离子型金属—有机框架材料及其主—客体系的设计、合成与非线性光学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机非线性光学(Nonlinear optical, NLO)材料具有非线性光学活性高、响应快等优点,是未来光电集成信息技术的物质基础;作为一类新型无机-有机杂化材料,金属-有机框架材料(Metal-organic frameworks, MOFs)在气体存储和分离、催化、传感等领域具有广泛的应用前景。针对分子基非线性光学材料中高浓度生色团均匀、有序分散和组装的难题,本文提出以离子型金属-有机框架材料作为有机非线性光学离子的载体,采用离子交换和固溶等方式获得高NLO生色团含量的主-客体复合材料的设计和制备思路。探索和研究了这类复合材料表现出的双光子泵浦的激射、激光倍频和双光子诱导的图案化和成像等非线性光学效应,为离子型框架及其复合体系在微型激光器、激光倍频和高密度三维光存储器件等光信息领域的应用提供实验和理论依据。
     设计合成了两组共8个形状和尺寸不同、兼具非线性光学和发光性能的吡啶季铵盐类离子型生色团,以及3个中性非线性光学生色团。以中性生色团作为活性组分,采用溶胶-凝胶法制备了不同浓度的无机-有机杂化非线性光学薄膜。所得薄膜的非线性光学系数d33值均在32-53pm.V-1范围内,研究表明这些材料的宏观非线性光学性能对生色团微观非线性光学性能和含量不敏感,需要探索更合适的分子有序组装的体系。离子型非线性光学生色团的合成为其在离子型金属-有机框架材料中组装及其性能研究奠定了物质基础。
     通过离子交换的方法,实现了双光子荧光离子4-(4-二甲氨基苯乙烯)-1-甲基吡啶(DMASM)在阴离子型框架(Me2NH2)2[Zn8(Ad)4(BPDC)6O]·guests (bio-MOF-1, HAd=腺嘌呤,H2BPDC=对苯二甲酸)中的高浓度可控组装,获得了新型主-客组装体DMASM@bio-MOF-1。研究了这类发光材料中生色团组装方式和荧光增强效应。通过离子交换量的控制,实现了单光子发光颜色的调谐,优化了双光子发光性能。由晶体天然表面和高双光子荧光增益介质协同构成Fabry-Perot微谐振腔,在厚度为30-85μm的DMASM@bio-MOF-1单晶中实现了室温双光子泵浦的激射(泵浦激光波长1064nm)。这类微型激光器的研制为MOFs材料在新型固态光子材料和器件的应用上开辟了新的方向。
     设计合成了具有一维通道的阴离子型金属.有机框架材料(Me2NH2)3[In3(BTB)4]-guests (ZJU-28, ZJU=Zhejiang University, BTB=1,3,5-三(4-苯羧基)苯)。通过阳离子型有机非线性光学功能分子形状和尺寸的调节,控制其在晶体ZJU-28孔道中离子交换和组装的过程,并在中心对称结构的晶体中获得了高浓度生色团有序组装的极性结构,实现了二阶NLO性能。探明了生色团形状和长度对其在该框架组装行为和非线性光学性能的影响规律。最长分子链的有机非线性光学生色团4-(4-(二苯氨基)苯乙烯基)-1-十二烷基吡啶离子DPASD在ZJU-28中组装后形成DPASD@ZJU-28,其二次谐波信号达石英的29倍。分析了非线性光学生色团进入离子通道前后的角度分布,确认了分子几何结构和晶体孔道尺寸的匹配是DPASD@ZJU-28获得高非线性光学性能的原因。上述主-客体材料的组装思路为发展新型非线性光学材料提供了重要的理论范例,为优化MOFs光学性能提供了更大的自由度和可控性。
     将具有光敏活性的两性离子型配体2,5-二(3,5-二甲酸苯基)-1-甲基吡啶内盐(H4L2.OH)部分替代相似配体2,,5-二(3,5-二甲酸苯基)吡啶(H4L1),设计合成了基于混合配体的置换固溶型金属-有机框架晶体Zn2(L1)0.78(L2)0.22(OH)0.22·guests (ZJU-36-0.20,0.20指L2的名义含量为20%)。活性组分L2固溶含量高达22%,在晶体内部分布均匀。晶体ZJU-36-0.20在紫外光或710nm的飞秒激光作用下,活性组分L2发生快速的光化学反应,显示出发光颜色的改变。利用晶体的光敏特性,用710nm的飞秒激光对单晶内部进行空间选择性扫描,诱导出多层结构的高分辨双光子荧光微图案,其体积分辨率达1×1×5μm3(体存储密度在Tbits·cm-3量级)。提供了首个利用非线性光学效应在MOFs单晶内部进行光信息存储和读取的例子,拓展了用于高密度三维光信息存储的材料体系。
Organic nonlinear optical (NLO) materials, which feature excellent activities and ultra-fast response, are essential substances for the integrated optoelectronic information technology in the future. As a new member of the novel inorganic-organic hybrid materials, metal-organic frameworks (MOFs) have broad applications in gas storage and separation, catalysis and sensing, etc. To solve the problems in the homogeneous and ordered distribution and assembling of nonlinear optical chromophores in molecular NLO materials at a high doping level, we propose that ionic metal-organic frameworks serve as hosts for NLO chromophores, with the aim to achieve host-guest systems via ion exchange and solid solution strategy. Particular attention has been paid to the exploration in the exceptional performance derived from the synergistic effects of functional guests and crystalline frameworks, which will fuel the application of ionic frameworks-guest systems in NLO materials.
     1. Eight cationic and three neutral nonlinear optical chromophores with varying structure and geometry were synthesized. Hybrid films with various neutral chromophores and concentration were prepared by a sol-gel procedure through the hydrolysis and condensation of alkoxysilane modified chromophores and tetraethylorthosilicate (TEOS). The resulting films exhibit moderate nonlinear optical activities, with nonlinear optical coefficients in the range of32-53pm-V"1, showing weak dependence on the active species and their concentration. It implies that an alternative assembly should be explored to improve the performance of nonlinear optical molecular materials, and we resort to the novel assembly of cationic NLO chromophores in metal-organic frameworks.
     2. A novel efficient fluorescent system DMASM@bio-MOF-1(DMASM=(E)-4-(4-(dimethylamino)styryl)-1-methylpyridinium) with tunable DMASM content (up to0.813mmol·cm-3) was developed by the assembly of two-photon fluorescent cations in an anionic framework (Me2NH2)2[Zng(Ad)4(BPDC)6O]·guests (bio-MOF-1, Ad=adeninate, BPDC=biphenyldicarboxylate). One-photon and two-photon excited fluorescence properties of DMASM@bio-MOF-1was studied and optimized by controlling the amount of exchanged dye cations. The combination of natural surfaces of the bio-MOF-1crystal and efficient two-photon excited fluorescent media affords a Fabry-Perot micro-cavity, and two-photon pumped lasing from single crystals (30-85μm in thickness) was explored at room temperature. This kind of micro-laser opens the door to new solid-state photonic materials and devices.
