共轭聚合物的合成、自组装行为及其光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究内容主要涉及共轭聚合物光电材料的合成、光电性质及其在表面自组装行为的研究。
     上世纪九十年代以来,共轭聚合物光电材料的研究已经成为当今高分子科学的一个研究热点。共轭聚合物光电材料在有机发光二极管、场效应晶体管、太阳能电池、生物与化学传感等领域的应用研究方兴未艾。各种不同结构、不同发光波长的共轭聚合物正在被源源不断地开发出来。其中,超支化结构由于其合成相对简单,且具有某些优良的性能,正在被逐步地引入到共轭聚合物体系中。同时将低能级的发光染料共聚到高能级的共轭聚合物上,是进行发光波长调节,甚至实现单一聚合物链白光发射的有效手段。这时体系内的能量转移过程对于发光波长和荧光效率都有着决定性的影响。由于当前的能量转移研究全部集中于线性链结构,所以,我们就对超支化共轭聚合物内的能量转移进行了系统的研究。
     另一方面,共轭聚合物/寡聚物是迄今为止最有前途的光电分子器件的备选材料。而这些器件的效能与共轭分子的结构、纯度、材料形貌以及超分子结构有着密切的关系。已有的经验证明,在有机光电材料的研究上,只有将有机合成所得到的宏观化学结构与微观尺度的分子空间分布联系起来才有望实现基于分子水平的器件性能提升,并实现用分子结构的设计来调控最终材料性能的目标。因此,我们设计、合成了带有功能性基团的共轭聚合物和寡聚物,用扫描探针显微镜对它们在石墨表面的自组装结构进行了详细的研究,对可能的影响因素进行了综合的归纳、总结。对共轭聚合物在界面组装行为的研究,为进一步设计、合成π共轭聚合物以及它们在纳米尺度的可控构筑提供了经验,也为开发有机光电分子器件奠定了一定的基础。
     本论文的工作就是在文献调研的基础上,结合本课题组以往工作的基础和项目申请的实际情况,对共轭聚合物的光物理性质及其在界面的自组装行为进行了系统的研究,主要分为三个部分,分别简要叙述如下:
     第一部分中,我们将不同含量的支化单元(间位三取代苯)引入到芴和苯噻唑的共聚物中,以此构建支化度分别为5%,15%及40%的超支化共聚物。这些超支化聚合物有较好的热稳定性,其分解温度随着支化度的上升而升高。退火后光谱的红移值及峰形变化较小也说明了超支化结构有助于提高分子的热稳定性。另外,我们还特别研究了这些超支化聚合物中的能量转移过程及其与聚合物荧光效率之间的关系。其中,低能级的共聚单体2,1,3—苯噻唑在体系中充当激子陷阱,芴单元受激发而产生的激子会通过链内或(和)链间能量转移的方式传递到苯噻唑单元。由此产生的一个结果便是在浓溶液和固态膜条件下,从芴单元发出的蓝光被完全猝灭,只呈现对应于苯噻哗单元的绿光发射。但是在稀浓液和亚浓浓液中,这类超支化聚合物的能量转移效率随着溶液的浓度和支化度会发生很大的变化。实验数据表明随着支化度的上升,聚合物的紫外和荧光光谱都呈现蓝移的趋势;这是由于支化单元的引入打断了线性链原有的共轭链长。另外,在本体系中溶液临界浓度被用于衡量能量转移效率,其数值随着支化度的升高而增大。这说明了链内的能量转移在聚合物的亚浓溶液中起着能量转移的主要作用。然而在薄膜态,由于分子间的距离变得非常小,所以只出现低能级的520 nm左右的绿光发射峰。循环伏安法显示,在本体系中,超支化结构会阻碍电荷的注入,这有可能会降低相应器件的量子效率。所有这些结果表明了高度支化的结构能有效地阻止链内和链间的能量转移,其还显著地影响了固态中能量传递的过程,进而影响薄膜态的荧光效率。
     第二部分是本课题组与北京国家纳米科学中心的合作研究项目。我们合成了系列的共轭聚合物/寡聚物,并利用扫描探针显微镜对它们在界面自组装所形成的高度有序的、稳定的超分子结构进行了表征,探究了影响共轭分子自组装行为的各种作用因素。主要包括两方面内容:
     第四章,我们合成了一系列具有相同主链不同侧链的聚苯炔(PPE)共轭聚合物,并在高定向热解石墨(HOPG)和辛基苯溶液的两相界面,采用STM在分子尺度观察了共轭聚合物链的二维组装结构及其链折叠的情况。系统研究了各种相互作用(分子间、分子与基底间)以及分子链的刚性对于超分子有序结构的影响。STM观察的结果证明了侧链的结构、取代密度及其相互作用的强弱不仅会影响聚合物在表面的超分子结构,还对主链的折叠产生决定性的作用。通过与已有文献报道的聚烷基噻酚石墨表面组装行为的比较,揭示了聚合物主链的刚性在其折叠方式和折叠程度方面也起着重要的作用。另外,通过STM测量分子链的长度,我们计算得出了相应聚合物的分子量和聚合度,并将结果与凝胶渗透色谱的数据进行了比较分析。发现由STM测得的分子量分布很好地符合Schulz-Zimm分布,也进一步证实了测量和计算结果的真实性、有效性;亦表明STM对于共轭聚合物在基底表面组装结构的研究中可以发挥不可替代的作用。
     第五章,我们合成了一系列的端基分别为一、二、三个羧酸的星状寡聚芴。通过羧酸基团,我们将氢键作用引入到了星状分子的各条臂上,而这种结构和已被广泛研究的苯三酸(trimestic acid)体系形成了类似的结构:这也是启发我们设计这个分子结构的原因。从较简单的氢键作用——羧酸基团开始,研究如何利用氢键作用诱导共轭光电分子在表面的有序组装。在普通的大气条件下,在辛基苯或辛酸和高定向热裂解石墨所形成的两相界面上用STM观察了这些星状寡聚芴分子的组装形态。我们发现烷基链的长度和羧酸端基的数目对于自组装单层膜(SAM)的形成有着至关重要的作用。由于氢键间的相互作用、样品和石墨基底间的π-π作用以及长链烷基的稳定化作用,使得每个带有正十二烷侧链的星状寡聚芴都能形成稳定的分子组装结构;而与此相对应的是,带有丁基侧链的星状寡聚芴则无法形成稳定的组装结构。另外,氢键数目的不同也产生了完全不同的组装结构,特别的是对于三羧酸星状寡聚芴,在辛基苯/石墨界面上没有能独立形成苯三酸式的六边形蜂窝状结构,而是需要加入客体分子以帮助这种结构的稳定。同时,三羧酸星状寡聚芴却能在辛酸与HOPG的两相界面上自身形成蜂窝状的稳定结构。所以对这两种情况,我们也分别进行了STM研究。
     最后一部分内容是本人在曾经担任实验室基质辅助激光解吸/离子化飞行时间质谱(MALDI-TOF MS)仪器助管近两年时间内,在大量的样品测试过程中,发现共轭聚合物在该质谱检测手段下表现出的一些特殊现象,并通过另外的辅助实验分析将这些现象与共轭聚合物的相关内在性质联系在一起,给予了理论的解释,并该章节中进行总结。
The research areas of this dissertation are focused on syntheses, photophysical characterization and self-assembly behaviors of light-emitting conjugated polymers.
     Since the 1990's,π-conjugated polymers have attracted many interests owing to their wide-ranging application potentials in the development of organic light-emitting diodes, field effect transistors, solar cells, chem-/biosensors. A variety of conjugated polymers with different structures, different light-emitting wavelength are being developed. Due to the simple preparation process and some advantages in properties, hyperbranched structures have been introduced into conjugated polymers. Meanwhile, the copolymerization of lower band-gap monomers with higher band-gap chromophores is one of the most promising methods to tune the light wavelength and even realize white light-emitting from a single polymer chain. In this system, energy transfer process has remarkable influences on the light-emitting colors and fluorescence efficiency. However, nearly all present researches are focused on energy transfer in linear conjugated polymer backbones, therefore, we designed to make a systematic research on energy transfer in hyperbranched conjugated polymers.
     On the other hand, conjugated polymers and oligomers are the most promising candidates for the materials of opto-electronic molecular devices. And the structure, purity, morphology and supramolecular orientation of conjugated molecules show dominant effects on the properties of devices. The experience demonstrates that the properties of molecular devices will be further improved if the relation between macroscopic chemical structures and microscopic molecular ordering is established. And so the target of tuning material properties by molecular design will be realized. Therefore, we designed, synthesized a series of conjugated polymers and oligomers with functional groups and employed scanning probe microscopy to observe their self-assembly structures on the graphite surface. It provides information for the further design, synthesis and controlled nano-sized fabrication ofπconjugated polymers and builds a solid base for the future development of organic opto-electronic molecular devices.
     In this dissertation, based on the previous reports and the research experience of our group, we did the systematic research on photophysical properties of conjugated polymers and their self-assembly behaviors at the interface, including three major aspects:
     In the first project, we introduced different contents of branching units (1,3,5-substituted benzene rings) into the poly(fluorene-co-benzothiazole) to construct the hyperbranched copolymers with branching degrees ranging from 5% to 40%. These highly branched polymers possessed good thermal stability and their decompostion temperatures increased with the increase of branching degrees. The spectra of these polymers did not show obvious changes after annealing them at 200℃in air, which also demonstrated highly branched structures led to better thermal stability. Furthermore, the energy transfer properties and their correlation with PL efficiencies of hyperbranched conjugated copolymers were studied. The narrow band gap comonomer 2,1,3-benzothiadiazole acts as a powerful exciton trap which allows efficient energy transfer of the exciton from fluorene segment to benzothiazole unit in the copolymers. As a result, the blue emission from the fluorene segment is completely quenched in concentrated solutions and in the solid state. But with the change of the solution concentration and the branching degrees; the efficiency of energy transfer of these hyperbranched polymers varied in solutions. Our experiment data demonstrated that the absorption and emission peaks of these polymers are blue-shifted gradually with the increase of branching degrees, which suggested that introduction of branching units interrupted the linearπ-system to some extent and reduced the effective conjugation length. Meanwhile, the critical concentration C* was used to scale the energy transfer properties in this system and its value increased with branching degrees. This indicates that intrachain interaction play a major role in the energy transfer in dilute solution and especially in these hyperbranched polymers with high branching degrees. However, as films, because of very close distance among all chromophores, only low band gap units (benzothiazole) emit luminescence around 520 nm. Cyclic voltammetry showed that hyperbranched structure in this system hindered the charge injection, which might result in low quantum efficiency for device application when. highly branching degrees. All these results demonstrated that highly branched structure would effectively impede the intra- and interchain energy migration, especially in solutions; and remarkably influence the energy transfer process in the solid state.
     The second project of this dissertation is the National Science Foundation supported research project cooperated with National Center for Nanoscience and Technology, China. A series of conjugated polymer and oligomers were synthesized and the highly ordered and stable supramolecular structures of these molecules at the liquid-solid interface were recorded by STM. We also summarized some effects which controlled their self-assembly behaviors.
