基于飞秒激光与物质相互作用的非线性与超快表征技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,飞秒激光由于其优异的特性与广阔的应用领域,在很多研究方向上都倍受科学家们的青睐。飞秒激光技术自20世纪60年代诞生以来得到了长足的进步与发展,并日益突显出了它在物理学、化学、生物学、医学等各种研究领域中的重要性。飞秒激光与物质之间相互作用的机理也一直受到科学家们的广泛关注。随着飞秒激光超快技术、双光子吸收、多光子吸收、飞秒激光微纳米加工、高密度三维信息存储、飞秒激光治疗手术等应用技术的蓬勃发展,飞秒激光与物质的相互作用机理已经成为一个新兴的多学科交叉前沿研究领域。
     飞秒激光的定义就是脉冲宽度在飞秒量级上的超短脉冲激光,它的特点是平均能量比较低,但单脉冲峰值能量非常高。基于超短脉冲宽度和超高能量密度这两个特质,飞秒激光在很多领域和方向的应用上具有长脉冲或连续波激光所无法比拟的固有优势。本论文介绍了飞秒激光与材料的基本光物理反应过程,并对飞秒激光与物质相互作用的非线性超快表征技术进行了研究,分别采用了不同的技术对飞秒激光与物质的相互作用机理做出了详尽的描述,主要研究内容如下:
     首先我们利用双光子荧光技术研究了有机树枝状大分子的光物理特性。树枝状大分子(Dendrimer)是近二十年发展起来的一类具有特殊结构的新型化合物,早在1941年的时候,Flory等人就已经提出通过多功能基单体的聚合来制备高度支化的大分子的可能性。但是直到上世纪80年代中期,随着这类具有高度有序结构的大分子化合物的合成方法逐渐建立并完善之后,树枝状大分子的研究才蓬勃地发展起来。与传统的有机化合物相比较,树枝状大分子具有很多优异的特点,如:精确的分子结构、高度的几何对称性、大量的外围官能团、分子内空腔、相对分子质量可控性、非平面空间构型、纳米量级尺寸等。我们在实验中介绍了新型的三苯胺基树枝状大分子的合成和制备过程,并采用钛蓝宝石飞秒激光脉冲,记录了在甲苯溶液中三苯胺树枝状大分子的双光子诱导荧光反应过程。在飞秒激光辐射下,树枝状大分子都发射出强烈的蓝绿色荧光。我们还得到了这两种树枝状大分子的双光子激发态荧光截面,通过对双光子吸收截面的测量,我们发现这两个树枝状大分子都表现出了明显的双光子吸收。相对于类似的三(三苯胺)结构(tristriphenylamine)树枝状大分子,这两种聚合三苯胺(polytriphenylamin)树枝状大分子在甲苯溶液中显示了较大的双光子激发态荧光截面。这一现象表明,随着树枝状大分子结构的增大,出现了强协同增加效应,这主要是由于树枝状大分子的分支间耦合以及光捕捉能力的增强。
     接着我们利用荧光上转换技术对有机材料的聚集诱导发光(Aggregation Induced Emission)机理进行了分析。通常情况下,大部分荧光材料在溶液中具有较强的荧光发射,但聚集后其荧光发射现象就会减弱甚至淬灭,这就是“聚集导致淬灭”(ACQ)现象。在2001年,唐本忠教授研究组首次报道了Silole分子。这种材料在溶液中几乎观察不到荧光,而一旦形成纳米粒子或制备成薄膜状态后,其荧光发射显著增强,这就是“聚集诱导发光”(AIE)现象。聚集诱导发光现象的发现为开发固态的高发光效率有机材料提供了一条新的有效的途径,并且因其具有独特的光学现象,在有机电致发光、荧光传感器、PH值传感器以及生物检测方面表现出广阔的应用前景。因此,开发和研究具有聚集诱导发光现象的材料体系倍受科学家们的重视。在实验工作中,我们运用时间分辨荧光光谱技术对于样品材料TPCNDSB (Cyano-Substituted Oligo (p-phenylenevinylene))在随着极性增加的不同溶剂中、以及晶体形态下与飞秒激光相互作用所产生的特性进行了表征。通过对于在不同波长范围内的荧光动力学特性的测量,我们对时间分辨发射光谱进行了重构,通过这一技术我们清晰的揭示了:在较低极性的溶剂(如甲苯)中,仅仅在具有高量子产率的本地激发态存在发射;反之在较高极性的溶剂(如DMF)中,存在着一个从本地激发态到内部电荷转移态的快速跃迁,导致了较低的量子产率;而在晶体形态下,样品材料TPCNDSB分子的特殊结构导致了较低极性的局部环境并且限制了扭转运动,所以就不存在从本地激发态到内部电荷转移态的跃迁,从而导致了高效率的聚集诱导发光现象。这一研究结果意味着,在具有施主-受主单元的染料分子中,普遍是由于内部电荷转移态的限制而导致了聚集诱导发光现象的产生。这些关于聚集诱导发光现象的研究工作,对于制备新型OLED材料和激光材料的发展有着非常积极的意义。
     最后我们利用超快成像技术研究了飞秒激光与透明介质相互作用过程中,在皮秒、纳秒、微秒量级时间尺度上,物质内部发生的物理形变与非线性光学过程。当飞秒激光在透明介质内部发生高度聚焦时,能够使得物质发生电离,产生超连续白光、等离子体、自聚焦等物理现象。实验通过泵浦探测时间分辨超快成像技术对这些现象进行了表征与并对于其中的机理进行了分析。我们设计并搭建了全新的三维时间分辨超快成像系统,用来实现对不同方向上的透明物质内部飞秒激光诱导击穿现象的成像。通过对实验结果的观察和分析我们可以得出飞秒激光与物质作用过程中在皮秒时间尺度上的反应过程,还验证了在透明物质内部飞秒激光的自聚焦现象和成丝现象。
Ever since the birth of the femtosecond laser technology in the 1960s', there have been significant development and increasingly important application in the fields of physics, chemistry, biology and many other areas of research. The mechanism of the interaction between femtosecond laser and materials has also gained great concern by scientists. With the rapid development of the ultra-fast femtosecond laser technology, two-photon absorption technology, multiphoton absorption technology, femtosecond laser micro-nano-fabrication, high-density three-dimensional information storage, laser surgery technology, etc.,the research of the mechanism of the interaction between femtosecond laser and materials has become an emerging frotier research of interdisciplinary field.