     3. An anionic metal-organic framework (Me2NH2)3[In3(BTB)4]-guests (ZJU-28, ZJU=Zhejiang University, BTB=1,3,5-benzenetribenzoate) with ID channels was synthesized solvothermally. The oriented assembling of massive nonlinear optical cations in the noncentrosymmetric crystals of ZJU-28affords polar structure and nonlinear optical properties. The influences of the shapes and lengths of the nonlinear optical chomophores on the resulting oriented assembly and NLO activity were investigated. Among these assemblies, the crystals containing chromophore with the longest molecular chain,4-(4-(diphenylamino)styryl)-1-dodecylpyridinium (DPASD), exhibit the highest second harmonic generation (SHG) intensity, about29times that of a reference a-quartz, which is rationalized by the match of chromophore geometry and the channel size through analyzing the angular distribution of dipolar chromophores before and after the entrance of the anionic channels. This approach provides a flexible and efficient way to control the orientation of molecules, and the resulting MOF-dye ensemble is a proof-of-concept for the potential development of nonlinear optical materials.
     4. A substitutional solid solution like cationic frameworks ZJU-36-0.20was constructed by a Iigand2,5-bis(3,5-dicarboxyphenyl)-1-methylpyridine (H4L1), which was partially replaced by a photon-sensitive zwitterionic linker2,5-bis(3,5-dicarboxyphenyl)-1-methylpyridinium hydroxide (H4L2·OH) that shares a similar geometry, and the Zn center. With a high substitutional rate of22%, the active component L2exhibits homogeneous distribution within the crystal of mixed ligands. The resulting crystals ZJU-36-0.20shows fast and significant response to UV light irradiation and a710-nm femtosecond laser, generating photochemical products with yellow light emission. Two-photon fluorescent mircro-patterns are induced by spatial selectively scanning within an individual crystal of ZJU-36-0.20with a710-nm laser. High voxel resolution of1×1×5μm3is achieved in this kind of patterns, reaching optical data storage capacity around1.3Tbits in a DVD size, if this medium is used for3D data storage. We present a first MOF crystal within which optical data could be recorded and read out both by nonlinear absorption effects, and extend the storage media for3D optical data storage systems as well.
引文
[1]D. Farrusseng, Metal-organic frameworks:Applications from catalysis to gas storage, Wiley-VCH, Weinheim, Germany,2011.
    [2]H.-C. Zhou, J. R. Long, and O. M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev.2012,112(2):673-674.
    [3]O. M. Yaghi, and H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc.1995,117(41):10401-10402.
    [4]O. M. Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995,378(6558):703-706.
    [5]S. Kitagawa, R. Kitaura, and S.-I. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed.2004,43(18):2334-2375.
    [6]L. R. Macgillivray, S. Subramanian, and M. J. Zaworotko, Interwoven two- and three-dimensional coordination polymers through self-assembly of Cu cations with linear bidentate ligands. J. Chem. Soc., Chem. Commun.1994,0(11):1325-1326.
    [7]H. Li, M. Eddaoudi, M. O'keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402(6759):276-279.
    [8]苏成勇,潘梅,配位超分子结构化学:基础与进展,科学出版社,北京,2010.
    [9]O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. Yazaydin, and J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas:Is the sky the limit? J. Am. Chem. Soc.2012,134(36):15016-15021.
    [10]O. M. Yaghi, M. O'keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials. Nature 2003,423(6941):705-714.
    [11]M. O'keeffe, and O. M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev.2012,112(2):675-702.
    [12]R. A. Smaldone, R. S. Forgan, H. Furukawa, J. J. Gassensmith, A. M. Z. Slawin, O. M. Yaghi, and J. F. Stoddart, Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed.2010,49(46):8630-8634.
    [13]D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'keeffe, and O. M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev.2009,38(5):1257-1283.
    [14]G. F6rey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, and I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005,309(5743):2040-2042.
    [15]M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002,295(5554):469-472.
    [16]H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'keeffe, O. Terasaki, J. F. Stoddart, and O. M. Yaghi, Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336(6084):1018-1023.
    [17]J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc.2008,130(42):13850-13851.
    [18]M. Dan-Hardi, C. Serre, T. O. Frot, L. Rozes, G. Maurin, C. M. Sanchez, and G. R. FeRey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 2009,131(31):10857-10859.
    [19]F. Millange, C. Serre, and G. Ferey, Synthesis, structure determination and properties of MIL-53as and MIL-53ht:the first Cr hybrid inorganic-organic microporous solids: Cr(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}. Chem. Commun.2002,0(8):822-823.
    [20]J. Sun, L. Weng, Y. Zhou, J. Chen, Z. Chen, Z. Liu, and D. Zhao, QMOF-1 and QMOF-2: three-dimensional metal-organic open frameworks with a quartzlike topology. Angew. Chem. Int. Ed.2002,41(23):4471-4473.
    [21]N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'keeffe, and O. M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300(5622):1127-1129.
    [22]X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, and M. J. Rosseinsky, Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 2004,306(5698):1012-1015.
    [23]S. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu, and B. Chen, Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature. Angew. Chem. Int. Ed. 2010,49(27):4615-4618.
    [24]R. B. Getman, Y.-S. Bae, C. E. Wilmer, and R. Q. Snurr, Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev.2012,112(2):703-723.
    [25]K. Sumida, D. L. Rogow, J. A. Mason, T. M. Mcdonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, and J. R. Long, Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012,112(2):724-781.
    [26]S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, and B. Chen, Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun.2012,3:954.
    [27]H.-L. Jiang, T. A. Makal, and H.-C. Zhou, Interpenetration control in metal-organic frameworks for functional applications. Coord. Chem. Rev.2013,257(15-16):2232-2249.
    [28]J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, and K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404(6781):982-986.
    [29]Y. Liu, W. Xuan, and Y. Cui, Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater.2010, 22(37):4112-4135.
    [30]Z. Lin, F. Jiang, L. Chen, D. Yuan, and M. Hong, New 3-D chiral framework of indium with 1,3,5-benzenetricarboxylate. Inorg. Chem.2004,44(l):73-76.
    [31]M. Yoon, R. Srirambalaji, and K. Kim, Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev.2011,112(2):1196-1231.
    [32]Y. Takashima, V. M. Martinez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, and S. Kitagawa, Molecular decoding using luminescence from an entangled porous framework. Nat. Commun.2011,2:168.
    [33]L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev.2012,112(2):1105-1125.
    [34]Z.-Y. Gu, Y.-J. Chen, J.-Q. Jiang, and X.-P. Yan, Metal-organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples. Chem. Commun.2011,47(16):4787-4789.
    [35]C. B. Messner, M. R. Mirza, M. Rainer, O. M. D. Lutz, Y. Guzel, T. S. Hofer, C. W. Huck, B. M. Rode, and G. K. Bonn, Selective enrichment of phosphopeptides by a metal-organic framework. Anall Methods 2013,5(9):2379-2383.
    [36]S. M. Cohen, Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev.2012,112(2):970-1000.
    [37]H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, and O. M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010,327(5967):846-850.
    [38]B. Liu, M. Ma, D. Zacher, A. BeTard, K. Yusenko, N. Metzler-Nolte, C. Wo Ll, and R. A. Fischer, Chemistry of SURMOFs:Layer-selective installation of functional groups and post-synthetic covalent modification probed by fluorescence microscopy. J. Am. Chem. Soc. 2011,133(6):1734-1737.
    [39]S. Furukawa, K. Hirai, K. Nakagawa, Y. Takashima, R. Matsuda, T. Tsuruoka, M. Kondo, R. Haruki, D. Tanaka, H. Sakamoto, S. Shimomura, O. Sakata, and S. Kitagawa, Heterogeneously hybridized porous coordination polymer crystals:Fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. Angew. Chem. Int. Ed.2009,48(10):1766-1770.
    [40]Y. Yoo, and H.-K. Jeong, Heteroepitaxial growth of isoreticular metal-organic frameworks and their hybrid films. Cryst. Growth Des.2010,10(3):1283-1288.