     In chapter four, a series of PPEs with identical conjugated backbone but different side chains were synthesized and their two-dimensional assembly structure and chain foldings were studied by STM. The supramolecular fabrication influenced by the interactions between molecules, between molecules and substrate and the rigidity of polymer chains, were systematically discussed. The STM results demonstrated that the concentration and structure of side chains not only affected the supramolecular order on the interface, but also the chain folding in the adsorbed layer. The comparison of the chain folding of these rigid-rod polymers with that of the more flexible P3ATs illustrated that besides the interaction between polymer chains or the interaction between the side chains the rigidity of the conjugated backbone also plays an important role on the molecular assembling and chain folding at the interface. The degree of polymerization of these polymers are directly determined by STM and compared with that obtained from conventional gel permeation chromatography measurements. The statistics of the polymer contour length from the submolecularly resolved STM images shows satisfactory agreements with the theoretically expected Schulz-Zimm distribution, demonstrating the reliability of STM methods and the great importance of STM in the research of surface nano-fabrication.
     In chapter five, we synthesized star-shaped {C}_3-oligofluorenes end-capped with one, two, three carboxylic groups, respectively. Hydrogen bondings induced from carboxylic groups were intentionally designed at the end of the arm(s) of these star-shaped molecules. The hydrogen bonding positions of the so-perpared star-shaped oligofluorenes were similar to those of trimestic acids (TMA) which has been intensively studied, and this enlightened us to design these moleucles. Based on the simplest hydrogen bonding interactions from carboxylic acid groups, we initialize our research on hydrogen bonding induced well-ordered self-assembly of opto-electronic molecules at the interface. The assembly of these star-shaped oligomers at the interface between highly oriented pyrolytic graphite and octylbenzene or octanoic acid under ambient conditions was revealed by STM. The results demonstrated that the length of the side chains and the number of carboxylic acid groups considerably affected the final structure of self-assembly monolayers. Under the assistance of hydrogen bonding interactions,π-πinteractions between the molecules and the substrate and the stablization effects from long side chains, every star-shaped oligomers with dedocane as side chains could form a stable assembly structure, on the contrary, those with butane as side chains could not. Moreover, the number of hydrogen bonds also led to completely different assembly patterns, especially as to star-shape oligofluorene with three -COOH end-groups which fabricated honeycomb structures like TMA only when they were dissolved in octanoic acid solution, and could not produce such an ordered network at the octylbenzene-HOPG interface unless the coadsorption with guest molecules. We also investigated these two conditions respectively.
     The research in the chapter 6 is based on my works on the operation of Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry as a research assistant in nearly two years. When employing this equipment to analyze some conjugated polymers, I found some novel and interesting results which was also related to the intrinsic properties of these opto-electronic materials. And I concluded these features and gave explanations in this chapter.
引文
[1] 黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2006:005.
    [2] 黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001:238.
    [3] Tang CW, Vanslyke SA. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915.
    [4] Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Light-emitting-diodes based on conjugated polymers [J]. Nature, 1990, 347(6293): 539-541.
    [5] Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ. Flexible light-emitting-diodes made from soluble conducting polymers [J]. Nature, 1992, 357(6378): 477-479.
    [6] Cao Y, Treacy GM, Smith P, Heeger AJ. Solution-cast films of polyaniline - optical-quality transparent electrodes [J]. Appl. Phys. Lett., 1992, 60 (22): 2711-2713.
    [7] Gu G, Shen ZL, Burrows PE, Forrest SR. Transparent flexible organic light-emitting devices [J]. Adv. Mater., 1997, 9(9): 725-728.
    [8] Pope M, Kallmann H, Magnante P. Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963, 38: 2042-2043.
    [9] Hating H. Photochemical side chain chlorination of toluene [J]. Chem. Proc. Eng., 1964, 45: 560.
    [10] Manefee E, Pao YJ. The most frequent initial symptoms of the onset of relapse in schizophrenia [J]. Chem. Phys., 1963, 36: 3471.
    [11] Shirakawa H, Louis EJ, MacDIarmid AG., Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)_x [J]. J. Chem. Soc., Chem. Commun., 1977, 16: 578-580.
    [12] Montali A, Smith P, Weder C. Poly(p-phenylene ethynylene)-based light-emitting devices [J]. Synth. Met., 1998, 97(2): 123-126.
    [13] Kraft A, Grimsdale AC, Holmes AB. Electroluminescent conjugated polymers seeing polymers in a new light [J]. Angew. Chem. Int. Ed., 1998, 37(4): 402-428.
    [14] Antoniadis H, Hsieh BR, Abkowitz MA, Jenekhe SA, Stolka M. Photovoltaic and photoconductive properties of aluminum/poly(p-phenylene vinylene) interfaces [J]. Synth. Met., 1994, 62(3): 265-271.
    [15] Dodabalapur A, Katz HE, Torsi L, Haddon RC. Organic heterostructure field-effect transistors [J]. Science, 1995, 269(5230): 1560-1562.
    [16] Torsi L, Dodabalapur A, Rothberg L J, Fung AWP, Katz HE. Low temperature band transport in alpha-hexathienylene thin-film-transitions [J]. Science, 1996, 272(5267): 1462-1464.
    [17] Dodabalapur A, Chandross EA, Berggren M, Slusher RE. Applied physics - Organic solid-state lasers: Past and future [J]. Science, 1997, 277 (5333): 1787-1788.
    [18] Hide F, DiazGarcia MA, Schwartz BJ, Heeger AJ. New developments in the photonic applications of conjugated polymers [J]. Acc. Chem. Res., 1997, 30(10): 430-436.
    [19] Swager TM. The scintillation process in plastic solutions [J]. Acc. Chem. Res., 1998, 31(5): 201-207.
    [20] McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors [J]. Chem. Rev., 2000, 100(7): 2537-2574.
    [21] Liu B, Bazan GC. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers [J]. Chem. Mater., 2004, 16(23): 4467-4476.
    [22] 羌梁梁.新型聚芴类发光材料的合成与表征[D].上海:复旦大学,2005.
    [23] 周颖.新型水溶性聚对苯乙炔撑合成及表征[D].上海:复旦大学,2006.
    [24] Heeger AJ Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture) [J]. Angew. Chem. Int. Ed., 2001, 40(14): 2591-2611.
    [25] Friend RH, Greenham NC. Conjugated Polymer Electroluminescence, Physical Properties of Polymers Handbook [M]. London: AIP Press, 1996: Chapter 35, 479.
    [26] 李善君,纪才圭,于同隐.高分子光化学原理与应用[M].上海:复旦大学出版社,2003:42.
    [27] Flory PJ. Molecular size distribution in three dimensional polymers. Ⅵ. Branched polymers containing A-R-B_(f-1) type units [J]. J. Am. Chem. Soc., 1952, 74(3): 2718-2723.
    [28] Buhleier E, Wehner W, Vogue F. "Cascade" - and "nonskid-chain-like" syntheses of molecular carity topologies. [J]. Synthsis, 1978, 1(2): 155-158.
    [29] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P.[J]. Polymer, 1985, 17(1): 117-132.
    [30] Newkome GR, Yao Z, Baker GR, Gupta VK. Cascade molecules: a new approach to micelles. A-arborol [J]. J. Org. Chem. 1985, 50 (11): 2003-2004.
    [31] Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Dendritic macromolecules: synthesis of starburst dendrimers [J]. Macromolecules, 1986, 19 (9): 2466-2468.
    [32] Newkome GR, Baker GR, Sanuders MJ, Russo PS, Gupta VK, Yao Z, Bouillion JE. Two-directional cascade molecules: synthesis and characterization of [9]-n-[9] arborols. [J]. J. Chem. Soc., Chem. Commun., 1986, (10): 752-753.
    [33] Newkome GR, Yao Z, Baker GR, Gupta VK, Russo PS, Sanuders MJ. Chemistry of micelles series. Part 2. Cascade molecules. Synthesis and characterization of a benzene[9]3-arborol [J]. J. Am. Chem. Soc, 1986, 108 (4): 849-850.
    [34] Hawker C, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules [J]. J. Am. Chem. Soc, 1990, 112 (21): 7638-7647.
    [35] Kim YH,Webster OW. Hyperbranched polyphenylenes. [J]. Polym. Prepr., 1988, 29 (2): 310-311.
    [36] Holter D, Frey H. Degree of branching in hyperbranched polymers .2. Enhancement of the DB: Scope and limitations [J]. Acta Polym., 1997, 48 (8): 298-309.
    [37] Yan DY, Zhou ZP. Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB(2) type monomers in the presence of multifunctional core moieties [J]. Macromolecules, 1999, 32 (3): 819-824.
    [38] Frechet JMJ, Hawker CJ, Gitsov I, Leon JW. Dendrimers and hyperbranched polymers: Two families of three-dimensional macromolecules with similar but clearly distinct properties [J]. J. Macromol. Sci. - Pure Appl. Chem., 1996, A33 (10): 1399-1425.
    [39] Kim YH, Webster OW. Water-soluble hyperbranched polyphenylene - A unimolecular micelle [J]. J. Am. Chem. Soc, 1990. 112 (11): 4592-4593.
    [40] Kim YH, Webster OW. Hyperbranched polyphenylenes [J]. Macromolecules, 1992, 25 (21): 5561-5572.
    [41] Kim YH, Beckerbauer R. Role of end-groups on the glass-transition of hyperbranched polyphenylene and triphenylbenzene derivatives [J]. Macromolecules, 1994.27(7): 1968-1971.
    [42] Uhrich KE, Hawker CJ, Frechet JMJ, Turner SR. One-pot synthesis of hyperbranched polyethers [J]. Macromolecules, 1992, 25 (18): 4583-4587.
    [43] Miller TM, Neenan TX, Kwock EW, Stein SM. Dendritic analogs of engineering plastics - A general one-step synthesis of dendritic polyaryl ethers [J]. J. Am. Chem. Soc., 1993, 115 (1): 356-357.
    [44] Miller TM, Neenan TX, Zayas R, Bair HE. Synthesis and characterization of a series of monodisperse, 1,3,5-phenylene-based hydrocarbon dendrimers including C276H186 and their fluorinated analogs [J]. J. Am. Chem. Soc, 1992, 114 (3): 1018-1025.
    [45] Percec V, Kawasumi M. Liquid-crystalline polyethers based on conformational isomerism .23. Synthesis and characterization of a thermotropic nematic liquid-crystalline dendrimeric polymer [J]. Macromolecules, 1992, 25 (15): 3843-3850.
    [46] Percec V, Chu PW, Kawasumi M. Toward willowlike thermotropic dendrimers [J]. Macromolecules, 1994, 27 (16): 4441-4453.
    [47] Percec V, Chu PW, Ungar G, Zhou JP. Rational design of the first nonspherical dendrimer which displays calamitic nematic and smectic thermotropic liquid-crystalline phases [J]. J. Am. Chem. Soc, 1995, 117 (46): 11441-11454.
    [48] Hawker CJ, Lee R, Frechet JMJ. One-step synthesis of hyperbranched dendritic polyesters [J]. J. Am. Chem. Soc, 1991, 113 (12): 4583-4588.
    [49] Wooley KL, Hawker CJ, Lee R, Frechet JMJ. One-step synthesis of hyperbranched polyesters - Molecular-weight control and chain-end functionalization [J]. Polym. J., 1994,26(2): 187-197.
    [50] Wooley KL, Frechet JMJ, Hawker CJ. Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters [J]. Polymer, 1994, 35 (21): 4489-4495.
    [51] Turner SR, Voit BI, Mourey TH. All-aromatic hyperbranched polyesters with phenol and acetate end-groups - synthesis and characterization [J]. Macromolecules, 1993, 26 (17): 4617-4623.
    [52] Uhrich KE, Boegeman S, Frechet JMJ, Turner SR. The solid-phase synthesis of dendritic polyamides [J]. Polym. Bull., 1991, 25 (5): 551-558.