     The femtosecond laser is defined as the laser that has a pulse width of the femtosecond order. Femtosecond laser is characterized for its low average energy, and especially high single pulse peak energy. Based on the two advantageous qualities of ultra-short pulse and ultra-high energy density, femtosecond laser has inherent advantages in many areas and directions of laser applications that the long pulse laser or continous wave laser can not match. In this paper, we will describe the basic photophysical reaction process of interaction between femtosecond laser and the materials, and will also investigate the nonlinear ultrafast characterization techniques to study the interaction between femtosecond laser and materials. We have investigated different techniques that were used to study the interaction between femtosecond laser and materials, and made a detailed description of the mechanism. the main contents are as follows:
     Firstly, we use two-photon fluorescence technology to investigate the photophysical properties of organic dendrimers. Dendrimer is a new class of compounds with a special structure that have been invented and developed in the past two decades. As early as the year 1941, Flory and his colleagues have already claimed the possibility of the synthesis of a new kind of multi-functional monomers and highly branched polymerization macromolecules. But not until the mid-80s of last century, with the establishment and gradually development of the synthesis of such a highly ordered structure macromolecular compounds, the research of dendrimer has vigorously developed. Compared with traditional organics, dendrimer has many excellent features,such as:a precise molecular structure, a high degree of geometric symmetry, a large number of peripheral functional groups, the intramolecular cavity, molecular weight control, non-flat space configuration, nanometer size, et cetera. In our experiment, the novel triphenylamine-based dendrimers were synthesized and characterized by methods of FT-IR, elemental analysis,1H NMR spectroscopy, and MALDI-TOF mass spectrometry. The linear photophysical properties including absorption spectrum, one-photon induced fluorescence spectrum and the fluorescence lifetimes in different solvents were investigated. The two-photon induced fluorescence behaviour was recorded in toluene solution, employed by a Ti:sapphire femtosecond laser pulse. The dendrimers both emit strong blue-green fluorescence under irradiation. Two photon excited state fluorescence cross-sections were also obtained. The two dendrimers displayed a large two-photon absorption. The polytriphenylamine dendrimer shows larger two photon excited state fluorescence cross-sections in toluene relative to the tristriphenylamine analogue, indicating that there is cooperative enhancement originating from inter-branch coupling and an increase of light-harvesting ability with increasing dendrimer size.