    [41]M. Kim, J. F. Cahill, H. Fei, K. A. Prather, and S. M. Cohen, Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J. Am. Chem. Soc.2012,134, (43):18082-18088.
    [42]J. Canivet, S. Aguado, Y. Schuurman, and D. Farrusseng, MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J. Am. Chem. Soc.2013,135(11):4195-4198.
    [43]Y. Lin, Q. Yan, C. Kong, and L. Chen, Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep.2013,3:1859.
    [44]G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, and J. D. Cashion, Guest-dependent spin crossover in a nanoporous molecular framework material. Science 2002, 298(5599):1762-1765.
    [45]S. Hermes, M.-K. Schroter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R. W. Fischer, and R. A. Fischer, Metal@MOF:Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem. Int. Ed.2005, 44(38):6237-6241.
    [46]H.-L. Jiang, T. Akita, T. Ishida, M. Haruta, and Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc.2011, 133(5):1304-1306.
    [47]H.-L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, and Q. Xu, Au@ZIF-8:CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc.2009, 131(32):11302-11303.
    [48]M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, and R. A. Fischer, Metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem.2010,2010(24):3701-3714.
    [49]G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. Duchene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem.2012,4:310-316.
    [50]R. K. Bhakta, J. L. Herberg, B. Jacobs, A. Highley, R. Behrens, N. W. Ockwig, J. A. Greathouse, and M. D. Allendorf, Metal-organic frameworks as templates for nanoscale NaAlH4. J. Am. Chem. Soc.2009,131(37):13198-13199.
    [51]L. Ma, J. M. Falkowski, C. Abney, and W. Lin, A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem.2010,2(10):838-846.
    [52]Y. Kinoshita, I. Matsubara, T. Higuchi, and Y. Saito, The crystal structure of bis(adiponitrilo)copper(I) nitrate. Bull. Chem. Soc. Jpn.1959,32(11):1221-1226.
    [53]S. Yang, X. Lin, A. J. Blake, K. M. Thomas, P. Hubberstey, N. R. Champness, and M. Schroder, Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chem. Commun.2008,46:6108-6110.
    [54]S. Yang, X. Lin, A. J. Blake, G. S. Walker, P. Hubberstey, N. R. Champness, and M. Schroder, Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework. Nat. Chem.2009, 1(6):487-493.
    [55]K. L. Mulfort, and J. T. Hupp, Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc.2007,129(31):9604-9605.
    [56]H. J. Park, and M. P. Suh, Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chem. Sci.2013, 4(2):685-690.
    [57]H. Fei, M. R. Bresler, and S. R. J. Oliver, A new paradigm for anion trapping in high capacity and selectivity:Crystal-to-crystal transformation of cationic materials. J. Am. Chem. Soc.2011,133(29):11110-11113.
    [58]H. Fei, C. S. Han, J. C. Robins, and S. R. J. Oliver, A cationic metal-organic solid solution based on Co(II) and Zn(II) for chromate trapping. Chem. Mater.2013,25(5):647-652.
    [59]M. Sadakiyo, T. Yamada, and H. Kitagawa, Rational designs for highly proton-conductive metal-organic frameworks. J. Am. Chem. Soc.2009,131(29):9906-9907.
    [60]M. Sadakiyo, H. ODKawa, A. Shigematsu, M. Ohba, T. Yamada, and H. Kitagawa, Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal-organic frameworks. J. Am. Chem. Soc.2012,134(12):5472-5475.
    [61]S. Sen, N. N. Nair, T. Yamada, H. Kitagawa, and P. K. Bharadwaj, High proton conductivity by a metal-organic framework incorporating Zn8O clusters with aligned imidazolium groups decorating the channels. J. Am. Chem. Soc.2012,134(47):19432-19437.
    [62]C. Avendano, Z. Zhang, A. Ota, H. Zhao, and K. R. Dunbar, Dramatically different conductivity properties of metal-organic framework polymorphs of Tl(TCNQ):An unexpected room-temperature crystal-to-crystal phase transition. Angew. Chem. Int. Ed. 2011,50(29):6543-6547.
    [63]P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey, Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed 2006, 45(36):5974-5978.
    [64]J. An, S. J. Geib, and N. L. Rosi, Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc.2009,131(24):8376-8377.
    [65]P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, and R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater.2010,9(2):172-178.
    [66]C.-Y. Sun, C. Qin, C.-G. Wang, Z.-M. Su, S. Wang, X.-L. Wang, G.-S. Yang, K.-Z. Shao, Y.-Q. Lan, and E.-B. Wang, Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater.2011,23(47):5629-5632.
    [67]T.-F. Liu, J. Lu, C. Tian, M. Cao, Z. Lin, and R. Cao, Porous anionic, cationic, and neutral metal-carboxylate frameworks constructed from flexible tetrapodal ligands: syntheses, structures, ion-exchanges, and,magnetic properties. Inorg. Chem.2011, 50(6):2264-2271.
    [68]B. F. Hoskins, and R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc.1989,111(15):5962-5964.
    [69]O. M. Yaghi, C. E. Davis, G. Li, and H. Li, Selective guest binding by tailored channels in a 3-D porous zinc(Ⅱ)-benzenetricarboxylate network. J. Am. Chem. Soc.1997, 119(12):2861-2868.
    [70]M. Higuchi, D. Tanaka, S. Horike, H. Sakamoto, K. Nakamura, Y. Takashima, Y. Hijikata, N. Yanai, J. Kim, K. Kato, Y. Kubota, M. Takata, and S. Kitagawa, Porous coordination polymer with pyridinium cationic surface, [Zn2(tpa)2(cpb)]. J. Am. Chem. Soc.2009, 131(30):10336-10337.
    [71]M. Higuchi, K. Nakamura, S. Horike, Y. Hijikata, N. Yanai, T. Fukushima, J. Kim, K. Kato, M. Takata, D. Watanabe, S. Oshima, and S. Kitagawa, Design of flexible lewis acidic sites in porous coordination polymers by using the viologen moiety. Angew. Chem. Int. Ed.2012, 51(33):8369-8372.
    [72]A. Q. Wu, Y. Li, F.-K. Zheng, Guo, and J.-S. Huang, Different molecular frameworks of zinc(Ⅱ) and cadmium(Ⅱ) coordination polymers constructed by flexible double betaine ligands. Cryst. Growth Des.2005,6(2):444-450.
    [73]Y. Li, G.-Q. Li, W.-Q. Zou, F.-K. Zheng, J.-P. Zou, G.-C. Guo, C.-Z. Lu, and J.-S. Huang, Two Cu(Ⅱ) double betaine coordination polymers with different metal-organic frameworks. J. Mol. Struct.2007,837(1-3):231-236.
    [74]Y. Ma, J.-Y. Zhang, A.-L. Cheng, Q. Sun, E.-Q. Gao, and C.-M. Liu, Antiferro- and ferromagnetic interactions in Mn(Ⅱ), Co(Ⅱ), and Ni(Ⅱ) compounds with mixed azide-carboxylate bridges. Inorg. Chem.2009,48(13):6142-6151.
    [75]G.-Q. Kong, and C.-D. Wu, Five coordination networks based on zwitterionic ligands: synthesis, crystal structures and optical properties. CrystEngComm 2012,14(3):847-852.
    [76]G.-Q. Kong, and C.-D. Wu, Four novel coordination polymers based on a flexible zwitterionic ligand and their framework dependent luminescent properties. Cryst. Growth Des.2010,10(10):4590-4595.