    [53] Kim YH. Lyotropic liquid-crystalline hyperbranched aromatic polyamides [J]. J. Am. Chem. Soc, 1992, 114 (12): 4947-4948.
    [54] Danis PO, Karr DE, Simonsick WJ, Wu DT. Matrix-assisted laser-desorption ionization time-of-flight mass-spectrometry characterization of poly(butyl methacrylate) synthesized by group-transfer polymerization [J]. Macromolecules, 1995,28(4): 1229-1232.
    [55] Kricheldorf HR, Bolender O. New polymer syntheses 98 Hyperbranched poly(ester-amide)s derived from naturally occurring monomers [J]. J. Macromol. Sci. -Pure Appl. Chem., 1998, A35 (6): 903-918.
    [56] Jikei M, Chon SH, Kakimoto M, Kawauchi S, Imase T, Watanebe J. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid [J]. Macromolecules, 1999, 32 (6): 2061-2064.
    [57] Yang G, Jikei M, Kakimoto M Successful thermal self-polycondensation of AB(2) monomer to form hyperbranched aromatic polyamide [J]. Macromolecules, 1998, 31 (17): 5964-5966.
    [58] Hawker CJ, Chu FK. Hyperbranched poly(ether ketones): Manipulation of structure and physical properties [J]. Macromolecules, 1996, 29 (12): 4370-4380.
    [59] Morikawa A. Preparation and properties of hyperbranched poly(ether ketones) with a various number of phenylene units [J]. Macromolecules, 1998, 31 (18): 5999-6009.
    [60] Shu CF, Leu CM, Huang FY. Synthesis, modification, and characterization of hyperbranched poly(ether ketones) [J]. Polymer, 1999, 40 (23): 6591-6596.
    [61] Shu CF, Leu CM. Hyperbranched poly(ether ketone) with carboxylic acid terminal groups: Synthesis, characterization, and derivatization [J]. Macromolecules, 1999, 32(1): 100-105.
    [62] Bolton DH, Wooley KL. Synthesis and characterization of hyperbranched polycarbonates [J]. Macromolecules, 1997, 30 (7): 1890-1896.
    [63] Leon JW, Frechet JMJ. Analysis of aromatic polyether dendrimers and dendrimer linear block-copolymers by matrix-assisted laser-desorption ionization mass-spectrometry [J]. Polym. Bull., 1995, 35 (4): 449-455.
    [64] Kambouris P, Hawker CJ. A versatile new method for structure determination in hyperbranched macromolecules [J]. J. Chem. Soc, Perkin Trans., 1993, 1 (22): 2717-2721.
    [65] Andersson H, Gedde UW, Hult A. Synthesis and polymerization of liquid crystalline donor-acceptor monomers [J]. Macromolecules, 1996, 29 (5): 1649-1654.
    [66] Malmstrom E, Hult A. Kinetics of formation of hyperbranched polyesters based on 2,2-bis(methylol)propionic acid [J]. Macromolecules, 1996. 29 (4): 1222-1228 .
    [67] Sunder A, Mulhaupt R, Haag R, Frey H. Hyperbranched polyether polyols: A modular approach to complex polymer architectures [J]. Adv. Mater., 2000, 12(3): 235-239.
    [68] Frey H, Lach C, Lorenz K. Heteroatom-based dendrimers [J]. Adv. Mater., 1998, 10(4): 279-293.
    [69] Kricheldorf HR, Bolender O, Wollheim T. New polymer syntheses. 103. In situ end group modification of hyperbranched poly(3,5-dihydroxybenzoate) [J]. Macromolecules, 1999, 32 (12): 3878-3882.
    [70] Holter D, Frey H. Degree of branching in hyperbranched polymers. 2. Enhancement of the DB: Scope and limitations [J]. Acta Polym., 1997, 48(8): 298-309.
    [71] 高超.超支化聚合物的分子设计、合成、表征及其功能化研究[D].上海:上海交通大学,2001.
    [72] Inoue K. Functional dendrimers, hyperbranched and star polymers [J]. Prog. Polym. Sci., 2000, 25(4): 453-571.
    [73] Schluter AD, Rabe JP. Dendronized polymers: Synthesis, characterization, assembly at interfaces, and manipulation [J]. Angew. Chem. Int. Ed., 2000, 39(5): 864-883.
    [74] Emrick T, Frechet JMJ. Self-assembly of dendritic structures [J]. Curr. Opin. Colloid Interface Sci., 1999, 4(1): 15-23.
    [75] Fischer M, Vogtle F. Dendrimers: From design to application - A progress report [J]. Angew. Chem. Int. Ed., 1999, 38(7): 885-905.
    [76] Majoral JP, Caminade AM. Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi)[J]. Chem. Rev., 1999, 99(3): 845-880.
    [77] Zeng FW, Zimmerman SC. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly [J]. Chem. Rev., 1997, 97(5): 1681-1712.
    [78] Wang Y, Zeng FW, Zimmerman SC. Dendrimers with anthyridine-based hydrogen-bonding units at their cores: Synthesis, complexation and self-assembly studies [J]. Tetrahedron Lett., 1997, 38 (31): 5459-5462.
    [79] Zimmerman SC, Zeng FW, Reichert DEC, Kolotuchin SV. Self-assembling dendrimers [J]. Science, 1996, 271 (5252): 1095-1098.
    [80] Lupton JM, Samuel IDW, Beavington R, Burn PL, Bassler H. Control of charge transport and intermolecular interaction in organic light-emitting diodes by dendrimer generation [J]. Adv. Mater., 2001, 13 (4): 258-261.
    [81] Ma DG, Lupton JM, Beavington R, Burn PL, Samuel IDW Novel heterolayer organic light-emitting diodes based on a conjugated dendrimer [J]. Adv. Func. Mater., 2002, 12(8): 507-511.
    [82] Halim M, Pillow JNG, Samuel DW, Burn PL. Conjugated dendrimers for light-emitting diodes: Effect of generation [J]. Adv. Mater., 1999, 11(5): 371-374.
    [83] Ma DG, Hu YF, Zhang YG, Wang LX, Jing XB, Wang FS, Lupton JM, Samuel IDW, Lo SC, Burn PL. Bright electroluminescence from a new conjugated dendrimer [J]. Synth. Met., 2003, 137(1-3): 1125-1126.
    [84] Xu MH, Pu L. Novel unsymmetrically hyperbranched polythiophenes with conjugation gradient [J]. Tetrahedron Lett., 2002, 43 (36): 6347-6350.
    [85] Tanaka S, Iso T, Takeuchi K. Preparation of hyperbranched polymers containing triphenylamine and phenylenevinylene units [J]. Synth. Met., 2003, 135(1-3): 57-58.
    [86] Peng QG, Yang JL, He QG, Bai FL. Synthesis and characterization of a water-soluble hyperbranched polyp-phenylene vinylene) (WHPV) [J]. Synth. Met., 2003, 135(1-3): 163-164.
    [87] Bai FL, He QQ, Huang HM, Lin HZ, Yang JL. A hyperbranched dendritic sensory oligomer based on dibenzo- 18-crown-6 receptors [J]. Synth. Met., 2003, 137 (1-3): 971-972.
    [88] He QG, Yang JL, Lin HZ, Zhang L, Song Y, Bai FL. Synthesis, characterization and cis-trans photoisomerization of a series of hyperbranched conjugated polymers [J]. Poly. Adv. Technol., 2003, 14(3-5): 297-302.
    [89] He QG, Huang HM, Lin HZ, Yang JL, Bai FL. Synthesis and characterization of a novel hyperbranched oligomer with 1,3,5-trisphenylbenzene as cores [J]. Synth. Met., 2003, 135(1-3): 165-166.
    [90] Sun Q J, He QG, Yang CH, Bai FL, Li YF. Photo- and electroluminescence from hyperbranched phenylene vinylenes [J]. Synth. Met., 2003, 139(2): 417-423.
    [91] 宋娜.部分共轭型超支化及线性发光聚合物的合成与性能研究[D].北京:北京化工大学,2005.
    [92] Li J, Bo ZS. "AB(2)+AB" approach to hyperbranched polymers used as polymer blue light emitting materials [J]. Macromolecules, 2004, 37(6): 2013-2015.
    [93] Sun MH, Li J, Li BS, Fu YQ, Bo ZS. Toward high molecular weight triphenylamine-based hyperbranched polymers [J]. Macromolecules, 2005, 38(7): 2651-2658.
    [94] Sun MH, Bo ZS. Tuning the optical properties of hyperbranched polymers through the modification of the end groups [J]. J. Polym. Sci. - Polym. Chem., 2007, 45 (1): 111-124.
    [95] Ding L, Bo ZS, Chu QH, Li J, Dai LM, Pang Y, Karasz FE, Durstock ME. Photophysical and electrolumine scent properties of hyperbranched polyfluorenes [J]. Macromol. Chem. Phys., 2006, 207 (10): 870-878.
    [96] Tu GL, Mei CY, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing XB, Wang FS. Highly efficient pure-white-light-emitting diodes from a single polymer: Polyfluorene with naphthalimide moieties [J]. Adv. Func. Mater., 2006, 16 (1): 101-106.
    [97] Liu J, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing XB, Wang FS. White electrolumineseence from a single-polymer system with simultaneous two-color emission: Polyfluorene as the blue host and a 2,1,3-benzothiadiazole derivative as the orange dopant on the main chain [J]. Adv. Func. Mater., 2006, 16 (7): 957-965.
    [98] Tu GL, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS. White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties [J]. Appl. Phys. Lett, 2004, 85 (12): 2172-2174.
    [99] Schwartz BJ. Conjugated polymers as molecular materials : How chain conformation and film morphology influence energy transfer and interchain interactions [J]. Annu. Rev. Phys. Chem., 2003, 54: 141-172.
    [100] Bredas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture [J]. Chem. Rev., 2004, 104 (11): 4971-5003.
    [101] Ding LM, Karasz FE. Color tuning and efficiency enhancement through interfacial energy transfer and thickness control in light-emitting diodes [J]. J. Appl. Phys., 2004, 96 (4): 2272-2277.
    [102] Wong KF, Bagchi B, Rossky PJ. Distance and orientation dependence of excitation transfer rates in conjugated systems: Beyond the Forster theory [J]. J. Phys. Chem. A, 2004, 108 (27): 5752-5763.
    [1] Bernius MT, Inbasekaran M, O'Brien J, Wu P. Progress with light-emitting polymers [J]. Adv. Mater., 2000, 12 (23): 1737-1750.
    [2] Kim DY, Cho HN, Kim CY. Blue light emitting polymers [J]. Prog. Polym. Sci., 2000,25(8): 1089-1139.
    [3] Kraft A, Grimsdale AC, Holmes AB. Electroluminescent conjugated polymers - Seeing polymers in a new light [J]. Angew. Chem. Int. Ed., 1998, 37 (4): 402-428.
    [4] Scherf U, List EJW. Semiconducting polyfluorenes - Towards reliable structure-property relationships [J]. Adv. Mater., 2002, 14 (7): 477-487.
    [5] Redecker M, Bradley DDC, Inbasekaran M, Wu WW, Woo EP. High mobility hole transport fluorene-triarylamine copolymers [J]. Adv. Mater., 1999, 11 (3): 241-246.
    [6] Jin YE, Kim JY, Park SH, Kim J, Lee S, Lee K, Suh H. Syntheses and properties of electrolumine scent polyfluorene-based conjugated polymers, containing oxadiazole and carbazole units as pendants, for LEDs [J]. Polymer, 2005, 46 (26): 12158-12165.