     Secondly, we Investigate the Aggregation Induced emission (AIE) mechanism of the cyano-substituted oligo(p-phenylenevinylene) 1,4-bis [1-cyano-2-(4-(diphenylamino) phenyl) vinyl] benzene (TPCNDSB) by time resolved fluorescence technique. Typically, most of the fluorescent materials will show a strong fluorescence emission in solutions, but will show a decreasing and even quenching process of fluorescence when being aggregated. This phenomenon is called Aggregation Caused Quenching"(ACQ). In 2001, Professor Tang Benzhong and his research group have reported the Silole molecules for the first time. We can hardly observe the fluorescence of this material when it is in solution. But once it is prepared in the form of nano-particles or thin films, the fluorescence emission was significantly enhanced. This phenomenon is called the "Aggregation Induced Emission"(AIE). The discovery of this phenomenon of aggregation induced emission provides a new and effective way for the development of solid organic materials of high luminous efficiency. Because of its unique optical properties in the fields of light emitting, fluorescent sensors, PH sensors and biological detection, aggregation induced emission materials have a broad prospects in applications. Therefore, the development and research of aggregation induced emission materials have drawn much attention of scientists. In our experiment, by reconstructing the time resolved emission spectra (TRES), it is found that in solvent of low polarity, the emission is mainly from the Local Emission (LE) state with high quantum yield, but in high polarity solvent, the emission is mainly from the Intramolecular Charge Transfer (ICT) state, which is a relatively dark state, with low Quantum yield. In Crystal form, the restriction of transfer from LE state to ICT state results in efficient AIE.
     Finally, We use the ultrafast imaging technology to investigate the interaction between femtosecond laser and transparent media. In this process, in the picosecond, nanosecond, microsecond time scale, the physical deformation of material and nonlinear optical processes were also investigated. Femtosecond laser is highly focused in transparent materials,which can make the material ionized, resulting in supercontinuum, plasma, self-focusing and other phenomena. This study used time-resolved ultrafast pump probe imaging techniques were used to characterize these phenomena.
引文
[1]KANNATEY-ASIBU JR E.Principles of Laser Materials Processing[M]. Wiley: Blackwell,2009.
    [2]LAKOWICZ J. Principles of Fluorescence Spectroscopy[M].3rd ed. Singapore: Springer,2006.
    [3]VARDENY Z. Ultrafast dynamics and laser action of organic semiconductors[M].CRC,2009.
    [4]BHATTACHARJEE, Y. Photoelectrons Show How Quick a Flash Is[J]. Science 2001,294:1805-1806.
    [5]KRYUKOV P G. Ultrashort-pulse lasers[J]. Quantum Electronics 2001,31: 95-119.
    [6]SERVICE R F. Ultrafast lasers:strobe light breaks the attosecond barrier[J]. Science 2001,292:1627.
    [7]CERULLO G, DE SILVESTRI S. Ultrafast optical parametric amplifiers [J]. Review of Scientific Instruments 2003,74:1-18.