    [77]G.-Q. Kong, X. Xu, C. Zou, and C.-D. Wu, Two metal-organic frameworks based on a double azolium derivative:post-modification and catalytic activity. Chem. Commum.2011, 47(39):11005-11007.
    [78]G. Nickerl, A. Notzon, M. Heitbaum, I. Senkovska, F. Glorius, and S. Kaskel, Selective adsorption properties of cationic metal-organic frameworks based on imidazolic linker. Cryst. Growth Des.2012,13(1):198-203.
    [79]李松林,吉伟卓,候剑锋,田东奎,具有六重穿插非中心对称金刚石网络结构的Cd(Ⅱ)和Zn(Ⅱ)的配位高聚物.无机化学学报2005,21(1):30.
    [80]Y.-Q. Wang, J.-Y. Zhang, Q.-X. Jia, E.-Q. Gao, and C.-M. Liu, Unprecedented self-catenated eight-connected network based on novel azide-bridged tetramanganese(Ⅱ) clusters. Inorg. Chem.2008,48(3):789-791.
    [81]J. Y. Lee, J. M. Roberts, O. K. Farha, A. A. Sarjeant, K. A. Scheidt, and J. T. Hupp, Synthesis and gas sorption properties of a metal-azolium framework (MAF) material. Inorg. Chem.2009,48(21):9971-9973.
    [82]K. Oisaki, Q. Li, H. Furukawa, A. U. Czaja, and O. M. Yaghi, A metal-organic framework with covalently bound organometallic complexes. J. Am. Chem. Soc.2010,132(27):9262-9264.
    [83]Q.-Y. Yang, K. Li, J. Luo, M. Pan, and C.-Y. Su, A simple topological identification method for highly (3,12)-connected 3D MOFs showing anion exchange and luminescent properties. Chem. Commun.2011,47(14):4234-4236.
    [84]A. Coskun, M. Hmadeh, G. Barin, F. Gandara, Q. Li, E. Choi, N. L. Strutt, D. B. Cordes, A. M. Z. Slawin, J. F. Stoddart, J.-P. Sauvage, and O. M. Yaghi, Metal-organic frameworks incorporating copper-complexed rotaxanes. Angew. Chem. Int. Ed.2012,51 (9):2160-2163.
    [85]C. A. Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer, and W. Lin, Energy transfer dynamics in metal-organic frameworks. J. Am. Chem. Soc.2010,132(37):12767-12769.
    [86]C. A. Kent, D. Liu, L. Ma, J. M. Papanikolas, T. J. Meyer, and W. Lin, Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. J. Am. Chem. Soc.2011,133(33):12940-12943.
    [87]C. A. Kent, D. Liu, T. J. Meyer, and W. Lin, Amplified luminescence quenching of phosphorescent metal-organic frameworks. J. Am. Chem. Soc.2012,134(9):3991-3994.
    [88]M. E. Kosal, J.-H. Chou, S. R. Wilson, and K. S. Suslick, A functional zeolite analogue assembled from metalloporphyrins. Nat. Mater.2002,1(2):118-121.
    [89]C. Y. Lee, O. K. Farha, B. J. Hong, A. A. Sarjeant, S. T. Nguyen, and J. T. Hupp, Light-harvesting metal-organic frameworks (MOFs):efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J. Am. Chem. Soc.2011,133(40):15858-15861.
    [90]Z. Zhang, L. Zhang, L. Wojtas, P. Nugent, M. Eddaoudi, and M. J. Zaworotko, Templated synthesis, postsynthetic metal exchange, and properties of a porphyrin-encapsulating metal-organic material. J. Am. Chem. Soc.2011,134(2):924-927.
    [91]X.-L. Yang, M.-H. Xie, C. Zou, Y. He, B. Chen, M. O'keeffe, and C.-D. Wu, Porous metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin for highly efficient and selective catalytic oxidation of alkylbenzenes. J. Am. Chem. Soc.2012,134(25):10638-10645.
    [92]Z. Zhang, W.-Y. Gao, L. Wojtas, S. Ma, M. Eddaoudi, and M. J. Zaworotko, Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO2/CH4 selectivity. Angew. Chem. Int. Ed.2012, 51(37):9330-9334.
    [93]F. Song, C. Wang, J. M. Falkowski, L. Ma, and W. Lin, Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation:tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc.2010, 132(43):15390-15398.
    [94]C. Zhu, G. Yuan, X. Chen, Z. Yang, and Y. Cui, Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides. J. Am. Chem. Soc.2012, 134(19):8058-8061.
    [95]A. M. Shultz, A. A. Sarjeant, O. K. Farha, J. T. Hupp, and S. T. Nguyen, Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc.2011,133(34):13252-13255.
    [96]J. Zhang, S. Chen, A. Zingiryan, and X. Bu, Integrated molecular chirality, absolute helicity, and intrinsic chiral topology in three-dimensional open-framework materials. J. Am. Chem. Soc.2008,130(51):17246-17247.
    [97]J. Zhang, S. Chen, T. Wu, P. Feng, and X. Bu, Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. J. Am. Chem. Soc.2008, 130(39):12882-12883.
    [98]S. Chen, J. Zhang, T. Wu, P. Feng, and X. Bu, Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. J. Am. Chem. Soc.2009,131(44):16027-16029.
    [99]S.-T. Zheng, J. T. Bu, Y. Li, T. Wu, F. Zuo, P. Feng, and X. Bu, Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake. J. Am. Chem. Soc.2010,132(48):17062-17064.
    [100]S.-T. Zheng, J. J. Bu, T. Wu, C. Chou, P. Feng, and X. Bu, Porous indium-organic frameworks and systematization of structural building blocks. Angew. Chem. Int. Ed.2011, 50(38):8858-8862.
    [101]S.-T. Zheng, F. Zuo, T. Wu, B. Irfanoglu, C. Chou, R. A. Nieto, P. Feng, and X. Bu, Cooperative assembly of three-ring-based zeolite-type metal-organic frameworks and Hohnson-type dodecahedra. Angew. Chem. Int. Ed.2011,50(8):1849-1852.
    [102]S.-T. Zheng, T. Wu, F. Zuo, C. Chou, P. Feng, and X. Bu, Mimicking zeolite to its core: porous sodalite cages as hangers for pendant trimeric M3(OH) clusters (M=Mg, Mn, Co, Ni, Cd). J. Am. Chem. Soc.2012,134(4):1934-1937.
    [103]S.-T. Zheng, C. Mao, T. Wu, S. Lee, P. Feng, and X. Bu, Generalized synthesis of zeolite-type metal-organic frameworks encapsulating immobilized transition-metal clusters. J. Am. Chem. Soc.2012,134(29):11936-11939.
    [104]Z.-Z. Lin, F.-L. Jiang, L. Chen, D.-Q. Yuan, Y.-F. Zhou, and M.-C. Hong, Two novel inorganic-organic hybrid frameworks based on InⅢ-BTC and InⅢ-BTEC. Eur. J. Inorg. Chem.2005,2005(1):77-81.
    [105]Z. Lin, L. Chen, C. Yue, D. Yuan, F. Jiang, and M. Hong,3-D indium(III)-btc channel frameworks and their ion-exchange properties (btc=1,3,5-benzenetricarboxylate). J. Solid State Chem.2006,179(4):1.154-1160.
