连续弯道过渡段长度对通航影响的模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡直线段作为连续弯道前后两弯的连接部分,对连续弯道的水流特性及船舶通航有着重要的影响。弯曲河道的水流结构和水流泥沙运动特性方面的研究成果已经有了较多的报道,学者们基本掌握了弯曲河道水流的运动机理和演变规律。但是对于连续弯道通航水流和通航条件的研究还不完善,尤其是对连续弯道过渡直线段长度对通航影响的研究更是少之又少。本文的主要目的就是通过对不同过渡段长度的连续弯道通航水流和船舶通航试验,对连续弯道过渡段长度的影响进行分析,讨论连续弯道过渡段长度的最小通航尺度。
     本文在物理模型试验资料验证的基础上,运用三维水流数学模型和MMG船舶操纵运动数学模型对连续弯道通航水流和船舶通航分别进行模拟,计算不同过渡段长度对连续弯道水流和通航的影响,讨论使前后两弯独立的最小通航尺度。研究的主要内容和结论有:
     (1)通过物理模型试验数据验证,表明本研究采用的三维水流数学模型和MMG船舶操纵运动数学模型能较好地模拟内河航运Ⅲ级航道的连续弯道水流和船舶运动。
     (2)通过计算连续弯道水流,发现连续弯道水流的一些特殊现象;通过不同过渡段连续弯道水流运动规律的比较,发现过渡段长度的大小对后弯的环流和过渡段附近表面的回流产生影响,并从水流特性角度定义了临界过渡段长度。
     (3)当船舶通过连续弯道前后弯所需航道宽度相同时,认为两个弯道独立,并将此时的过渡段长度定义为通航临界过渡段长度。通过讨论,可将通航临界过渡段长度认为是连续弯道的最小通航尺度。
     (4)通过船舶操纵运动数学模型计算,发现连续弯道过渡段最小通航尺度随着连续弯道中心角的增加而增加,随着连续弯道弯曲半径的增加而减小;将计算所得连续弯道过渡段长度数据进行拟合,得出连续弯道过渡段长度的最小通航尺度经验计算关系式。
The transition section is the continuous meandering river's important component. It has the important influence to the continuous meandering river's flow and navigation. Through a lot of research for the meandering structure and characteristics of flow and sediment movement, we have basically mastered the meandering flow of the motion mechanism and characteristics. However, it is not perfect to the research of the navigable water flow and navigation conditions of the continuous meandering river. It is little to the research of the impact of the length of transition of continuous meandering river on navigation. The main purpose of this paper is to find out the minimum navigable scale of continuous meandering river, through the comparison of the parameters of ship motion.
     In the physical model experiment's foundation, this research uses the MMG model with numerical flow model to do the numerical simulation work. Through the calculation of the parameters of the ship's movement in different transition section, discuss minimum navigable scale of continuous meandering river to the first curve and second curve independent. The main contents and conclusions are:
     (1)Verified by physical model test data, this study shows that 3-D flow model and MMG ship maneuvering mathematical model can simulate flow and ship movement of continuous meandering river.
     (2)By calculating the flow of continuous meandering river, we find some special flow characteristics; by comparing the flow characteristics in different transition section of continuous meandering river, we find that the size of the length of transition section can impact the circulation section of the second curve and the back surface of transition section. We defined the critical length of the transition from flow characteristics.
     (3)When channel width of the ship in the first curve and second curve is same, we think the the first curve and second curve are independent, and define the length of transition section as the navigable length of the critical length of the transition in this continuous meandering river. Through discussion, we think the navigable length of the critical transition is minimum navigable scale of transition section of continuous meandering river.
     (4)Thought the calculation of the MMG ship maneuvering mathematical model, we find the minimum navigable scale of transition section increase with the increase of central angle of bend, and increase with the decrease of the bending radius. Fitting the calculated data, we get the formula of the minimum navigable scale of transition section of continuous meandering river.
引文
[1]长江航道局.航道工程手册[M].北京:人民交通出版社, 2004.
    [2] GB50139-2004,《内河通航标准》.北京:人民交通出版社.
    [3] De Vriend.H.J. Theory of viscous flow in wide curved open channels[J]. Proc. IAHR Int. Symp. On River Mechanics, 1973.
    [4] De Vriend.H.J., A mathematical model of steady flow in curved shallow channels[J]. Hydraulic Research, 1977, 15(1): 37-53
    [5]王平义,方铎,蔡金德,吴持恭.弯道水流的三维解法.水利学报,1994, (02): 57-64
    [6]夏云峰,薛鸿超.非正交曲线同位三维水动力数值模型.河海大学学报(自然科学版),2002, 30(6): 74-78
    [7]李艳红,周华君.弯曲河流三维数值模型.水动力学研究与进展,2004,19: 856-864
    [8]姚仕明,张超,王兴奎.二维同位与交错网格水流数值模拟比较.泥沙研究, 2004, 19: 856-864
    [9]黄国鲜,周建军.复杂边界下三维水流数学模型的建立和验证.水力发电学报,2007, 26(4): 66-70
    [10]王少平,曾扬兵,沈孟玉等.用RNGk-ε模式数值模拟180°弯道内的湍流分离流动.力学学报,1996, 28(3): 257-263
    [11]蒋莉,王少平.应用RNGk-ε湍流模式数值模拟90°弯曲槽道内的湍流流动.水动力学研究与进展, Ser.A, 1998, 13(1): 8-13
    [12]周勤.‘S’型溢洪道试验与数值模拟研究: [四川大学硕士论文].成都:四川大学, 2005
    [13]张土乔,尹则高,毛根海.弯曲圆形管道紊流的数值模拟.水力发电学报, 2005, 24(3): 61-65
    [14]冯丽华.明渠弯道水流数值模拟: [扬州大学硕士论文].扬州:扬州大学, 2007
    [15]张红武,吕昕.弯道水力学[M].北京:水利电力出版社, 1993.