    [8]KELLER U. Recent developments in compact ultrafast lasers [J]. Nature 2003, 424:831-838.
    [9]MUKHERJEE N, MUKHERJEE A, REINHARDT B. Measurement of two-photon absorption cross sections of dye molecules doped in thin films of polymethylmethacrylate[J]. Applied Physics Letters 1997,70:1524.
    [10]ALBOTA M, BELJONNE D, BREDAS J L, et al. Design of organic molecules with large two-photon absorption cross sections [J]. Science 1998,281: 1653-1656.
    [11]CUMPSTON B H, ANANTHAVEL S P, BARLOW S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature 1999,398:51-54.
    [12]HE G S, SWIATKIEWICZ J, JIANG Y, et al. Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium,1999[C]. New Orleans:Louisiana.
    [13]SANCHEZ E J, NOVOTNY L, XIE X S. Near-field fluorescence microscopy based on two-photon excitation with metal tips[J]. Physics Review Letters 1999, 82:4014-4017.
    [14]ADRONOV A, FRECHET J M J, HE G S, et al. Novel two-photon absorbing dendritic structures [J]. Chemical Materials 2000,12:2838.
    [15]TERENZIANI F, KATAN C, BADAEVA E, et al. Enhanced Two-Photon Absorption of Organic Chromophores:Theoretical and Experimental Assessments[J]. Advanced Materials 2008,20:4641-4678.
    [16]HE G S, TAN L S, ZHENG Q, et al. Multiphoton absorbing materials: Molecular designs, characterizations, and applications [J]. Chemistry Reviews 2008,108:1245.
    [17]KAATZ P, SHELTON D. Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering[J]. Journal of the Optical Society of America B 1999,16:998-1006.
    [18]XU C, WEBB W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 960 to 1050 nm[J]. Journal of the Optical Society of America B 1996,13:481-491.
    [19]DI ROSA M D, FARROW R L. Two-photon excitation cross section of the B<-X(0,0) band of CO measured by direct absorption[J]. Journal of the Optical Society of America B 1999,16:1988-1994.
    [20]SVETLICHNYI V A, MESHALKIN Y P. Laser photolysis as applied to the determination of the two-photon absorption cross section of trans-stilbene[J]. Optics and Spectroscopy 2007,102:872-877.
    [21]PARK S H, YANG D Y, LEE K S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices[J]. Laser & Photonics Reviews 2009,3:1.
    [22]YOKOYAMA S, MASHIKO S. Two-photon polymerization for three-dimensional sub-microfabrication by dendrimers[J]. Japanese Journal of Polymer Science and Technology 2002,59:642-645.
    [23]JIA B H, LI J F, GU M. Two-photon polymerization for three-dimensional photonic devices in polymers and nanocomposites[J]. Austrilian Journal of Chemistry 2007,60:484.
    [24]BALISTRERI M L, GERSEN H, KORTERIK J P, et al. Tracking femtosecond laser pulses in space and time[J]. Science 2001,294:1080-1082.
    [25]BORST W L, LIU L I. Time-autocorrelated two-photon counting technique for time-resolved fluorescence measurements[J]. Review of Scientific Instruments 1999,70:41-49.
    [26]MALIK M A, O'BRIEN P, NORAGER S, et al. Gallium arsenide nanoparticles: synthesis and characterisation[J]. Journal of Materials Chemistry 2003,13: 2591-2595.
    [27]DUNCAN R R, BERGMANN A, COUSIN M A, et al. Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells[J]. Journal of Microscopy-Oxford 2004,215:1-12.
    [28]FELEKYAN S, KUHNEMUTH R, KUDRYAVTSEV V, et al. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection[J]. Review of Scientific Instruments 2005,76.
    [29]DOUMA K, MEGENS R T, REITSMA S. et al. Two-photon lifetime imaging of fluorescent probes in intact blood vessels:A window to sub-cellular structural information and binding status[J]. Microscopy Research and Technique 2007, 70:467.
