITA M, OUCHI S. On the self-affinity of various curves[J]. Physical D, 1989,38(1/4):246-251
    【262】 ANDRLE R. Estimating fractal dimension with the divide method in geomorphology[J]. Geomorphology,1992,5(1):131-141
    【263】 RODRIGUEZ-ITURBE M, MARANI R, RIGON A RIALDO. Self-organized river basin landscapes: fractal and multifractal characteristics[J]. Water Resource Research,1994, 30(12):3531-3539
    【264】高鹏.流域水系的多标度分形研究及应用[J].中国地质灾害与防治学报,1995,6(2):31-38
    【265】曹汉强,朱光喜,李旭涛.多重分形及其在地形特征分析中的应用[J].北京航空航天大学学报,2004,30(12):1182-1185
    【266】李锰,朱令人,龙海英.不同类型地貌的各向异性分形与多重分形特征研究[J].地球学报,2003,24(3):237-242
    【267】沈中原,李占斌,李鹏.流域地貌形态特征多重分形算法研究[J].水科学进展,2009,20(3):385-391
    【268】方学敏.通用土壤流失方程式研究进展[J].中国水土保持,1993,(8):21-24
    【269】张光辉.土壤水蚀预报模型研究进展[J].地理研究,2001,20(3):275-281
    【270】蔡强国.流域产沙模型概述[J].中国水土保持,1990,(6):14-18
    【271】刘宝元,史培军.WEPP水蚀预报流域模型[J].水土保持通报,1998,18(5):6-12
    【272】ASCOUGH J C,BAFFAUT C,NEARING M A, et al. The WEPP watershed model, model description [J]. Trans. ASAE,1997,40 (9):1489-1497
    【273】 LAFLEN J M, LWONARD J L,FOSTER G R. WEPP a new generation of erosion prediction technology[J]. J of Soil and Water Cons,1991,46(1):34-38
    【274】尹国康,陈钦峦.黄土高原小流域特征性指标与产沙统计模式[J].地理学报,1989,44(1):32-44
    【275】王治华,黄联捷.降雨与流域产沙—黄土高原产沙模型研究之一[J].中国科学B辑,1992(9):987-993
    【276】刘黎明,林培.黄土高原丘陵沟壑区土壤侵蚀定量方法与模型的研究[J].水土保持学报,1993,7(3):73-79
    【277】李矩章,景可,李凤新.黄士高原多沙粗沙区侵蚀模型探讨[J].地理科学进展,1999,18(1):46-53
    【278】卢金发.黄河中游流域特性对产沙量与降雨关系影[J].地理学报,2000,55(6):737-743
    【279】江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9
    【280】 PHILPS J D. Spatial analysis of shoreline Erosion[J]. Ann. Am. Geographer, 1986,76(1):50-62
    【281】冯金良,张稳.海滦河流域水系分形[J].泥沙研究,1999,(1):62-65
    【282】金德生,陈浩,郭庆伍.流域物质与水系及产沙间非线性关系实验研究[J].地理学报,2000,55(4):339-348
    【283】马宗伟,许有鹏,李嘉峻.河流形态的分维及与洪水关系的探讨——以长江中下游为例[J].水科学进展,2005,16(4)530-533
    【284】崔灵周,李占斌,朱永清,等.流域地貌分形特征与侵蚀产沙定量耦合关系试验研究[J].水土保持学报,2006,20(2):1-4
    【285】侯建才,李占斌,崔灵周,等.黄土高原典型流域次降雨径流侵蚀产沙规律研究[J].西北农林科技大学学报(自然科学版),2008,36(2):210-215
    【286】王民.基于GIS的流域地貌多重分形特征与侵蚀产沙关系研究[D].西安:西安理工大学,2009
    【287】 ZHANG WEI-HUA,DAVID R,MONTGOMERY. Digital elevation model grid size, landscape representation and hydrologic simulation[J]. Water Resource Research, 1994,30(4):1019-1028.
    【288】赵晓丽,张增祥,周全斌,等.中国土壤侵蚀现状及综合防治对策研究[J].水土保持学报,2002, (01):40-43
    【289】王占礼.中国土壤侵蚀影响因素及其危害分析[J].农业工程学报,2000,16(4):32-36
    【290】余万军,吴次芳,关涛.基于GIS和分形理论的山西屯留县土地利用空间格局变化[J].农业工程学报,2005,21(10):64-69
    【291】 O'NEILL R V, KRUMMEL J R, GARDNER R H, et al. Indices of landscape pattern [J]. Landscape Ecology,1988,1:153-162.
    【292】傅伯杰.黄土区农业景观空间格局分析[J].生态学报,1995,15(2):113-120
    【293】刘纯平,陈宁强,夏德深.土地利用类型的分数维分析[J].遥感学报,2003,7(2):136-141
    【294】李昭阳,汤洁,孙平安,等.松嫩平原西南部土地利用动态变化的分形研究[J].吉林大学学报(地球科学版),2006,36(2):250-258
    【295】汤国安,赵牡丹,李天文,等.DEM提取黄土高原地面坡度的不确定性[J].地理学报,2003,58(6):824-830
    【296】王秀英,曹文洪,陈东.土壤侵蚀与地表坡度关系研究[J].泥沙研究,1998(2):36-41
    【297】胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].地理学报, 1999,54(4):347-356
    【298】刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用[J].水土保持通报,2001,21(01):57-59,62
    【299】马晓微,杨勤科.基于GIS的中国潜在水土流失评价指标研究[J].水土保持通报,2001,21(02):41-44
    【300】邹敏,吴泉源,逢杰武.基于DEM的龙口市土地利用空间格局与时空变化研究[J].测绘科学,2007,32(6):173-175
    【301】孙丽,陈焕伟,潘家文.运用DEM剖析土地利用类型的分布及时空变化:以北京延庆县为例[J].山地学报,2004,22(6):762-766
    【302】 CHHABRA A, JENSEN R V. Direct determination of the f (alpha) singularity spectrum[J]. Physical Review Letters,1989,62(12),1327-1330
    【303】 Miller C L. The Spatial Model Concept of Photogrammetry[J]. Photogrammetric Engineering,1957,23(1)
    【304】李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001
    【305】汤国安,杨勤科,张勇,等.不同比例尺DEM提取地面坡度的精度研究[J].水土保持通报,2001,21(1):54-46
    【306】李小文,王锦地,STRAHLER A H.尺度效应及几何光学模型用于尺度纠正[J].中国科学E辑,2000,(30):12-17
    【307】卢金发,黄秀华.黄河中游流域地貌形态对流域产沙量的影响[J].地理研究,2002,21(2):171-178
    【308】闫云霞,许炯心.黄土高原地区侵蚀产沙的尺度效应研究初探[J].中国科学(D地球科学),2006,36:1-10.
    【309】王桥,杨一鹏,黄家柱.环境遥感[M].北京:科学出版社,2004
    【310】段汕.形态学及其在遥感影像处理中的应用研究[D].武汉:武汉大学,2004
    【311】常庆瑞,蒋平安,周勇.遥感技术导论[M].北京:科学出版社,2004
    【312】章孝灿,黄智才,赵元洪.遥感数字图像处理[M].杭州:浙江大学出版社,1997
    【313】朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2000
    【314】梅安新,彭望碌,秦其明.遥感导论[M].北京:高等教育出版社,2001
    【315】韦洪波.区域植被水土保持功能遥感评价研究[D].杨凌:西北农林科技大学,2001
    【316】大政正隆.森林学[M].北京:中国林业出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700