    [106]Z.-Z. Lin, F.-L. Jiang, L. Chen, C.-Y. Yue, D.-Q. Yuan, A.-J. Lan, and M.-C. Hong, A highly symmetric porous framework with multi-intersecting open channels. Cryst. Growth Des.2007,7(9):1712-1715.
    [107]F. Zhang, X. Zou, W. Feng, X. Zhao, X. Jing, F. Sun, H. Ren, and G. Zhu, Microwave-assisted crystallization inclusion of spiropyran molecules in indium trimesate films with antidromic reversible photochromism. J. Mater. Chem.2012,22(48):25019-25026.
    [108]Y. Liu, V. C. Kravtsov, R. Larsen, and M. Eddaoudi, Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. Chem. Commun.2006:(14):1488-1490.
    [109]D. Banerjee, S. J. Kim, H. Wu, W. Xu, L. A. Borkowski, J. Li, and J. B. Parise, Anionic gallium-based metal-organic framework and its sorption and ion-exchange properties. Inorg. Chem.2010,50(1):208-212.
    [110]J. An, O. K. Farha, J. T. Hupp, E. Pohl, J. I. Yeh, and N. L. Rosi, Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 2012,3:604.
    [111]X.-R. Hao, X.-L. Wang, C. Qin, Z.-M. Su, E.-B. Wang, Y.-Q. Lan, and K.-Z. Shao, A 3D chiral nanoporous coordination framework consisting of homochiral nanotubes assembled from octuple helices. Chem. Commun.2007:(44):4620-4622.
    [112]X.-R. Hao, X.-L. Wang, Z.-M. Su, K.-Z. Shao, Y.-H. Zhao, Y.-Q. Lan, and Y.-M. Fu, Two unprecedented porous anionic frameworks:organoammonium templating effects and structural diversification. Dalton Trans.2009:(40):8562-8566.
    [113]Z. Dou, J. Yu, H. Xu, Y. Cui, Y. Yang, and G. Qian, Preparation and thiols sensing of luminescent metal-organic framework films functionalized with lanthanide ions. Micropor. Mesopor. Mater.2013,179:198-204.
    [114]M. Haouas, C. Volkringer, T. Loiseau, G. R. FeRey, and F. Taulelle, Monitoring the activation process of the giant pore MIL-100(Al) by solid state NMR. J. Phys. Chem. C 2011,115(36):17934-17944.
    [115]C. Volkringer, D. Popov, T. Loiseau, G. R. FeRey, M. Burghammer, C. Riekel, M. Haouas, and F. Taulelle, Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chem. Mater.2009,21(24):5695-5697.
    [116]K. Liang, H. Zheng, Y. Song, M. F. Lappert, Y. Li, X. Xin, Z. Huang, J. Chen, and S. Lu, Self-assembly of interpenetrating coordination nets formed from interpenetrating cationic and anionic three-dimensional diamondoid cluster coordination polymers. Angew. Chem. Int. Ed.2004,43(43):5776-5779.
    [117]M. H. Alkordi, J. A. Brant, L. Wojtas, V. C. Kravtsov, A. J. Cairns, and M. Eddaoudi, Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs). J. Am. Chem. Soc.2009,131(49):17753-17755.
    [118]S. Subramanian, and M. J. Zaworotko, Porous solids by design:[Zn(4,4'-bpy)2(SiF6)]n·xDMF, a single framework octahedral coordination polymer with large square channels. Angew. Chem. Int. Ed.1995,34(19):2127-2129.
    [119]S.-I. Noro, R. Kitaura, M. Kondo, S. Kitagawa, T. Ishii, H. Matsuzaka, and M. Yamashita, Framework engineering by anions and porous functionalities of Cu(H)/4,4'-bpy coordination polymers. J. Am. Chem. Soc.2002,124(11):2568-2583.
    [120]Z.-J. Lin, T.-F. Liu, Y.-B. Huang, J. Lu, and R. Cao, A guest-dependent approach to retain permanent pores in flexible metal-organic frameworks by cation exchange. Chem. Eur. J. 2012,18(25):7896-7902.
    [121]K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant, and J. T. Hupp, Post-synthesis alkoxide formation within metal-organic framework materials:A strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc.2009,131(11):3866-3868.
    [122]J. An, and N. L. Rosi, Tuning MOF CO2 adsorption properties via cation exchange. J. Am. Chem. Soc.2010,132(16):5578-5579.
    [123]B. Manna, A. K. Chaudhari, B. Joarder, A. Karmakar, and S. K. Ghosh, Dynamic structural behavior and anion-responsive tunable luminescence of a flexible cationic metal-organic framework. Angew. Chem. Int. Ed.2013,52(3):998-1002.
    [124]W.-G. Lu, L. Jiang, X.-L. Feng, and T.-B. Lu, Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange. Inorg. Chem.2009,48(15):6997-6999.
    [125]Y. Liu, G. Li, X. Li, and Y. Cui, Cation-dependent nonlinear optical behavior in an octupolar 3D anionic metal-organic open framework. Angew. Chem. Int. Ed.2007, 46(33):6301-6304.
    [126]S.-T. Zheng, J. Zhang, and G.-Y. Yang, Designed synthesis of POM-organic frameworks from {Ni6PW9} building blocks under hydrothermal conditions. Angew. Chem. Int. Ed. 2008,47(21):3909-3913.
    [127]B. Nohra, H. El Moll, L. M. Rodriguez Albelo, P. Mialane, J. R. M. Marrot, C. Mellot-Draznieks, M. O'keeffe, R. Ngo Biboum, J. L. Lemaire, B. Keita, L. Nadjo, and A. Dolbecq, Polyoxometalate-based metal organic frameworks (POMOFs):Structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J. Am. Chem. Soc. 2011,133(34):13363-13374.
    [128]C.-Y. Sun, S.-X. Liu, D.-D. Liang, K.-Z. Shao, Y.-H. Ren, and Z.-M. Su, Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. J. Am. Chem. Soc.2009,131(5):1883-1888.
    [129]J. Song, Z. Luo, D. K. Britt, H. Furukawa, O. M. Yaghi, K. I. Hardcastle, and C. L. Hill, A multiunit catalyst with synergistic stability and reactivity:A polyoxometalate-metal organic framework for aerobic decontamination. J. Am. Chem. Soc.2011,133(42):16839-16846.
    [130]D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, and H.-C. Zhou, Zirconium-metalloporphyrin PCN-222:Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed.2012,51(41):10307-10310.
    [131]L. Meng, Q. Cheng, C. Kim, W.-Y. Gao, L. Wojtas, Y.-S. Chen, M. J. Zaworotko, X. P. Zhang, and S. Ma, Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker. Angew. Chem. Int. Ed.2012, 51(40):10082-10085.
    [132]Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi, and M. J. Zaworotko, Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins. J. Am. Chem. Soc.2012,134(2):928-933.
    [133]M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, Zeolite-like metal-organic frameworks as platforms for applications:on metalloporphyrin-based catalysts. J. Am. Chem. Soc.2008,130(38):12639-12641.
    [134]C. Zou, Z. Zhang, X. Xu, Q. Gong, J. Li, and C.-D. Wu, A multifunctional organic-inorganic hybrid structure based on MnⅢ-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. J. Am. Chem. Soc.2011,134(1):87-90.
    [135]E. G. Moore, A. P. S. Samuel, and K. N. Raymond, From antenna to assay:Lessons learned in lanthanide luminescence. Acc. Chem. Res.2009,42(4):542-552.
    [136]B. Chen, S. Xiang, and G. Qian, Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res.2010,43(8):1115-1124.