    [30]GAIDUK A, KUHNEMUTH R, FELEKYAN S, et al. Fluorescence detection with high time resolution:From optical microscopy to simultaneous force and fluorescence spectroscopy[J]. Microscopy Research and Technique 2007,70: 433-41.
    [31]MCCONNELL G, GIRKIN J M, AMEER-BEG S M, et al. Time-correlated single-photon counting fluorescence lifetime confocal imaging of decayed and sound dental structures with a white-light supercontinuum source[J]. Journal of Microscopy-Oxford 2007,225:126-136.
    [32]MEDINE C N, MCDONALD A, BERGMANN A, et al. Time-correlated single photon counting FLIM:Some considerations for physiologists[J]. Microscopy Research and Technique 2007,70:420-425.
    [1]ZHENG Q D, GUPTA S K, HE G S, et al. Synthesis, characterization, two-photon absorption, and optical limiting properties of ladder-type oligo-p-phenylene-cored chromophores[J]. Advanced Functional Materials, 2008,18:2770-2779.
    [2]HE G S, ZHENG Q D, YONG K T, et al. Two-photon absorption based optical limiting and stabilization by using a CdTe quantum dot solution excited at optical communication wavelength of similar to 1300 nm[J]. Applied Physics Letters,2007,18:181108-181111.
    [3]JIA B H, LI J F, GU M. Two-photon polymerization for three-dimensional photonic devices in polymers and nanocomposites[J]. Austrilian Journal of Chemistry,2007,60:484-495.
    [4]SANCHEZ E J, NOVOTNY L, XIE X S. Near-field fluorescence microscopy based on two-photon excitation with metal tips[J]. Physics Review Letters, 1999,82:4014-4017.
    [5]XIA H, YANG J, FANG H H, et al. Efficient two-photon excited amplified spontaneous emission from organic single crystals[J]. ChemPhysChem, 2010,11:1871.
    [6]FANG H H, CHEN Q D, YANG J, et al. Two-photon excited highly polarized and directional upconversion emission from slab organic crystals[J]. Optics Letters.2010,35:441-443.
    [7]FANG H H, CHEN Q D, YANG J, et al. Amplified spontaneous emission in the cyano-substituted oligo(p-phenylenevinylene) organic crystals:Effect of excitation wavelength[J]. Applied Physics Letters.2010,96:103508-103511.
    [8]CHEN Q D, FANG H H, XU B, et al. Two-photon induced amplified spontaneous emission from needlelike triphenylamine-containing derivative crystals with low threshold[J]. Applied Physics Letters.2009,94:201113-201116.
    [9]HE GS, HELGESON R, LIN TC, et al. One-, two-, and three-photon pumped lasing in a novel liquid dye salt system[J]. IEEE J Quantum Electron. 2003,39:1003-1008.
    [10]XIA H, YANG J, FANG H H, et al. Efficient Two-Photon Excited Amplified Spontaneous Emission from Organic Single Crystals[J]. Chemphyschem. 2010,11:1871-1875.
    [11]FANG H H, CHEN Q D, YANG J, et al. Two-Photon Pumped Amplified Spontaneous Emission from Cyano-Substituted Oligo(p-phenylenevinylene) Crystals with Aggregation-Induced Emission Enhancement[J]. The Journal of Physical Chemistry C.2010,114:11958-11961.
    [12]FANG H H, YANG J, DING R, et al. Polarization dependent two-photon properties in an organic crystal[J]. Applied Physical Letters. 2010,97:101101-101104.
    [13]FANG H H, XU B, CHEN Q D, et al. Two-Photon Absorption and Spectral-Narrowed Light Source[J]. Quantum Electronics, IEEE Journal of. 2010,46:1775-1781.
    [14]FANG H H, CHEN Q D, DING R, et al. Temporal dynamics of two-photon-pumped amplified spontaneous emission in slab organic crystals [J]. Optics Letters.2010,35:2561-2563.