    [7] Wu WC, Liu CL, Chen WC. Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications [J]. Polymer, 2006, 47 (2): 527-538.
    [8] Cirpan A, Ding LM, Karasz FE. Optical and electroluminescent properties of polyfluorene copolymers and their blends [J]. Polymer, 2005, 46 (3): 811-817.
    [9] Inbasekaran M, Wu W, Woo EP. [P]. U.S. Patent 5777070, 1997.
    [10] Hou Q, Xu YS, Yang W, Yuan M, Peng JB, Cao Y. Novel red-emitting fluorene-based copolymers [J]. J. Mater. Chem., 2002, 12 (10): 2887-2892.
    [11] Peng Q, Lu ZY, Huang Y, Xie M, Han S, Peng J, Cao Y. Synthesis and characterization of new red-emitting polyfluorene derivatives containing electron-deficient 2-pyran-4-ylidene-malononitrile moieties [J]. Macromolecules, 2004, 37 (2): 260-266.
    [12] Bredas, JL; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture [J]. Chem. Rev., 2004, 104 (11): 4971-5003.
    [13] Buckley AR, Rahn MD. Hill J, Cabanillas-Gonzalez J, Fox AM, Bradley DDC. Energy transfer dynamics in polyfluorene-based polymer blends [J]. Chem. Phys. Lett., 2001, 339 (5-6): 331-336.
    [14] Stevens MA, Silva C, Russell DM, Friend RH. Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9, 9-dioctylfluorene-co-benzothiadiazole) [J]. Phys. Rev. B, 2001, 63(16): No. 165213.
    [15] Westerling M, Vijila C, Osterbacka R, Stubb H. Optical studies of excited-state relaxation in poly(9,9-dihexylfluorene-co-benzothiadiazole) [J]. Phys. Rev. B, 2003, 67 (19): No. 195201.
    [16] Yu J, Lammi R, Gesquiere A J, Barbara PF. Singlet-triplet and triplet-triplet interactions in conjugated polymer single molecules [J]. J. Phys. Chem. B, 2005, 109(20): 10025-10034.
    [17] Li J, Bo ZS. "AB(2)+AB" approach to hyperbranched polymers used as polymer blue light emitting materials [J]. Macromolecules, 2004, 37(6): 2013-2015.
    [18] Tao XT, Zhang YD, Wada T, Sasabe H, Suzuki H, Watanabe T, Miyata S. Hyperbranched polymers for electroluminescence applications [J]. Adv. Mater., 1998, 10(3): 226-230.
    [19] Duan L, Qiu Y, He QG, Bai FL, Wang LD, Hong XY. A novel hyperbranched conjugated polymer for electroluminescence application [J]. Synth. Met., 2001, 124(2-3): 373-377.
    [20] Sun MH, Li J, Li BS, Fu YQ, Bo ZS. Toward high molecular weight triphenylamine-based hyperbranched polymers [J]. Macromolecules, 2005, 38(7): 2651-2658.
    [21] Xu MH, Pu L. Novel unsymmetrically hyperbranched polythiophenes with conjugation gradient [J]. Tetrahedron Lett., 2002, 43(36): 6347-6350.
    [22] He QG, Yan JL, Lin HZ, Zhang L, Song Y, Bai FL. Synthesis, characterization and cis-trans photoisomerization of a series of hyperbranched conjugated polymers [J]. Polym. Adv. Technol., 2003, 14(3-5): 297-302.
    [23] Lightowler S, Hird M. Palladium-catalyzed cross-coupling reactions in the synthesis of novel aromatic polymers [J]. Chem. Mater., 2004, 16(20): 3963-3971.
    [24] Kim YH, Webster OW. Hyperbranched polyphenylenes [J]. Macromolecules, 1992, 25(21): 5561-5572.
    [25] Marsitzky D, K. lapper M, Mullen K. End-functionalization of poly(2,7-fluorene): A key step toward novel luminescent rod-coil block copolymers [J]. Macromolecules, 1999, 32 (25):8685-8688.
    [26] Liu B, Bazan GC. Interpolyelectrolyte complexes of conjugated copolymers and DNA: Platforms for multicolor biosensors [J]. J. Am. Chem. Soc., 2004, 126 (13): 1942-1943.
    [27] Katsis D, Geng YH, Ou JJ, Culligan SW, Trajkovska A, Chen SH, Rothberg LJ. Spiro-linked ter-, penta-, and heptafluorenes as novel amorphous materials for blue light emission [J]. Chem. Mater., 2002, 14 (3): 1332-1339.
    [28] Sarker AM, Kaneko Y, Lahti PM, Karasz FE. Excited states of bromine-substituted distyrylbenzenes: Models for conjugated polymer emission [J]. J. Phys. Chem. A, 2003, 107 (34): 6533-6537.
    
    [29] Chunwaschirasiri W, Tanto B, Huber DL, Winokur MJ. Chain conformations and photoluminescence of poly(di-n-octylfluorene) [J]. Phys. Rev. Lett., 2005, 94 (10): No. 107402.
    
    [30] Rauscher U, Bassler H, BradleyDDC, Hennecke M. Exciton versus band description of the absorption and luminescence spectra in poly(para-phenylenevinylene) [J]. Phys. Rev. B, 1990, 42 (16): 9830-9839.
    
    [31] Huang F, Hou LT, Wu HB, Wang XH, Shen HL, Cao W, Yang W, Cao Y. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: Green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors [J]. J. Am. Chem. Soc, 2004, 126 (31): 9845-9853.
    
    [32] Voit B. Hyperbranched polymers - All problems solved after 15 years of research? [J]. J. Polym. Sci., Polym. Chem., 2005, 43 (13): 2679-2699.
    [33] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications [J]. Prog. Polym. Sci., 2004, 29 (3): 183-275.
    [34] Schwartz BJ. Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions [J]. Annu. Rev. Phys. Chem., 2003, 54: 141-172.
    [35] Herguch P, Jiang XZ, Liu MS, Jen AKY. Highly efficient fluorene- and benzothiadiazole-based conjugated copolymers for polymer light-emitting diodes [J]. Macromolecules, 2002, 35 (16): 6094-6100.
    [36] Wang CF, White JD, Lim TL. Hsu JH, Yang SC, Fann WS, Peng KY, Chen SA. Illumination of exciton migration in rodlike luminescent conjugated polymers by single-molecule spectroscopy [J]. Phys. Rev. B., 2003;67 (3): No.035202.
    [37] Grage MML, Wood PW, Ruseckas A, Pullerits T, Mitchell W, Burn PL, Samuel IDW, Sundstrom V. Conformational disorder and energy migration in MEH-PPV with partially broken conjugation [J]. J. Chem. Phys., 2003, 118 (16): 7644-7650.
    [38] Vehse M, Liu B, Edman L, Bazan GC, Heeger AJ. Light amplification by optical excitation of a chemical defect in a conjugated polymer [J]. Adv. Mater., 2004, 16 (12): 1001-1004.
    [39] Ding LM, Karasz FE. Color tuning and efficiency enhancement through interfacial energy transfer and thickness control in light-emitting diodes [J]. J. Appl. Phys., 2004, 96 (4): 2272-2277.
    [40] Sheiko SS, Gauthier M, Moller M. Monomolecular films of arborescent graft polystyrenes [J]. Macromolecules, 1997, 30 (8): 2343-2349.
    [41] Cadby AJ, Lane PA, Mellor H, Martin SJ, Grell M, Giebeler C, Bradley DDC, Wohlgenannt M, An C, Vardeny ZV. Film morphology and photophysics of polyfluorene [J]. Phys. Rev. B, 2000, 62 (23): 15604-15609.
    [42] Khan ALT, Sreearunothai P, Herzx LM, Banach MJ, Koehler A. Morphology-dependent energy transfer within polyfluorene thin films [J]. Phys. Rev. B, 2004, 69 (8): No. 085201.
    [43] Leeuw DM, Simenon MMJ, Brown AR, Einerhand REY. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices [J]. Synth. Met, 1997, 87 (1): 53-59.
    [1] Balzani V, Credi A, Raymo FM, Stoddart JF. Artificial molecular machines [J]. Angew. Chem. Int. Ed., 2000, 39(19): 3349-3391.
    [2] Hong BH, Bae SC, Lee CW, Jeong S, Kim KS. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase [J]. Science, 2001, 294(5541): 348-351.
    [3] Reinhoudt DN, Crego-Calama M. Synthesis beyond the molecule [J]. Science, 2002, 295(5564): 2403-2407.
    [4] Harada A. Cyclodextrin-based molecular machines [J]. Acc. Chem. Res., 2001, 34(6): 456-464.
    [5] Lehn JM. Toward self-organization and complex matter [J]. Science, 2002, 295(5564): 2400-2403.
    [6] 巴尔扎尼V,克雷迪A.,文图里 M.著 田禾,王利民译.分子器件与分子机器:通向纳米世界的捷径[M].北京:化学工业出版社,2005:001-008.
    [7] 牟忠诚.取代基调控的二维超分子组装[D].长春:吉林大学,2005.
    [8] Pedersen CJ. The discovery of crown ethers [J]. Angew. Chem. Int. Ed., 1988, 27(8): 1021-1027.
    [9] Cram DJ. The design of molecular hosts, guests, and their complexes [J]. Angew. Chem. Int. Ed., 1988, 27(8): 1009-1020.
    [10] Lehn JM. Supramolecular chemistry - scope and perspectives molecules, supermolecules, and molecular devices [J]. Angew. Chem. Int. Ed., 1988, 27(1): 89-112.
    [11] Lehn JM. Perspectives in Supramolecular Chemistry - From Molecular Recognition towards Molecular Information Processing and Self-Organization [J]. Angew. Chem. Int. Ed., 1990, 29(11): 1304-1319.
    [12] 刘育,尤长城,张衡益.超分子化学—合成受体的分子识别与组装[M].天津:南开大学出版社,2001:001-006.
    [13] Lehn JM. Supramolecular chemistry: receptors, catalysts, and carriers [J]. Science, 1985, 227(4689): 849-856.
    [14] Lehn JM. Dinuclear cryptates - dimetallic macropolycyclic inclusion complexes - concepts - design - prospects [J]. Pure Appl. Chem., 1980, 52(11): 2441-2459.
    [15] 马永山.基于几种多维芳香分子的自组装聚集结构研究[D].济南:山东师范大学,2006.
    [16] Zerkowski JA, Macdonald JC, Seto CT, Wierda DA, Whitesides GM. Design of organic structures in the solid-state - Molecular tapes based on the network of hydrogen-bonds present in the cyanuric acid melamine complex [J]. J. Am. Chem. Soc., 1994, 116 (6): 2382-2391.
    [17] Ducharme Y, Wuest, J. D. Use of hydrogen-bonds to control molecular aggregation - extensive, self-complementary arrays of donors and acceptors [J]. J. Org. Chem., 1988, 53 (24): 5787-5789.
    [18] Lawrence, D. S.;Jiang, T. Levett, M. Self-assembling supramolecular complexes [J]. Chem. Rev., 1995, 95 (6): 2229-2260.
    [19] Lehn JM. Supramolecular chemistry [J]. Science, 1993, 260 (5115): 1762-1763.
    [20] Martin AS, Sambles JR, Ashwell GJ. Molecular rectifier [J]. Phys. Rev. Let., 1993, 70 (2): 218-221.
    [21] Wakdeck DH, Beratan DN. Molecular electronics - Observation of molecular rectification [J]. Science, 1993, 261 (5121): 576-577.