    [137]Y. Cui, Y. Yue, G. Qian, and B. Chen, Luminescent functional metal-organic frameworks. Chem. Rev.2012,112(2):1126-1162.
    [138]B. V. Harbuzaru, A. Corma, F. Rey, J. L. Jorda, D. Ananias, L. D. Carlos, and J. Rocha, A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angew. Chem. Int. Ed.2009,48(35):6476-6479.
    [139]X. Zhang, M. A. Ballem, Z.-J. Hu, P. Bergman, and K. Uvdal, Nanoscale light-harvesting metal-organic frameworks. Angew. Chem. Int. Ed.2011,50(25):5729-5733.
    [140]S. Dang, J.-H. Zhang, Z.-M. Sun, and H. Zhang, Luminescent lanthanide metal-organic frameworks with a large SHG response. Chem. Commun.2012,48(90):11139-11141.
    [141]Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, A luminescent mixed-lanthanide metal-organic framework thermometer. J. Am. Chem. Soc. 2012,134(9):3979-3982.
    [142]J. An, C. M. Shade, D. A. Chengelis-Czegan, S. P. Petoud, and N. L. Rosi, Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J. Am. Chem. Soc.2011,133(5):1220-1223.
    [143]D. F. Sava, L. E. S. Rohwer, M. A. Rodriguez, and T. M. Nenoff, Intrinsic broad-band white-light emission by a tuned, corrugated metal-organic framework. J. Am. Chem. Soc. 2012,134(9):3983-3986.
    [144]D. T. Genna, A. G. Wong-Foy, A. J. Matzger, and M. S. Sanford, Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange. J. Am. Chem. Soc.2013,135(29):10586-10589.
    [145]P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett.1961,7(4):118.
    [146]沈元壤,非线性光学原理,科学出版社,北京,1987.
    [147]G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev.2008,108(4):1245-1330.
    [148]D. M. Burland, R. D. Miller, and C. A. Walsh, Second-order nonlinearity in poled-polymer systems. Chem. Rev.1994,94(l):31-75.
    [149]C. Zhang, L. R. Dalton, M. C. Oh, H. Zhang, and W. H. Steier, Low Vπ electrooptic modulators from CLD-1:Chromophore design and synthesis, material processing, and characterization. Chem. Mater.2001,13(9):3043-3050.
    [150]P. Innocenzi, and B. Lebeau, Organic-inorganic hybrid materials for non-linear optics. J. Mater. Chem.2005,15:3821-3831.
    [151]H. Ma, B. Chen, T. Sassa, L. R. Dalton, and A. K. Y. Jen, Highly efficient and thermally stable nonlinear optical dendrimer for electrooptics. J. Am. Chem. Soc.2001,123(5):986-987.
    [152]M. J. Cho, D. H. Choi, P. A. Sullivan, A. J. P. Akelaitis, and L. R. Dalton, Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci.2008, 33(11):1013-1058.
    [153]F. Chaumel, H. Jiang, and A. Kakkar, Sol-gel materials for second-order nonlinear optics. Chem. Mater.2001,13(10):3389-3395.
    [154]S. R. Marder, J. W. Perry, and W. P. Schaefer, Synthesis of organic salts with large second-order optical nonlinearities. Science 1989,245(4918):626-628.
    [155]C. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O. P. Kwon, M. Jazbinsek, and P. Giinter, Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile:linear and nonlinear optical properties. J. Opt. Soc. Am. B 2008,25(10):1678-1683.
    [156]P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D. H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, Theory-guided design and synthesis of multichromophore dendrimers:An analysis of the electro-optic effect. J. Am. Chem. Soc. 2007,129(24):7523-7530.
    [157]J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, Rational enhancement of second-order nonlinearity:Bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores:Design, synthesis, and electrooptic activity. J. Am. Chem. Soc. 2008,130(32):10565-10575.
    [158]T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems. Adv. Mater.2006, 18(22):3038-3042.
    [159]A. K.-Y. J. Sei-Hum Jang, Electro-optic (E-O) molecular glasses. Chem-Asian J 2009, 4(1):20-31.
    [160]X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K. Y. Jen, and R. T. Chen, Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. Opt. Lett.2011,36(6):882-884.
    [161]R. Popovitz-Biro, K. Hill, E. M. Landau, M. Lahav, L. Leiserowitz, J. Sagiv, H. Hsiung, G. R. Meredith, and H. Vanherzeele, A new class of stable head-to tail (Z-type) Langmuir Blodgett films. A second harmonic generation study. J. Am. Chem. Soc.1988,110(8):2672-2674.
    [162]G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, and C. R. Brown, Improved second-harmonic generation from Langmuir-Blodgett films of hemicyanine dyes. Nature 1992,357:393.
    [163]D. Li, M. A. Ratner, T. J. Marks, C. Zhang, J. Yang, and G. K. Wong, Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials. J. Am. Chem. Soc.1990,112(20):7389-7390.
    [164]W. Lin, S. Yitzchaik, A. Malik, M. K. Durbin, A. G. Richter, G. K. Wong, P. Dutta, and T. J. Marks, New nonlinear optical materials:Expedient topotactic self-assembly of acentric chromophoric superlattices. Angew. Chem. Int. Ed.1995,34(13-14):1497-1499.
    [165]W. Lin, T.-L. Lee, P. F. Lyman, J. Lee, M. J. Bedzyk, and T. J. Marks, Atomic resolution X-ray standing wave microstructural characterization of NLO-active self-assembled chromophoric superlattices. J. Am. Chem. Soc.1997,119(9):2205-2211.
    [166]S. D. Cox, T. E. Gier, G. D. Stucky, and J. Bierlein, Inclusion tuning of nonlinear optical materials:switching the SHG of p-nitroaniline and 2-methyl-p-nitroaniline with molecular sieve hosts. J. Am. Chem. Soc.1988,110(9):2986-2987.
    [167]T. C. T. Pham, H. S. Kim, and K. B. Yoon, Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science 2011,334(6062):1533-1538.
    [168]T. C. T. Pham, H. S. Kim, and K. B. Yoon, Large increase in the second-order nonlinear optical activity of a hemicyanine-incorporating zeolite film. Angew. Chem. Int. Ed.2013, 52(21):5539-5543.
    [169]Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K. Y. Jen, Donor-acceptor thiolated polyenic chromophores exhibiting large optical nonlinearity and excellent photostability. Chem. Mater.2008,20(15):5047-5054.
    [170]M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Ed.2009,48(18):3244-3266.
    [171]G. S. He, T.-C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element. Appl. Phys. Lett.2003,83(14):2733-2735.
    [172]C. N. Lafratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, Multiphoton fabrication. Angew. Chem. Int. Ed.2007,46(33):6238-6258.
    [173]S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Finer features for functional microdevices. Nature 2001,412(6848):697-698.
    [174]D. A. Parthenopoulos, and P. M. Rentzepis, Three-dimensional optical storage memory. Science 1989,245(4920):843-845.
    [175]E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, Toward terabyte two-photon 3D disk. Opt. Express 2007,15(19):12264-12276.
    [176]E. Walker, and P. M. Rentzepis, Two-photon technology:A new dimension. Nat. Photon. 2008,2(7):406-408.
    [177]B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. Mccord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999,398(6722):51-54.
    [178]C. N. Lafratta, L. Li, and J. T. Fourkas, Soft-lithographic replication of 3D microstructures with closed loops. Proc. Natl. Acad. Sci. USA 2006,103(23):8589-8594.
    [179]C. Wang, T. Zhang, and W. Lin, Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. Chem. Rev.2012,112 (2):1084-1104.