    [15]KUZYK M G. Fundamental limits on third-order molecular susceptibilities[J]. Optics Letters.2000,25:1183-1185.
    [16]MORENO J P, KUZYK M G. Fundamental limits of the dispersion of the two-photon absorption cross section[J]. Journal of Chemical Physics. 2005,123:194101-194114.
    [17]KUZYK M G. Using fundamental principles to understand and optimize nonlinear-optical materials[J]. Journal of Materials Chemistry. 2009,19:7444-7465.
    [18]MCDONAGH A M, HUMPHREY M G, SAMOC M, et al. Organometallic complexes for nonlinear optics.17. Synthesis, third-order optical nonlinearities and two-photon absorption cross section of an alkynylruthenium dendrimer[J]. Organometallics.1999,18:5195-5197.
    [19]KIM H M, CHO B R. Two-photon materials with large two-photon cross sections. Structure-property relationship [J]. Chemistry Communications. 2009,2:153-164.
    [20]LO SC, RICHARDS GJ, MARKHAM JPJ, et al. A light-blue phosphorescent dendrimer for efficient solution-processed light-emitting diodes[J]. Advanced Functional Materials.2005,15:1451-1458.
    [21]HE G S, LIN T C, CUI Y P, et al. Two-photon excited intramolecular energy transfer and light-harvesting effect in novel dendritic systems[J]. Optics Letters. 2003,28:768-770.
    [22]LUPTON J M, SAMUEL I D, BURN P L, et al. Exciton confinement in organic dendrimer quantum wells for opto-electronic applications [J]. Journal of Chemical Physics.2002,116:455-459.
    [23]KIM S, PARK S Y, YOSHIDA I, et al. Amplified spontaneous emission from the film of poly(aryl ether) dendrimer encapsulating excited-state intramolecular proton transfer dye[J]. The Journal of Physical Chemistry B. 2002; 106:9291-9294.
    [24]XU B, FANG H H, CHEN F, et al. Synthesis, characterization, two-photon absorption, and optical limiting properties of triphenylamine-based dendrimers[J]. New Journal of Chemistry.2009,33:2457-2464.
    [25]BROUSMICHE D W, SERIN J M, FRECHET J M, et al. Fluorescence resonance energy transfer in novel multiphoton absorbing dendritic structures [J]. The Journal of Physical Chemistry B.2004,108:8592-8600.
    [26]HOLTMANN J, WALCZUK E, DEDE M, et al. Three-Branched Dendritic Dipolar Nonlinear Optical Chromophores, More than Three Times a Single-Strand Chromophore[J]. The Journal of Physical Chemistry B. 2008,112:14751-14761.
    [27]LEE D I, GOODSON T. Entangled photon absorption in an organic porphyrin dendrimer[J]. The Journal of Physical Chemistry B.2006,110:25582-25585.
    [28]JIANG Y, WANG H, XIE L, et al. Study of Electron-Phonon Coupling Dynamics in Au Nanorods by Transient Depolarization Measurements[J]. The Journal of Physical Chemistry C.2010,114:2913-2917
    [29]GAO B, WANG H, HAO Y, et al. Time-Resolved Fluorescence Study of Aggregation-Induced Emission Enhancement by Restriction of Intramolecular Charge Transfer State[J]. The Journal of Physical Chemistry B. 2010,114:128-134.
    [30]ZHANG X, YU X Q, YAO J S, et al. Synthesis and nonlinear optical properties of two three-branched two-photon polymerization initiators [J]. Synthetic Metals. 2008,158:964-968.
    [31]XU C, WEBB W W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 960 to 1050 nm[J]. Journal of the Optical Society of America B.1996,13:481-491.
    [1]HE G S, LIN T C, HSIAO V K, et al. Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element[J]. Applied Physics Letters 2003,83:2733-2735.