    [22] Bissell RA, Cordova E, Kaifer AE, Stoddart JF. A chemically and electrochemically switchable molecular shuttle [J]. Nature, 1994, 369 (6476): 133-137.
    [23] Crossley MJ, Bum PL. An approach to porphyrin-based molecular wires - Synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system [J]. J. Chem. Soc., Chem.Commun., 1991, 21: 1569-1571.
    [24] Wagner RW, Lindsey JS. A molecular photonic wire [J]. J.Am.Chem.Soc., 1994, 116(21): 9759-9760.
    [25] 韦钰.分子电子学的研究目标的途径[J].电子科学学刊,1990,12(5): 512-515.
    [26] 李景虹,程广会,董绍俊.一种新型有序超薄有机膜——自组膜[J].化学通报,1995,(10):11-18
    [27] 顾宁.分子自组装及其应用[J].材料导报,1997,11(3):40-45.
    [28] Binnig G, Rorher H, Gerber C, Weibel E. Surface studies by scanning tunneling microscopy [J]. Phys. Rev. Lett., 1982, 49 (1): 57-61.
    [29] Binnig, G.;Rorher. H. Scanning tunneling microscopy [J]. IBM J. Res. Develop., 1986, 30 (4): 355-369.
    [30] Binnig G, Rorher H,erber, C, Wibel E. 7x7 reconstruction on si(111) resolved in real space [J]. Phys. Rev. Lett., 1983, 50 (2): 120-123.
    [31] Binning G., Rohrer H. Scanning Tunneling Microscopy-from birth to Adolescence (Nobel Lecture) [J]. Rev. Mod. Phys., 1987, 59: 615.
    [32] 白春礼.扫描隧道显微技术及其应用[M].上海:上海科学技术出版社,1992: 009.
    [33] Foster JS, Frommer JE. Imaging of liquid-crystals using a tunnelling microscope [J]. Nature, 1988, 333 (6173): 542-545.
    [34] McMaster TJ, Carr HJ, Miles MJ, Cairns P, Morris VJ. Scanning tunneling microscopy of poly(gamma-benzyl 1-glutamate) [J]. Macromolecules, 1991, 24(6): 1428-1430.
    [35] Breen JJ, Flynn GW. Scanning tunneling microscopy studies of the synthetic polypeptide poly (gamma-benzyl-1-glutamate) [J]. J. Phys. Chem., 1992, 96 (16): 6825-6829.
    [36] Heckl WM, Smith DPE, Birmig G, Klagges H, Hansch TW, Maddocks J. 2-Dimensional ordering of the dna-base guanine observed by scanning tunneling microscopy [J]. Proc. Acad. Sci. U.S.A., 1991, 88 (18): 8003-8005.
    [37] Walba DM, Stevens F, Parks DM, Clark NA, Wand MD. Near-atomic resolution imaging of ferroelectric liquid-crystal molecules on graphite by STM [J]. Science, 1995, 267, (5201): 1144-1147.
    [38] Brandow SL, Harrison JA, Dilella DP, Colton RJ, Pfeiffer S, Shashidhar R. Scanning tunneling microscopic study of the interfacial order in a ferroelectric liquid-crystal [J]. Liquid Cryst., 1993, 13 (1): 163-170.
    [39] Sleator T, Yycko R. Observation of individual organic-molecules at a crystal-surface with use of a scanning tunneling microscope [J]. Phys. Rev. Lett., 1988, 60 (14): 1418-1421.
    [40] Yang R, Naoi K, Evans DE Smyrl WH, Hendrickson WA. Scanning tunneling microscope study of electropolymerized polypyrrole with polymeric anion [J]. Langmuir, 1991, 7 (3): 556-558.
    [41] Quivy A, Deltour R, Vanbentum PJM, Gerritsen JW, Jansen AGM, Wyder R Scanning-tunneling-microscopy study of the one-dimensional organic conductor TTF-TCNQ [J]. Surf. Sci., 1995, 325 (1-2): 185-192.
    [42] Quint R Knoll W, Hara M, Sasabe H, Duran RS. Scanning-tunneling-microscopy studies of langmuir-blodgett-deposited alkyl-substituted polyaniline and its corresponding monomer [J]. Macromolecules, 1995, 28 (11): 4029-4032.
    [43] Kimura M, Okumura A, Miyamura K, Gohshi Y. Tunnel GAR Imaging investigation of voltage-dependence of molecular images obtained by scanning tunneling microscope [J]. Jpn. J. Appl. Phys., 1995, 34 (7A): 3642-3646.
    [44] Cornelison DM, Dillingham TR, Bullock E, Benally NT, Townsend SW. In-situ scanning-tunneling-microscopy on vapor-deposited polyaniline thin-films [J]. Surf. Sci., 1995, 343 (1-2): 87-94.
    [45] Arakato N, Yase K, Shigekawa H, Yoshimura M, Kawazu A. Scanning-tunneling-microscopy of ttf-tcnq single-crystal and thin-film [J]. Synth.Met., 1995, 70 (1-3): 1245-1246.
    [46] Bar G, Magonov SN, Liang W, Whangbo MH. Detection of the homo density of bedt-ttf from the scanning-tunneling-microscopy study of beta-(BEDT-TTF)(2)I-3 [J]. Synth.Met., 1995, 72 (2): 189-192.
    [47] Wu XL, Parakka JP, Cava MP, Kim YT, Metzger RM. Scanning tunneling micrographs of ordered layers of 2 thiophene-alkylpyrrole oligomers on graphite [J]. Synth.Met., 1995, 71(1-3): 2105-2106.
    [48] Binning G., Rohrer H. In touch with atoms [J]. Rev. Mod. Phys., 1999, 71 (2): S324-S330.
    [49] 陈成钧著,华中一等译.扫描隧道显微学引论[M].北京:中国轻工业出版社,1996:001.
    [50] Binning G, Quate CF, Gerber C. Atomic force microscope [J]. Phys. Rev. Lett., 1986, 56 (9): 930-933.
    [51] 刘万里,孙大许,马强,闫勇刚.原子力显微镜在信息存储介质检测中的应用[J].现代科学仪器,2005,5:51—53.
    [52] 张德添,何昆,张飒,杨怡,周涛,张学敏,赵晓光,薛燕.原子力显微镜发展近况及其应用[J].现代仪器,2002,3:6—9.
    [53] Bong DT, Clark TD, Granja JR, Ghadiri MR. Self-assembling organic nanotubes [J]. Angew. Chem. Int. Ed., 2001, 40 (6): 988-1011.
    [54] Zubay G.著,曹凯鸣等译.生物化学[M].上海:复旦大学出版社,1988.
    [55] 王晓钟.有机分子自卷和超分子自组装的一些研究[D].杭州:浙江大学, 2004.
    [56] Pimental GC, McClellan AL. The Hydrogen Bond [M]. Freeman, Sanfrancisco, 1960.
    [57] Kollman PA, Allen LA. Theory of the hydrogen bond [J]. Chem. Rev., 1972, 72 (3): 283-303.
    [58] Taylor R. Kennard O, Versichel W. Geometry of the nitrogen-hydrogen...oxygen- carbon (N-H…O :C) hydrogen bond. 2. Three-center (bifurcated) and four-center (trifurcated) bonds [J]. J. Am. Chem. Soc, 1984, 106 (1): 244-248.
    [59] Saenger, W. Principles of Nucleic Acid Structure [M]. Springer-Verlag, New York, 1984, 132-140.
    [60] Murr MM, Harting MT, Guelev V, Ren JS, Chaires JB, Iverson BL. An octakis-intercalating molecule [J]. Bioorg. Med. Chem., 2001, 9 (5): 1141-1148.
    [61] Lokey RS, Kwok Y, Guelev V, Pursell CJ, Hurley LH, Iverson BL. A new class of polyintercalating molecules [J]. J. Am. Chem. Soc, 1997, 119 (31): 7202-7210.
    [62] Schulz GE, Schirmer RH. Principles of Protein Structure [M]. Spring-Verlag, New York, 1979.
    [63] Hunter CA, Sanders JKM. The nature of pi-pi interactions [J]. J. Am. Chem. Soc, 1990, 112 (14): 5525-5534.
    [64] Claessens CG, Stoddart JF. pi-pi interactions in self-assembly [J]. J. Phy. Org. Chem., 1997,10 (5): 254-272.
    [65] Tang CW, Vanslyke SA. Organic electroluminescent diodes [J]. Appl.Phys.Let., 1987, 51 (12): 913-915.
    [66] Jeon D, King J, Gallagher MC. Scanning tunneling spectroscopic evidence for granular metallic conductivity in conducting polymeric polyaniline [J]. Science, 1992, 256 (5064): 1662-1664.
    [67] Xue YQ, Datta S, Hong S, Reifenberger R, Henderson JI, Kubiak CP. Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules [J]. Phys. Rev. B, 1999, 59 (12): R7852-R7855.
    [68] Kawamoto A, Suzoki Y, Mizutani T. [C]. Proceedings of the 5th international conference on properties and applications dielectric materials, 1997,53.
    [69] Ellenbogen JC, Love JC. Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes [J]. Proceedings of the IEEE, 2000, 88 (3): 386-426.
    [70] Stato A, Tsukamoto Y. Nanometer-scale recording and erasing with the scanning tunneling microscope [J]. Nature, 1993, 363 (6428): 431-432.
    [71] Yano K, Kyogaku M, Kuroda R, Shimada Y, Shido S, Matsuda H, Takimoto K, Albrecht O, Eguchi K, Nakagiri T. Nanometer scale conductance change in a Langmuir-Blodgett film with the atomic force microscope [J]. Appl. Phys. Let., 1996,68(2): 188-190.
    [72] Kado H, Tohda T. Nanometer-scale recording on chalcogenide films with an atomic-force microscope [J]. Appl. Phys. Let., 1995, 66 (22): 2961-2962.
    [73] Dunbar TD, Cygan MT, Bumm LA, McCarty GS, Burgin TP, Reinerth WA, Jones L, Jackiw JJ, Tour JM, Weiss PS, Allara DL. Combined scanning tunneling microscopy and infrared spectroscopic characterization of mixed surface assemblies of linear conjugated guest molecules in host alkanethiolate monolayers on gold [J]. J. Phys. Chem. B, 2000, 104 (20): 4880-4893.
    [74] Payerne R, Brun M, Rannou P, Baptist R, Grevin B. STM studies of poly(3-alkylthiophene)s: model systems for plastic electronics [J]. Synth. Met., 2004, 146 (3): 311-315.
    [75] Gesquiere A, De Feyter S, De Schryver FC, Schoonbeek F, van Esch J, Kellogg RM, Feringa BL. Supramolecular pi-stacked assemblies of bis(urea)-substituted thiophene derivatives and their electronic properties probed with scanning tunneling microscopy and scanning tunneling spectroscopy [J]. Nano Lett., 2001, 1(4): 201-206.
    [76] Azumi R, Gotz G, Debaerdemaeker T, Bauerle P. Coincidence of the molecular organization of beta-substituted oligothiophenes in two-dimensional layers and three-dimensional crystals [J]. Chem. Eur. J., 2000, 6 (4): 735-744.
    [77] Bond SF, Howie A, Friend RH. A scanning probe microscopy study of conjugated polymers [J]. Surf. Sci., 1995, 333: 196-200.
    [78] Surin M, Lazzaroni R, Feast WJ, Schenning APHJ, Meijer EW, Leclere P. [J]. Synth. Met., 2004, 147 (1-3): 67-72.