    [180]O. R. Evans, and W. Lin, Crystal engineering of NLO materials based on metal-organic coordination networks. Acc. Chem. Res.2002,35(7):511-522.
    [181]H. Xu, R. Z. Jin, C. Y. Wu, Y. Yang, and G. D. Qian, Two-photon up-conversion fluorescence of a neodymium organic framework Nd(BTC). Spectrosc. Spectr. Anal.2008, 28(8):1734-1736.
    [182]C. Yan, K. Li, S.-C. Wei, H.-P. Wang, L. Fu, M. Pan, and C.-Y. Su, Lanthanide homometallic and d-f heterometallic MOFs from the same tripodal ligand:structural comparison, one photon (OP) vs. two photon (TP) luminescence and selective guest adsorption behavior. J. Mater. Chem.2012,22(19):9846-9852.
    [183]C.-H. Zeng, F.-L. Zhao, Y.-Y. Yang, M.-Y. Xie, X.-M. Ding, D.-J. Hou, and S. W. Ng, Unusual method for phenolic hydroxyl bridged lanthanide CPs:Syntheses, characterization, one and two photon luminescence. Dalton Trans.2013,42(6):2052-2061.
    [184]G. Y. Zhou, D. Wang, Y. Ren, Z. S. Shao, and M. H. Jiang, Two-photon-pumped amplified spontaneous emission and cavity lasing of an organic dye HEASPS in PHEMA polymer. Appl. Phys. B 2004,79(3):341-344.
    [185]C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, and P. N. Prasad, Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing. Chem. Mater.1995,7(10):1979-1983.
    [186]U. Vietze, O. Krauss, F. Laeri, G. Ihlein, F. Schuth, B. Limburg, and M. Abraham, Zeolite-dye microlasers. Phys. Rev. Lett.1998,81(21):4628-4631.
    [187]Y. Cui, J. Yu, J. Gao, Z. Wang, and G. Qian, Synthesis and luminescence behavior of inorganic-organic hybrid materials covalently bound with pyran-containing dyes. J. Sol-Gel Sci. Technol.2009,52(3):362-369.
    [188]J. Yu, Y. Cui, J. Gao, Z. Wang, and G. Qian, Preparation and nonlinear optical properties of hybrid films containing dicyanomethylenepyran-based chromophores. Thin Solid Films 2011,519(15):5061-5065.
    [189]A. Carella, R. Centore, A. Fort, A. Peluso, A. Sirigu, and A. Tuzi, Tuning second-order optical nonlinearities in push-pull benzimidazoles. Eur. J. Org. Chem.2004, 2004(12):2620-2626.
    [190]J. Yu, Y. Cui, J. Gao, Z. Wang, and G. Qian, Enhanced optical nonlinearity and improved transparency of inorganic-organic hybrid materials containing benzimidazole chromophores. J. Phys. Chem. B 2009,113(45):14877-14883.
    [191]H. S. Kim, S. M. Lee, K. Ha, C. Jung, Y.-J. Lee, Y. S. Chun, D. Kim, B. K. Rhee, and K. B. Yoon, Aligned inclusion of hemicyanine dyes into silica zeolite films for second harmonic generation. J. Am. Chem. Soc.2003,126(2):673-682.
    [192]S. Okada, A. Masaki, H. Matsuda, H. Nakanishi, M. Kato, R. Muramatsu, and M. Otsuka, Synthesis and crystal structure of a novel organic ion-complex crystal for second-order nonlinear optics. Jpn. JAppl. Phys.1990,29(6):1112.
    [193]C. Seebacher, J. Rau, F. W. Deeg, C. Brauchle, S. Altmaier, R. Jager, and P. Behrens, Visualization of mesostructures and organic guest inclusion in molecular sieves with confocal microscopy. Adv. Mater.2001,13(18):1374-1377.
    [194]R. Macchi, E. Cariati, D. Marinotto, D. Roberto, E. Tordin, R. Ugo, R. Bozio, M. Cozzuol, D. Pedron, and G. Mattei, Stable SHG from in situ grown oriented nanocrystals of [(E)-N,N-dimethylamino-N'-methylstilbazolium][p-toluenesulfonate] in a PMMA film. J. Mater. Chem.2010,20(10):1885-1890.
    [195]J. L. Oudar, and H. Le Person, Second-order polarizabilities of some aromatic molecules. Opt. Commun.1975,15(2):258-262.
    [196]M. S. Paley, J. M. Harris, H. Looser, J. C. Baumert, G. C. Bjorklund, D. Jundt, and R. J. Twieg, A solvatochromic method for determining second-order polarizabilities of organic molecules J. Org. Chem.1989,54(16):3774-3778.
    [197]K. Clays, and A. Persoons, Hyper-Rayleigh scattering in solution. Phys. Rev. Lett.1991, 66(23):1980-2983.
    [198]崔元靖,无机-有机杂化二阶非线性光学材料的设计、合成与性能研究[博士学位论文].杭州:浙江大学,2005:69-70.
    [199]任华森,含茚、吡喃结构的杂化非线性光学材料的合成和性能研究[硕士学位论文].杭州:浙江大学,2007:48.
    [200]D. Gust, T. A. Moore, and A. L. Moore, Mimicking photosynthetic solar energy transduction. Acc. Chem. Res.2000,34(1):40-48.
    [201]G. Calzaferri, S. Huber, H. Maas, and C. Minkowski, Host-guest antenna materials. Angew. Chem. Int. Ed.2003,42(32):3732-3758.
    [202]A. Ajayaghosh, V. K. Praveen, and C. Vijayakumar, Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev.2008,37(1):109-122.
    [203]R. N. Dsouza, U. Pischel, and W. M. Nau, Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev.2011, 111(12):7941-7980.
    [204]Q.-R. Fang, G.-S. Zhu, Z. Jin, Y.-Y. Ji, J.-W. Ye, M. Xue, H. Yang, Y. Wang, and S.-L. Qiu, Mesoporous metal-organic framework with rare etb topology for hydrogen storage and dye assembly. Angew. Chem. Int. Ed.2007,46(35):6638-6642.
    [205]S. K. Kurtz, and T. T. Perry, A powder technique for the evaluation of nonlinear optical materials.J. Appl. Phys.1968,39(8):3798-3813.
    [206]Gaussian 03, vB.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT,2004.
    [207]B. Helbo, S. Kragh, B. G. Kjeldsen, J. L. Reimers, and A. Kristensen, Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser. Sensor. and Actuat. A:Phys.2004, 111(1):21-25.
    [208]Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Gunter, Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation. Adv. Funct. Mater.2007,17(13):2018-2023.
    [209]C. V. Kumar, R. S. Turner, and E. H. Asuncion, Groove binding of a styrylcyanine dye to the DNA double helix:the salt effect. J. Photochem. Photobiol. A:Chem.1993,74(2-3):231-238.
    [210]C. Allain, F. Schmidt, R. Lartia, G. Bordeau, C. Fiorini-Debuisschert, F. Charra, P. Tauc, and M.-P. Teulade-Fichou, Vinyl-pyridinium triphenylamines:Novel far-red emitters with high photostability and two-photon absorption properties for staining DNA. ChemBioChem 2007,8(4):424-433.
    [211]C. A. Hunter, K. R. Lawson, J. Perkins, and C. J. Urch, Aromatic interactions. J. Chem. Soc., Perkin Trans.2 2001,0(5):651-669.