    [2]TANG X J, WU L Z, ZHANG L P, et al. Two-photon-pumped frequency-upconverted lasing and optical power limiting properties of vinylbenzothiazole-containing compounds in solution[J]. Physical Chemistry Chemical Physics 2002,4:5744-5747.
    [3]FANG H H, CHEN Q D, YANG J, et al. Amplified spontaneous emission in the cyano-substituted oligo(p-phenylenevinylene) organic crystals:Effect of excitation wavelength[J]. Applied Physics Letters 2010,96:103508-103511.
    [4]FANG H H, CHEN Q D, YANG J, et al. Two-Photon Pumped Amplified Spontaneous Emission from Cyano-Substituted Oligo(p-phenylenevinylene) Crystals with Aggregation-Induced Emission Enhancement[J]. The Journal of Physical Chemistry C 2010,114:11958-11961.
    [5]FANG H H, CHEN Q D, YANG J, et al. Two-photon excited highly polarized and directional upconversion emission from slab organic crystals[J]. Optics Letters 2010,35:441-443.
    [6]BURROUGHES J H, BRADLEY D D, BROWN A R, et al. Light-emitting diodes based on conjugated polymers[J], Nature 1990,347:539-541.
    [7]HWANG D H, KIM S T, SHIM H K, et al. Green light-emitting diodes from poly(2-dimethyloctylsilyl-1,4,-phenylenevinylene)[J]. Chemistry Communications 1996,19:2241-2242.
    [8]MUKTI A, KRUTARTH T, WENCHUANG H. Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography [J]. ACS Nano 2009,3:3085-3090.
    [9]LUO J D, XIE Z L, LAM J W, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemistry Communications 2001, 18:1740-1741.
    [10]ZENG Q, LI Z, DONG Y Q, et al. Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations:AIE and AIEE effects[J]. Chemistry Communications 2007,1:70-72.
    [11]ZHAO Q, LI L, LI F Y, et al. Aggregation-induced phosphorescent emission (AIPE) of iridium(Ⅲ) complexes[J]. Chemistry Communications 2008,6: 685-687.
    [12]XIE Z Q, YANG B, XIE W J, et al. A class of nonplanar conjugated compounds with aggregation-induced emission:Structural and optical properties of 2,5-diphenyl-1,4-distyrylbenzene derivatives with all cis double bonds[J]. Journal of Physical Chemistry B 2006,110:20993-21000.
    [13]XIE Z Q, YANG B, LI F, et al. Cross dipole stacking in the crystal of distyrylbenzene derivative:The approach toward high solid-state luminescence efficiency[J]. Journal of the American Chemical Society 2005,127: 14152-14153.
    [14]LI Y P, SHEN F Z, WANG H, et al. Supramolecular Network Conducting the Formation of Uniaxially Oriented Molecular Crystal of Cyano Substituted Oligo(p-phenylene vinylene) and Its Amplified Spontaneous Emission (ASE) Behavior[J]. Chemistry of Materials 2008,20:7312-7318.
    [15]CHEN J W, LAW C C, LAM J W, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles[J]. Chemistry of Materials 2003,15:1535-1546.
    [16]LI Z, DONG Y, MI B X, et al. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials[J]. Journal of Physical Chemistry B 2005,109:10061-10066.
    [17]LI Y P, LI F, ZHANG H Y, et al. Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene):a key factor for aggregation-induced emission[J]. Chemistry Communications 2007,3:231-233.
    [18]HONG Y N, LAM J W, TANG B Z. Aggregation-induced emission: phenomenon, mechanism and applications [J]. Chemistry Communications 2009, 29:4332-4353.
    [19]TONG H, HONG Y N, DONG Y Q, et al. Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics[J]. Chemistry Communications 2006,35:3705-3707.
    [20]WANG H Y, LIN S, ALLEN J P, et al. Protein dynamics control the kinetics of initial electron transfer in photosynthesis [J]. Science 2007,316:747-750.