    [79] Dubois M, Delerue C, Allan G. Scanning tunneling microscopy and spectroscopy of conjugated oligomers weakly bonded to Si(100) surfaces: A theoretical study [J]. J. Phys. Chem. B, 2005, 71 (16): Art. No. 165435.
    [80] Alvarado SF, Riess W, Seidler PF, Strohriegl P. STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions [J]. Phys. Rev. B, 1997, 56 (3): 1269-1278.
    [81] Gong JR, Wan LJ, Lei SB, Bai CL, Zhang XH, Lee ST. Direct evidence of molecular aggregation and degradation mechanism of organic light-emitting diodes under joule heating: an STM and photoluminescence study [J]. J. Phys. Chem. B, 2005, 109 (5): 1675-1682.
    [82] Samori P, Fechtenkotter A, Jackel F, Bohme T, Mullen K, Rabe JP. Supramolecular staircase via self-assembly of disklike molecules at the solid-liquid interface [J]. J. Am. Chem. Soc, 2001, 123 (46): 11462-11467.
    [83] Tchebotareva N, Yin XM, Watson MD, Samori P, Rabe JP, Mullen K. Ordered architectures of a soluble Hexa-peri-hexabenzocoronene-pyrene dyad: Thermotropic bulk properties and nanoscale phase segregation at surfaces [J]. J. Am. Chem. Soc., 2003, 125 (32): 9734-9739.
    [84] Watson MD, Jackel F, Severin N, Rabe JP, Mullen K. A hexa-peri-hexabenzocoronene cyclophane: An addition to the toolbox for molecular electronics [J]. J. Am. Chem. Soc, 2004,126 (5): 1402-1407.
    [85] Piot L, Marchenko A, Wu JS, Mullen K, Fichou D. Structural evolution of hexa-peri-hexabenzocoronene - Adlayers in heteroepitaxy on n-pentacontane template monolayers [J]. J. Am. Chem. Soc, 2005, 127 (46): 16245-16250.
    [86] Kim KH, Jo WH, Kwak S, Kim KU, Hwang SS, Kim J. Synthesis and characterization of poly(styrene-co-4-[(tert-butyldimethylsilyl)oxy]styrene) as a precursor of hydroxyl-functionalized syndiotactic polystyrene [J]. Macromolecules, 1999, 32 (26): 8703-8710.
    [87] Samori P, Francke V, Mullen K, Rabe JP. Self-assembly of a conjugated polymer: from molecular rods to a nanoribbon architecture with molecular dimensions [J]. Chem. Eur. J., 1999, 5 (8): 2312-2317.
    [88] Samori P, Severin N, Mullen K, Rabe JP. Macromolecular fractionation of rod-like polymers at atomically flat solid-liquid interfaces [J]. Adv. Mater., 2000, 12 (8): 579-582.
    [89] McQuade DT, Kim J, Swager TM. Two-dimensional conjugated polymer assemblies: Interchain spacing for control of photophysics [J]. J. Am. Chem. Soc., 2000, 122 (24): 5885-5886.
    [90] Steffen W, Bunz UHF. Synthesis and characterization of nonfluorescent poly(p-aryleneethynylene)s by alkyne metathesis [J]. Macromolecules, 2000, 33 (26): 9518-9521.
    [91] Kim J, Swager TM. Control of conformational and interpolymer effects in conjugated polymers [J]. Nature, 2001, 411 (6841): 1030-1034.
    [92] Li H, Powell DR, Hayashi RK, West R. Poly((2,5-dialkoxy-p-phenylene)ethynylene- p-phenyleneethynylene)s and their model compounds [J]. Macromolecules, 1998, 31 (1): 52-58.
    [93] Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS. Are single molecular wires conducting? [J]. Science, 1996, 271 (5256): 1705-1707.
    [94] Dhirani AA, Zehner RW, Hsung RP, GuyotSionnest P, Sita LR. Self-assembly of conjugated molecular rods: A high-resolution STM study [J]. J. Am. Chem. Soc, 1996,118 (13): 3319-3320.
    [95] Cygan MT, Dunbar TD, Arnold JJ, Bumm LA, Shedlock NF, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS. Insertion, conductivity, and structures of conjugated organic oligomers in self-assembled alkanethiol monolayers on Au{111} [J]. J.Am. Chem. Soc, 1998, 120 (12): 2721-2732.
    [96] Samori P, Francke V, Enkelmann V, Mullen K, Rabe JP. Synthesis and solid state structures of functionalized phenyleneethynylene trimers in 2D and 3D [J]. Chem. Mater., 2003, 15 (5): 1032-1039.
    [97] Gong JR, Zhao JL, Lei SB, Wan LJ, Bo ZS, Fan XL, Bai CL. Molecular organization of alkoxy-substituted oligo(phenylene-ethynylene)s studied by scanning tunneling microscopy [J]. Langmuir, 2003, 19 (24): 10128-10131.
    [98] Kim JS, McHugh SK, Swager TM. Nanoscale fibrils and grids: Aggregated structures from rigid-rod conjugated polymers [J]. Macromolecules, 1999, 32 (5): 1500-1507.
    [99] Lin WJ, Chen WC, Wu WC, Niu YH, Jen AKY. Synthesis and optoelectronic properties of starlike polyfluorenes with a silsesquioxane core [J]. Macromolecules, 2004, 37 (7): 2335-2341.
    [100] Zhou XH, Yan JC, Pei J. Synthesis and relationships between the structures and properties of monodisperse star-shaped oligofluorenes [J]. Org. Lett., 2003, 5(19): 3543-3546.
    [101] Geng YH, Fechtenkotter A, Mullen K. Star-like substituted hexaarylbenzenes: synthesis and mesomorphic properties [J]. J. Mater. Chem., 2001, 11 (6): 1634-1641.
    [102] Li BS, Li J, Fu YQ, Bo ZS. Porphyrins with four monodisperse oligofluorene arms as efficient red light-emitting materials [J]. J. Am. Chem. Soc, 2004, 126 (11): 3430-3431.
    [103] Pei J, Wang JL, Cao XY, Zhou XH, Zhang WB. Star-shaped polycyclic aromatics based on oligothiophene-functionalized truxene: Synthesis, properties, and facileemissive wavelength tuning [J]. J. Am. Chem. Soc, 2003, 125 (33): 9944-9945.
    [104] Cao XY, Zhang WB, Wang JL, Zhou XH, Lu H, Pei J. Extended pi-conjugated dendrimers based on truxene [J]. J. Am. Chem. Soc, 2003, 125 (41): 12430-12431.
    [105] Chang DW, Dai LM. Luminescent amphiphilic dendrimers with oligo(p-phenylene vinylene) core branches and oligo(ethylene oxide) terminal chains: syntheses and stimuli-responsive properties [J]. J. Mater. Chem., 2007, 17 (4): 364-371.
    [106] Zhang Y, Zhao CC, Yang JH, Kapiamba M, Haze O, Rothberg LJ, Ng MK. Synthesis, optical, and electrochemical properties of a new family of dendritic oligothiophenes [J]. J. Org. Chem., 2006, 71 (25): 9475-9483.
    [107] Yu MH, Tang YL, He F, Wang S, Zheng DG, Li YH, Zhu DB. Synthesis of water-soluble dendritic conjugated polymers for fluorescent DNA assays [J]. Macromol. Rapid Comm., 2006, 27 (20): 1739-1745.
    [108] Kim CK, Song ES, Kim HJ, Park C, Kim JK, Kim YC, Yu JW, Kim C. Conjugated dendrimers with triazine peripheries and a distyrylanthracene core [J]. J. Polym. Sci., Polym. Chem., 2006,44 (20): 5855-5862.
    [109] Vak D, Chun C, Lee CL, Kim JJ, Kim DY. A novel spiro-functionalized polyfluorene derivative with solubilizing side chains [J]. J. Mater. Chem., 2004, 14(8): 1342-1346.
    [110] Yu WL, Pei J, Huang W, Heeger AJ. Spiro-functionalized polyfluorene derivatives as blue light-emitting materials [J]. Adv. Mater., 2000, 12(11): 828-831.
    [111] Katsis D, Geng YH, Ou JJ, Culligan SW, Trajkovska A, Chen SH, Rothberg LJ. Spiro-linked ter-, penta-, and heptafluorenes as novel amorphous materials for blue light emission [J]. Chem. Mater., 2002, 14 (3): 1332-1339.
    [112] Geng YH, Katsis D, Culligan SW, Ou, JJ, Chen SH, Rothberg LJ. Fully spiro-configured terfluorenes as novel amorphous materials emitting blue light [J]. Chem. Mater., 2002, 14(1): 463-470.
    [1] Giesa RJ. Synthesis and properties of conjugated poly(aryleneethynylene)s [J]. Macromol. Sci Rev. Chem. Phys., 1996, C36 (4): 631-670.
    [2] Moroni M, Le Moigne J, Luzzati S. Rigid-rod conjugated polymers for nonlinear optics .1. Characterization and linear optical-properties of poly(aryleneethynylene) derivatives [J]. Macromolecules, 1994, 27 (2): 562-567.
    [3] Wautelet P, Moroni M, Oswald L, Le Moigne J, Pham A, Bigot JY, Luzzati S. Rigid rod conjugated polymers for nonlinear optics .2. Synthesis and characterization of phenylene-ethynylene oligomers [J]. Macromolecules, 1996, 29 (1): 446-455.
    [4] Tada K, Onoda M, Hirohata M, Kawai T, Yoshino K. Blue-green electroluminescence in copolymer based on poly(1,4-phenylene ethynylene) [J]. Jpn. J. Appl. Phys., 1996, 35 (2B): L251-253.
    [5] Weder C, Wrighton MS. Efficient solid-state photoluminescence in new poly(2,5-dialkoxy-p-phenyleneethynylene)s [J]. Macromolecules, 1996, 29 (15): 5157-5165.
    [6] Swager TM, Gil CJ, Wrighton MS. Fluorescence studies of poly(p-phenyleneethynylene)s - the effect of anthracene substitution [J]. J. Phys. Chem., 1995, 99 (14): 4886-4893.
    [7] Pschirer NG, Miteva T, Evans U, Roberts RS, Marshall AR, Neher D, Myrick ML, Bunz UHF. Blue solid-state photoluminescence and electroluminescence from novel poly(para-phenyleneethynylene) copolymers [J]. Chem. Mater., 2001, 13 (8): 2691-2696.
    [8] Chu QH, Pang Y, Ding LM, Karasz FE. Synthesis, chain rigidity, and luminescent properties of poly[(1,3-phenyleneethynylene)-alt-tris(2,5-dialkoxy-1,4-phenylene- ethynylene)]s [J]. Macromolecules, 2002, 35 (20): 7569-7574.
    [9] Weder C, Sarwa C, Montali A, Bastiaansen C, Smith P. Incorporation of photoluminescent polarizers into liquid crystal displays [J]. Science, 1998, 279 (5352): 835-837.
    
    [10] Kubel C, Mio MJ, Moore JS, Martin DC. Molecular packing and morphology of oligo(m-phenylene ethynylene) foldamers [J]. J. Am. Chem. Soc, 2002, 124 (29): 8605-8610.
    [11] Levitsky IA, Kim JS, Swager TM. Energy migration in a poly(phenylene ethynylene): Determination of interpolymer transport in anisotropic Langrnuir-Blodgett films [J]. J. Am. Chem. Soc., 1999, 121 (7): 1466-1472.