    [212]G.-Q. Kong, S. Ou, C. Zou, and C.-D. Wu, Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. J. Am. Chem. Soc.2012,134(48):19851-19857.
    [213]J. Joseph, E. Kuruvilla, A. T. Achuthan, D. Ramaiah, and G. B. Schuster, Tuning of intercalation and electron-transfer processes between DNA and acridinium derivatives through steric effects. Bioconjugate Chem.2004,15(6):1230-1235.
    [214]R. Chen, T. Van Duong, and H. D. Sun, Single mode lasing from hybrid hemispherical microresonators. Sci. Rep.2012,2:224.
    [215]C. Zhang, C.-L. Zou, Y. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y. S. Zhao, and J. Yao, Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J. Am. Chem. Soc.2011,133(19):7276-7279.
    [216]D. F. Eaton, A. G. Anderson, W. Tam, and Y. Wang, Control of bulk dipolar alignment using guest-host inclusion chemistry:New materials for second harmonic generation. J. Am. Chem. Soc.1987,109(6):1886-1888.
    [217]P. G. Lacroix, R. Clement, K. Nakatani, J. Zyss, and I. Ledoux, Stilbazolium-MPS3 nanocomposites with large second-order optical nonlinearity and permanent magnetization. Science 1994,263(5147):658-660.
    [218]S. Cox, T. Gier, and G. Stucky, Second harmonic generation by the self-aggregation of organic guests in molecular sieve hosts. Chem. Mater.1990,2(5):609-619.
    [219]L. Werner, J. Caro, G. Finger, and J. Kornatowski, Optical second harmonic generation (SHG) on p-nitroaniline in large cyrstals of AIPO4-5 and ZSM-5. Zeolites 1992,12(6):658-663.
    [220]J. Caro, F. Marlow, and M. Wubbenhorst, Chromophore-zeolite composites:The organizing role of molecular sieves. Adv. Mater.1994,6(5):413-416.
    [221]H. S. Kim, T. C. T. Pham, and K. B. Yoon, A novel class of nonlinear optical materials based on host-guest composites:zeolites as inorganic crystalline hosts. Chem. Commun. 2012,48(39):4659-4673.
    [222]H. S. Kim, K. W. Sohn, Y. Jeon, H. Min, D. Kim, and K. B. Yoon, Aligned inclusion of n-propionic acid tethering hemicyanine into silica zeolite film for second harmonic generation. Adv. Mater.2007,19(2):260-263.
    [223]SHELXL97, Program for crystal structure solution and structure refinement, G. M. Sheldrick, University of Gottingen, Germany,1997.
    [224]PLATON, A multipurpose crystallographic tool, A. L. Spek, Utrecht University, Utrecht, The Netherlands,2005.
    [225]O. Delgado-Friedrichs, M. O'keeffe, and O. M. Yaghi, Taxonomy of periodic nets and the design of materials. PCCP 2007,9(9):1035-1043.
    [226]M. O'keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res.2008, 41(12):1782-1789.
    [227]R. M. Corn, and D. A. Higgins, Optical second harmonic generation as a probe of surface chemistry. Chem. Rev.1994,94(1):107-125.
    [228]S. Yang, S. K. Callear, A. J. Ramirez-Cuesta, W. I. F. David, J. Sun, A. J. Blake, N. R. Champness, and M. Schroder, Pore with gate:modulating hydrogen storage in metal-organic framework materials via cation exchange. Faraday Discuss.2011,151(0):19-36.
    [229]W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 2002,296(5570):1106-1109.
    [230]R. R. Gattass, and E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photon.2008,2(4):219-225.
    [231]C. E. Olson, M. J. R. Previte, and J. T. Fourkas, Efficient and robust multiphoton data storage in molecular glasses and highly crosslinked polymers. Nat. Mater.2002,1(4):225-228.
    [232]P. Zijlstra, J. W. M. Chon, and M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 2009,459(7245):410-413.
    [233]N. Yanai, T. Uemura, M. Inoue, R. Matsuda, T. Fukushima, M. Tsujimoto, S. Isoda, and S. Kitagawa, Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. J. Am. Chem. Soc.2012,134(10):4501-4504.
    [234]J. Park, D. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko, and H.-C. Zhou, Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. J. Am. Chem. Soc.2011,134(1):99-102.
    [235]J.-K. Sun, L.-X. Cai, Y.-J. Chen, Z.-H. Li, and J. Zhang, Reversible luminescence switch in a photochromic metal-organic framework. Chem. Common.2011,47(24):6870-6872.
    [236]Z. Chen, S. Xiang, T. Liao, Y. Yang, Y.-S. Chen, Y. Zhou, D. Zhao, and B. Chen, A new multidentate hexacarboxylic acid for the construction of porous metal-organic frameworks of diverse structures and porosities. Cryst. Growth Des.2010,10(6):2775-2779.
    [237]Methyl trifluoromethansulfonate, http://en.wikipedia.org/wiki/Methyl_trifluoromethan sulfonate,18 June,2013.
    [238]X. Rao, J. Cai, J. Yu, Y. He, C. Wu, W. Zhou, T. Yildirim, B. Chen, and G. Qian, A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. Chem. Commun.2013,49:6719-6721.
    [239]M.-H. Zeng, B. Wang, X.-Y. Wang, W.-X. Zhang, X.-M. Chen, and S. Gao, Chiral magnetic metal-organic frameworks of dimetal subunits: magnetism tuning by mixed-metal compositions of the solid solutions. Inorg. Chem.2006,45(18):7069-7076.
    [240]T. Fukushima, S. Horike, Y. Inubushi, K. Nakagawa, Y. Kubota, M. Takata, and S. Kitagawa, Solid solutions of soft porous coordination polymers:Fine-tuning of gas adsorption properties. Angew. Chem. Int. Ed.2010,49(28):4820-4824.
    [241]X. Lin, J. Jia, X. Zhao, K. M. Thomas, A. J. Blake, G. S. Walker, N. R. Champness, P. Hubberstey, and M. Schroder, High H2 adsorption by coordination-framework materials. Angew. Chem. Int. Ed.2006,45(44):7358-7364.
    [242]B.-Q. Ma, K. L. Mulfort, and J. T. Hupp, Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. Inorg. Chem.2005,44(14):4912-4914.
    [243]A. S. Dvornikov, E. P. Walker, and P. M. Rentzepis, Two-photon three-dimensional optical storage memory. J. Phys. Chem. A 2009,113(49):13633-13644.
    [244]S. Yamada, and C. Morita, Face-selective addition to a cation-π complex of a pyridinium salt: synthesis of chiral 1,4-dihydropyridines. J. Am. Chem. Soc.2002,124(28):8184-8185.
    [245]A. Lemire, M. Grenon, M. Pourashraf, and A. B. Charette, Nucleophilic addition to 3-substituted pyridinium salts: expedient syntheses of (-)-L-733,061 and (-)-CP-99,994. Org. Lett.2004,6(20):3517-3520.
    [246]H. Gorner, Z. Miskolczy, M. Megyesi, and L. Biczok, Photooxidation of alkaloids: considerable quantum yield enhancement by rose bengal-sensitized singlet molecular oxygen generation. Photochem. Photobiol.2011,87(6):1315-1320.
    [247]R. M. Silverstein, F. X. Webster, and D. Kiemle, Spectrometric identification of organic compounds, John Wiley & Sons, Inc, United States of America,2005.
    [248]A. L. BeTard, and R. A. Fischer, Metal-organic framework thin films:From fundamentals to applications. Chem. Rev.2012,112(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700