    [16]张玉萍.弯道水力学研究现状分析.武汉水利电力大学学报,2000,33(5)
    [17]王平义.弯曲河道动力学[M].成都:成都科技大学出版社, 1995.
    [18]王福军.计算流体动力学分析[M].北京:清华大学出版社, 2004.
    [19]刁明军,杨海波,李斌华,罗永钦.弯道水力学研究现状与进展[J].西南民族大学学报, 2007,33(3): 596-601
    [20] Abkowitz M A. Lectures on Ship Hydrodynamics-Steering and Maneuverability. Hydroand Aerodynamics Laboratory, Report Hy-5,Lyngby, Denmark, 1964.
    [21]小川宏阳,小山健夫,贵岛胜朗. MMG报告-Ⅰ[J].日本造船协会志,1977(575).
    [22]小川宏阳,小山健夫,贵岛胜朗. MMG报告-Ⅱ[J].日本造船协会志,1977(577).
    [23]小川宏阳,小山健夫,贵岛胜朗. MMG报告-Ⅲ[J].日本造船协会志,1977(578).
    [24]小川宏阳,小山健夫,贵岛胜朗. MMG报告-Ⅳ[J].日本造船协会志,1980(579).
    [25] Jakobsen,B.K.Mazurkiewicz , J.Ankudinov , V. , Improved Ship Manoeuvering Assessment Based on Ship Manoeuvrability at the Hamburg Ship Model Basin, Hamburg Germany, 2000.
    [26] Benvenuto G,Brizzolara S.Figari, M., Simulation of the Propulsion System Behaviour during Ship Standard Manoeuvres, Practical Design of Ships and Other Floating Structures, 2001.
    [27] Senda S,Kobayashi H,On the Standard Deceleration of Ship Speed by Human Control, International Conference on Marine Simulation and Ship Manoeuvring, Orlando Florida, 2000.
    [28] Makino M,Kodama Y,Computation of Flows around Full Hull Forms in Oblique Towing of Sready Turing Using NICE Code,Journal of the Naval Architects Japan,1997,Vol.181,P67-73(In Japanese).
    [29]李铁山,杨盐生,郑云峰.不完全驱动船舶非线性控制.交通运输工程学报,2003, 3(4): 39-43
    [30]高孝日,洪碧光,孙洪波.倒车时螺旋桨横向力计算方法.大连海事大学学报,2007, 33(1): 21-24
    [31]王化明,邹早建.双桨双舵船舶操纵性预报研究.武汉理工大学学报,2006,30(1): 124-127
    [32]朱军,庞永杰,徐玉如.规则波浪中舰船操纵运动计算.哈尔滨工程大学报,2004(1):1-5
    [33] JTJ312-2003,航道整治工程技术规范.北京:人民交通出版社,2003,1(2): 1-10
    [34]赵志舟等.广元城区河段裁弯工程对通航条件的影响.重庆交通学院学报, 2005,24(5):130-134
    [35]邓年生,王炳奇.弯曲航道平面尺寸研究.水运工程, 2004, 2(2):74-78
    [36]甘浪雄,彭家敏,谭志荣等.弯曲航道的设计.上海海事大学学报,2007, 3(1): 111-114
    [37]刘明俊,吕习道.船舶过弯道所需航宽建模.武汉理工大学学报,2006, 30(1): 178-179
    [38]周华兴,郑子龙.关于运河弯曲段航道加宽值的计算分析.水道港口,2009, 30(4): 272-276
    [39]长江航道规划设计研究院.弯曲航道概化模型试验研究报告.2008,(5)
    [40] Guidelines for the safe design of commercial shipping channels. Canada.2005:35-72
    [41]王秀英,李义天,孙昭华.航道整治线型理论确定方法初探.水运工程, 2007,5(1):59-63
    [42]莴德繁.连续弯道环流运动与泥沙冲淤特性的数值模拟及实验: [四川大学硕士论文].成都:四川大学,2005
    [43]李志云,郭国平.关于弯曲河道对船舶通航影响的研究及对策.中国水运, 2007,3(3): 8-9
    [44]曹民雄,马爱兴,王秀红,蔡国正.内河航道横流对船舶航行的影响.交通运输工程学报,2008, 8(1): 61-67
    [45]万俊,刘星,牙琪敏.弯道中环流对船舶产生的倾覆力矩计算分析.水运工程, 2007, 1(1):30-32
    [46]刘元丰.弯曲航道船舶转向性能与操船技术.中国水运(理论版),2006, 4(4): 199-201
    [47]周昭明,盛子寅,冯悟时.多用途货船的操纵性预报计算.船舶工程,1983,(6): 21-29
    [48]杨盐生,方祥麟.不均匀流中船舶操纵运动仿真模型及应用.中国造船,1998,(1): 30-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700