    [12] Breen CA, Deng T, Breiner T, Thomas EL, Swager TM. Polarized photoluminescence from poly(p-phenylene-ethynylene) via a block copolymer nanotemplate [J]. J. Am. Chem. Soc., 2003, 125 (33): 9942-9943.
    [13] Kokil A, Shiyanovskaya I, Singer KD, Weder C. High charge carrier mobility in conjugated organometallic polymer networks [J]. J. Am. Chem. Soc., 2002, 124 (34): 9978-9979.
    [14] Giesa R, Schulz RC. Soluble Poly(1,4-phenyleneethynylene)s [J]. Makromol. Chem., 1990, 191 (4): 857-867.
    [15] Ballauff, M. Rigid rod polymers having flexible side-chains .1. thermotropic poly(1,4-phenylene 2,5-dialkoxyterephthalate)s [J]. Makromol. Chem., Rapid Commun., 1986, 7, 407-414.
    [16] Ballauff, M. Rigid rod polymers with flexible side-chains .2. observation of a novel type of layered mesophase [J]. Makromol. Chem., Rapid Commun., 1987, 8, 93-97.
    [17] Rodriquez-Prada JM, Duran R, Wegner G. A comparative study of mesophase formation in rigid-chain polyesters with flexible side chains [J]. Macromolecules, 1989, 22 (5): 2507-2516.
    [18] Ofer D, Swager TM, Wrighton MS. Solid-state ordering and potential dependence of conductivity in poly(2,5-dialkoxy-p-phenyleneethynylene) [J]. Chem. Mater., 1995, 7(2): 418-425.
    [19] Weder C, Wrighton MS. Efficient solid-state photoluminescence in new poly(2,5-dialkoxy-p-phenyleneethynylene)s [J]. Macromolecules, 1996, 29 (15): 5157-5165.
    [20] Skotheim TJ. Ed. Handbook of Conducting Polymers [M]. Marcel Dekker: New York, 1986.
    [21] Schluter AD, Rabe JP. Dendronized polymers: Synthesis, characterization, assembly at interfaces, and manipulation [J]. Angew. Chem. Int. Ed., 2000, 39 (5): 864-883.
    [22] Sheiko SS. Moller M. Visualization of macromolecules - A first step to manipulation and controlled response [J]. Chem. Rev., 2001, 101 (12): 4099-4123.
    [23] Mena-Osteritz E, Meyer A, Langeveld-Voss BMW, Janssen RAJ, Meijer EW, Bauerle P. Two-dimensional crystals of poly(3-alkylthiophene)s: Direct visualization of polymer folds in submolecular resolution [J]. Angew. Chem. Int. Ed. Engl., 2000, 39 (15): 2680-2684.
    [24] Grevin B, Rannou P, Payerne R, Pron A, Travers JP. Scanning tunneling microscopy investigations of self-organized poly(3-hexylthiophene) two-dimensional polycrystals [J]. Adv. Mater., 2003, 15 (11): 881-884.
    [25] Lei SB, Wan LJ, Wang C, Bai CL. Direct observation of the ordering and molecular folding of poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylene- vinylene)] [J]. Adv. Mater., 2004, 16 (9-10): 828-831.
    [26] Lei SB, Wang C, Yin SX, Bai CL. Single molecular arrays of phthalocyanine assembled with nanometer sized alkane templates [J]. J. Phys. Chem. B, 2001, 105 (49): 12272-12277.
    [27] Qiu XH, Wang C, Zeng QD, Xu B, Yin SX, Wang HN, Xu SD, Bai CL. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins [J]. J. Am. Chem. Soc., 2000, 122 (23): 5550-5556.
    [28] Lu J, Lei SB, Zeng QD, Kang SZ, Wang C, Wan LJ, Bai CL. Template-induced inclusion structures with copper(II) phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks [J]. J. Phys. Chem. B, 2004, 108 (1): 5161-5165.
    [29] De Feyter S, De Schryver F. Two-dimensional dye assemblies on surfaces studied by scanning tunneling microscopy [J]. Top. Curr. Chem., 2005, 258: 205-255.
    [30] Cyr DM, Venkataraman B, Flynn GW, Black A, Whitesides GM. Functional group identification in scanning tunneling microscopy of molecular adsorbates [J]. J. Phys. Chem., 1996, 100 (32): 13747-13759.
    [31] France CB, Parkinson BA. Naphtho[2,3-a]pyrene forms chiral domains on Au(111) [J]. J. Am. Chem. Soc, 2003, 125 (42): 12712-12713.
    [32] Giancarlo LC, Flynn GW. Raising flags: Applications of chemical marker groups to study self-assembly, Chirality, and orientation of interfacial films by scanning tunneling microscopy [J]. Acc. Chem. Res., 2000, 33 (7): 491-510.
    [33] Fan QL, Zhou Y, Lu XM, Hou XY, Huang W. Water-soluble cationic poly(p-phenyleneethynylene)s (PPEs): Effects of acidity and ionic strength on optical behaviour [J]. Macromolecules, 2005, 38 (7): 2927-2936.
    [34] Samori P, Severin N, Mullen K, Rabe JP. Macromolecular fractionation of rod-like polymers at atomically flat solid-liquid interfaces [J]. Adv. Mater.. 2000, 12 (8): 579-582.
    [35] Samori P, Francke V, Mullen K, Rabe JR Self-assembly of a conjugated polymer: from molecular rods to a nanoribbon architecture with molecular dimensions [J]. Chem. Eur. J., 1999, 5 (8): 2312-2317.
    [36] Zhou CZ, Liu TX, Xu JM, Chen ZK. Synthesis, characterization, and physical properties of monodisperse oligo(p-phenyleneethynylene)s [J]. Macromolecules, 2003, 36 (5): 1457-1464.
    [1] Miura A, Jonkheijm P, De Feyter S, Schenning APHJ, Meijer EW, De Schryver FC. 2D self-assembly of oligo(p-phenylene vinylene) derivatives: From dimers to chiral rosettes [J]. Small, 2005, 1(1): 131-137.
    [2] Tour JM. Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures [J]. Chem. Rev., 1996, 96 (1): 537-553.
    [3] Gong JR, Zhao JL, Lei SB, Wan LJ, Bo ZS, Fan XL, Bai CL. Molecular organization of alkoxy-substituted oligo(phenylene-ethynylene)s studied by scanning tunneling microscopy [J]. Langmuir, 2003, 19 (24): 10128-10131.
    [4] Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS. Are single molecular wires conducting? [J]. Science, 1996, 271 (5256): 1705-1707.
    [5] Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM. [J]. Nature, 1999, 401 (6754): 685-688.
    [6] De Feyter S, De Schryver FC. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy [J]. Chem. Soc. Rev., 2003, 32 (3): 139-150.
    [7] Rabe JP, Buchholz S. Commensurability and mobility in 2-dimensional molecular-patterns on graphite [J]. Science, 1991, 253 (5018): 424-427.
    [8] Mena-Osteritz E, Meyer A, Langeveld-Voss BMW, Janssen RAJ, Meijer EW, Bauerle P. Two-dimensional crystals of poly(3-alkylthiophene)s: Direct visualization of polymer folds in submolecular resolution [J]. Angew. Chem. Int. Ed., 2000, 39 (15): 2679-2684.
    [9] Lei SB, Wan LJ, Wang C, Bai CL. Direct observation of the ordering and molecular folding of poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)] [J]. Adv. Mater., 2004, 16 (9-10): 828-831.
    [10] Bauerle P, Fischer T, Bidlingmeier B, Stabel A, Rabe JP. Oligothiophenes - yet longer - synthesis, characterization, and scanning-tunneling-microscopy images of homologous, isomerically pure oligo(alkylthiophene)s [J]. Angew. Chem. Int. Ed., 1995, 34 (3): 303-307.
    [11] Gesquiere A, Jonkheijm P, Schenning APHJ, Mena-Osteritz E, Bauerle P, De Feyter S, De Schryver FC, Meijer EW. Direct observation of chiral oligo(p-phenylenevinylene)s with scanning tunneling microscopy [J]. J. Mater. Chem., 2003, 13 (9): 2164-2167.
    [12] Samori P, Yin XM, Tchebotareva N, Wang ZH, Pakula T, Jackel F, Watson MD, Venturini A, Mullen K, Rabe JP. Self-assembly of electron donor-acceptor dyads into ordered architectures in two and three dimensions: Surface patterning and columnar "double cables" [J]. J. Am. Chem. Soc., 2004, 126 (11): 3567-3575.
    [13] Mahieu G, Grandidier B, Stievenard D, Krzeminski C, Delerue C, Martineau C, Roncali J. Adsorption behavior of conjugated {C}(3)-oligomers on Si(100) and highly oriented pyrolytic graphite surfaces [J]. Langmuir, 2003, 19 (8): 3350-3356.
    [14] Kromer J, Rios-Carreras I, Fuhrmann G, Musch C, Wunderlin M, Debaerdemaeker T, Mena-Osteritz E, Bauerle P. Synthesis of the first fully alpha-conjugated macrocyclic oligothiophenes: Cyclo[n]thiophenes with tunable cavities in the nanometer regime [J]. Angew. Chem. Int. Ed., 2000, 39 (19): 3481-3490.
    [15] Zhou XH, Yan JC, Pei J. Synthesis and relationships between the structures and properties of monodisperse star-shaped oligofluorenes [J]. Org. Lett., 2003, 5 (19): 3543-3546.
    [16] Geng YH, Trajkovska A, Katsis D, Ou JJ, Culligan SW, Chen SH. Synthesis, characterization, and optical properties of monodisperse chiral oligofluorenes [J]. J. Am. Chem. Soc, 2002, 124 (28): 8337-8347.
    [17] Shirota Y. Organic materials for electronic and optoelectronic devices [J]. J. Mater. Chem., 2000, 10(1): 1-25.
    [18] Okumoto K, Shirota Y. New class of hole-blocking amorphous molecular materials and their application in blue-violet-emitting fluorescent and green-emitting phosphorescent organic electroluminescent devices [J]. Chem. Mater., 2003, 15 (3): 699-707.
    [19] Dmitriev A, Lin N, Weckesser J, Barth JV, Kern K. Supramolecular assemblies of trimesic acid on a Cu(100) surface [J]. J. Phys. Chem. B, 2002, 106 (27): 6907-6912.
    [20] Lackinger M, Griessl S, Kampschulte L, Jamitzky F, Heckl WM. Dynamics of grain boundaries in two-dimensional hydrogen-bonded molecular networks [J]. Small, 2005, 1 (5): 532-539.
    [21] Griessl S, Lackinger M, Edelwirth M, Hietschold M, Heckl WM. Self-assembled two-dimensional molecular host-guest architectures from trimesic acid [J]. Single Mol., 2002, 3(1): 25-31.
    [22] Lackinger M, Griessl S, Heckl WA, Hietschold M, Flynn GW. Self-assembly of trimesic acid at the liquid-solid interface - a study of solvent-induced polymorphism [J]. Langmuir, 2005, 21 (11): 4984-4988.
    [23] Su GJ, Zhang HM, Wan LJ, Bai CL, Wandlowski T. Potential-induced phase transition of trimesic acid adlayer on Au(111) [J]. J. Phys. Chem. B, 2004, 108 (6): 1931-1937.
    [24] Tsuno Y, Sawada M, Fujii T, Yukawa Y. [J]. Bull. Chem. Soc. Jpn., 1978, 51 (596): 601-607.
    [25] Cherioux F, Guyard L. Synthesis and electrochemical properties of novel 1,3,5-tris(oligothienyl)benzenes: A new generation of 3D reticulating agents [J]. Adv. Funct. Mater., 2001, 11 (4): 305-309.
    [26] Ding JF, Day M, Robertson G, Roovers J. Synthesis and characterization of alternating copolymers of fluorene and oxadiazole [J]. Macromolecules, 2002, 35 (9): 3474-3483.
    [27] Schenning, A.P.H.J.; Meijer, E. W. Supramolecular electronics; nanowires from self-assembled pi-conjugated systems [J]. Chem. Comm., 2005, 26: 3245-3258.
    [28] Cao XY, Zhang W, Zi H, Pei J. pi-conjugated twin molecules based on truxene: Synthesis and optical properties [J]. Org. Lett., 2004, 6 (26): 4845-4848.
    [29] Xu JM, Zhou CZ, Yang LH, Chung NTS, Chen ZK. AFM characterization of nanoscale ribbons grown from a series of oligo(p-phenyleneethynylene) derivatives [J]. Langmuir, 2004, 20 (3): 950-956.
    [30] Samori P, Francke V, Mullen K, Rabe JP. Self-assembly of a conjugated polymer: from molecular rods to a nanoribbon architecture with molecular dimensions [J]. Chem. Eur. J., 1999, 5 (8): 2312-2317.
    [31] Griessl SJH, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl WM. Room-temperature scanning tunneling microscopy manipulation of single C-60 molecules at the liquid-solid interface: Playing nanosoccer [J]. J. Phys. Chem. B, 2004, 108 (31): 11556-11560.
    [32] Griessl SJH, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl WA. Incorporation and manipulation of coronene in an organic template structure [J]. Langmuir, 2004, 20 (21): 9403-9407.
    [33] Lu J, Lei SB, Zeng QD, Kang SZ, Wang C, Wan LJ, Bai CL. Template-induced inclusion structures with copper(II) phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks [J]. J. Phys. Chem. B, 2004, 108 (17): 5161-5165.
    [34] Lackinger M, Griessl S, Kampschulte L, Jamitzky F, Heckl WM. Dynamics of grain boundaries in two-dimensional hydrogen-bonded molecular networks [J]. Small, 2005, 1 (5): 532-539.
    [35] Gong JR, Yan HJ, Yuan QH, Xu LP, Bo ZS, Wan LJ. Controllable distribution of single molecules and peptides within oligomer template investigated by STM [J]. J. Am. Chem. Soc., 2006, 128 (38): 12384-12385.
    [36] Wu DX, Deng K, Zeng QD, Wang C. Selective effect of guest molecule length and hydrogen bonding on the supramolecular host structure [J]. J. Phys. Chem. B, 2005,109 (47): 22296-22300.
    [37] Surin M, Samori P. Multicomponent monolayer architectures at the solid-liquid interface: Towards controlled space-confined properties and reactivity of functional building blocks [J]. Small, 2007, 3 (2): 190-194.
    [38] Kiebele A, Bonifazi D, Cheng FY, Stohr M, Diederich F, Jung T, Spillmann H. Adsorption and dynamics of long-range interacting fullerenes in a flexible, two-dimensional, nanoporous porphyrin network [J]. Chemphyschem, 2006, 7 (7): 1462-1470.
    [39] Yoshimoto S, Tsutsumi E, Fujii O, Narita R, Itaya K. Effect of underlying coronene and perylene adlayers for [60]fullerene molecular assembly [J]. Chem. Comm., 2005, (9): 1188-1190.
    [40] Langa F, Gomez-Escalonilla MJ, Rueff JM, Duarte TMF, Nierengarten JF, Palermo V, Samori P, Rio Y, Accorsi G, Armaroli N. Pyrazolino[60]fullerene- oligophenylenevinylene dumbbell-shaped arrays: Synthesis, electrochemistry, photophysics, and self-assembly on surfaces [J]. Chem. Eur. J., 2005, 11 (15): 4405-4415.
    [41] Gyarfas BJ, Wiggins B, Zosel M, Hipps KW. Supramolecular structures of coronene and alkane acids at the Au(111)-solution interface: A scanning tunneling microscopy study [J]. Langmuir, 2005, 21 (3): 919-923.
    [42] Tahara K, Furukawa S, Uji-I H, Uchino T, Ichikawa T, Zhang J, Mamdouh W, Sonoda M, De Schryver FC, De Feyter S, Tobe Y. Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation [J]. J. Am. Chem. Soc, 2006, 128 (51): 16613-16625.
    [43] Tao F, Goswami J, Bernasek SL. Competition and coadsorption of di-acids and carboxylic acid solvents on HOPG [J]. J. Phys. Chem. B, 2006, 110 (39): 19562-19569.
    [1] Nielen MWE MALDI time-of-flight mass spectrometry of synthetic polymers [J]. Mass Spectrom. Rev., 1999, 18 (5): 309-344.
    [2] Peacock PM, McEwen CN. Mass spectrometry of synthetic polymers [J]. Anal. Chem., 2004, 76 (12): 3417-3427.
    [3] Montaudo G, Samperi F, Montaudo MS. Characterization of synthetic polymers by MALDI-MS [J]. Prog. Polym. Sci., 2006, 31 (3): 277-357.
    [4] 齐颖华,陈天禄,姜洪焱,徐纪平.激光质谱及其在高分子中的应用[J].高分子通报,1998,11(3):89-95.
    [5] Danis PO, Karr DE. Analysis of poly(styrenesulfonic acid) by matrix-assisted laser-desorption ionization time-of-flight mass-spectrometry [J]. Macromolecules, 1995, 28 (25): 8548-8551.
    [6] Chaudhary AK, Critchley G, Diaf A, Beckman EJ, Russell AJ. Characterization of synthetic polymers using matrix-assisted laser desorption/ionization - Time of flight mass spectrometry [J]. Macromolecules, 1996, 29 (6): 2213-2221.
    [7] Pasch H, Gores F. Matrix-assisted laser-desorption ionization mass-spectrometry of synthetic polymers .2. Analysis of poly(methyl methacrylate) [J]. Polymer, 1995, 36 (10): 1999-2005.
    [8] Chait BT, Kent SB. Weighing naked pr, oteins-practical, high accuracy mass measurement of peptides and proteins [J]. Science, 1992, 257 (5078): 1885-1894.
    [9] Campana JE, Sheng LS, Shew SL, Winger BE. Polymer analysis by photons, sprays, and mass-spectrometry [J]. Trends Anal. Chem., 1994, 13 (6): 239-247.
    [10] Vastola FJ, Mumma RO, Pirone AJ. Analysis of organic salts by laser ionization [J]. Org. Mass Spectrom., 1970, 3 (1): 101-104.
    [11] Possthumus MA, Kistemakerm PG, Meuzelaar HLC, Brauw TN. Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules [J]. Anal. Chem., 1978, 50 (7): 985-991.
    [12] Hillenkamp F, Karas M, Beavis RC, Chait BT. Matrix-assisted laser desorption ionization mass-spectrometry of biopolymers [J]. Anal. Chem., 1991, 63 (24): A1193-A1202.
    [13] Leclerc M. Optical and electrochemical transducers based on functionalized conjugated polymers [J]. Adv. Mater., 1999, 11(18): 1491-1498.
    [14] Favier A, Ladaviere C, Charreyre MT, Pichot C. MALDI-TOF MS investigation of the RAFT polymerization of a water-soluble acrylamide derivative [J]. Macromolecules, 2004, 37 (6): 2026-2034.
    [15] Banez MVD, Robinson KL, Vamvakaki M, Lascelles SF, Armes SP. Synthesis of novel cationic polymeric surfactants [J]. Polymer, 2000,41 (24): 8501-8511.
    [16] McCarley TD, Noble CO, DuBois CJ, McCarley RL. MALDI-MS evaluation of poly(3-hexylthiophene) synthesized by chemical oxidation with FeCl_3 [J]. Macromolecules, 2001, 34 (23): 7999-8004.
    [17] Chen H, He MY, Pei J, Liu B. End-group analysis of blue light-emitting polymers using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Anal. Chem., 2002, 74 (24): 6252-6258.
    [18] Nilsson KPR, Olsson JDM, Konradsson P, Inganas O. Enantiomeric substituents determine the Chirality of luminescent conjugated polythiophenes [J]. Macromolecules, 2004, 37 (17): 6316-6321.
    [19] Chen H, He MY, Cao XY, Zhou XH, Pei J. Efficient matrix-assisted laser desorption/ ionization method for fully pi-conjugated dendrimers [J]. Rapid Commun. Mass Spectrom., 2004, 18 (3): 367-370.
    [20] Chen H, He MY, Pei J, He HF. Quantitative analysis of synthetic polymers using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Anal. Chem., 2003, 75 (23): 6531-6535.
    [21] Peacock PM, McEwen CN. Mass spectrometry of synthetic polymers [J]. Anal. Chem., 2004, 76 (12): 3417-3427.
    [22] Arakawa R, Shimomae Y, Morikawa H, Ohara K, Okuno S. Mass spectrometric analysis of low molecular mass polyesters by laser desorption/ionization on porous silicon [J]. J. Mass Spectrom., 2004, 39 (8): 961-965.
    [23] Calvano CD, Palmisano F, Zambonin CG. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols in oils [J]. Rapid Commun. Mass Spectrom., 2005, 19(10): 1315-1320.
    [24] Rader HJ, Spickermann J, Kreyenschmidt M, Mullen K. MALDI-TOF mass spectrometry in polymer analytics. 2. molecular weight analysis of rigid-rod polymers [J]. Macromol. Chem. Phys., 1996, 197 (10): 3285-3296.
    [25] Lu S, Liu TX, Ke L, Ma DG, Chua SJ, Huang W. Polyfluorene-based light-emitting rod-coil block copolymers [J]. Macromolecules, 2005, 38 (20): 8494-8502.
    [26] Qiang LL, Ma Z, Zheng Z, Yin R, Huang W. Novel photo-crosslinkable light-emitting rod/coil copolymers: Underlying facile material for fabricating pixelated displays [J]. Macromol. Rapid Comm., 2006, 27 (20): 1779-1786.
    [27] Qiang LL, Fan QL, Ma Z, Zheng Z, Wang YY, Zhang GW, Huang W. Novel water-soluble light-emitting materials prepared by noncovalently bonded self-assembly [J]. Chem. Lett., 2005, 34 (8): 1164-1165.
    [28] Langeveld-Voss BMW, Janssen RAJ, Spiering AJH, van Dongen JLJ, Vonk EC, Claessens HA. End-group modification of regioregular poly(3-alkylthiophene)s [J]. Chem. Commun., 2000, (1): 81-82.
    [29] Jayakannan M, van Dongen JLJ, Janssen RAJ. Mechanistic aspects of the suzuki polycondensation of thiophenebisboronic derivatives and diiodobenzenes analyzed by MALDI-TOF mass spectrometry [J]. Macromolecules, 2001, 34 (16): 5386-5393.
    [30] Ostrauskaite J, Strohriegl P. Formation of macrocycles in the synthesis of poly(n-(2-ethylhexyl)carbazol-3,6-diyl) [J]. Macromol. Chem. Phys., 2003; 204 (14): 1713-1718.
    [31] Asbury GR, A1-Saad K, Siems WF, Hannan RM, Hill HH. Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time of flight mass spectrometry [J]. J. Am. Soc. Mass Spectrom., 1999, 10 (10): 983-991.
    [32] Bredas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture [J]. Chem. Rev., 2004, 104 (11): 4971-5003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700