    [21]JIANG Y, WANG H Y, XIE L P, et al. Study of Electron-Phonon Coupling Dynamics in Au Nanorods by Transient Depolarization Measurements [J]. Journal of Physical Chemistry C 2010,114:2913-2917.
    [22]REN Y, DONG Y Q, LAM J W, et al. Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique [J]. Chemical Physics Letters 2005,402:468-473.
    [23]REN Y, LAM J W, DONG Y Q, et al. Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates [J]. Journal of Physical Chemistry B 2005,109:1135-1140.
    [24]HU R R, LAGER E, AGUILAR A, et al. Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BOD IP Y Derivatives [J]. Journal of Physical Chemistry C 2009,113:15845-15853.
    [25]GAO B R, WANG H Y, HAO Y W, et al. Time-Resolved Fluorescence Study of Aggregation-Induced Emission Enhancement by Restriction of Intramolecular Charge Transfer State[J]. Journal of Physical Chemistry B 2010,114:128-134.
    [26]POND S J, RUMI M, LEVIN M D, et al. One-and two-photon spectroscopy of donor-acceptor-donor distyrylbenzene derivatives:Effect of cyano substitution and distortion from planarity[J]. Journal of Physical Chemistry A 2002,106: 11470-11480.
    [27]DOBKOWSKI J, WOJCIK J, KOZMINSKI W, et al. An experimental test of C-N bond twisting in the TICT state:Syn-anti photoisomerization in 2-(N-methyl-N-isopropylamino)-5-cyanopyridine[J]. Journal of the American Chemical Society 2002,124:2406-2407.
    [28]GRABOWSKI Z R, ROTKIEWICZ K, RETTIG W. Structural changes accompanying intramolecular electron transfer:Focus on twisted intramolecular charge-transfer states and structures[J]. Chemical Reviews 2003,103: 3899-4031.
    [29]ZACHARIASSE K A, DRUZHININ S I, BOSCH W, et al. Intramolecular charge transfer with the planarized 4-aminobenzonitrile 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) [J]. Journal of the American Chemical Society 2004,126:1705-1715.
    [30]DAHL K, BISWAS R, ITO N, et al. Solvent dependence of the spectra and kinetics of excited-state charge transfer in three (alkylamino)benzonitriles[J]. Journal of Physical Chemistry B 2005,109:1563-1585.
    [31]LAKOWICZ J R. Principles of Fluorescence Spectroscopy[M].3rd ed. Berlin: Springer,2006.
    [32]GHAZY R, AZIM S A, SHAHEEN M, et al. Experimental studies on the determination of the dipole moments of some different laser dyes[J]. Spectrochimica Acta Part A 2004,60:187-191.
    [33]KABATC J, OSMIALOWSKI B, PACZKOWSKI J. The experimental studies on the determination of the ground and excited state dipole moments of some hemicyanine dyes[J]. Spectrochimica Acta Part A 2006,63:524-531.
    [34]LIPPERT V E. [J]. The Electrochemical Society.1957,6:962.
    [35]MATAGA N, KAIFU Y, KOIZUMI M. Bulletin of the Chemical Society of Japan.1956,29:465.
    [1]JOACHIM N, DANIEL X H, GARY D N, et al. Influence of pulse duration on mechanical effects after laser-induced breakdown in water[J]. Journal of Applied Physics 1998,83:7488-7495.
    [2]ABRAHAM E,MINOSHIMA K, MATSUMOTO H. Femtosecond laser-induced breakdown in water:time-resolved shadow imaging and two-color interferometric imaging[J]. Optics Communications 2000,176:441-452.
    [3]GIACOMO A D, DELL'AGLIO M, PASCALE O D. From single pulse to double pulse ns-Laser Induced BreakdownSpectroscopy under water:Elemental analysis of aqueous solutions and submerged solid samples [J]. Spectrochimica Acta Part B 2007,62:721-738.
    [4]ZHANG N, ZHU X N, YANG J J, et al. Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum[J]. Physical Review Letters 2007,99:167602.
    [5]Y. T. LI, J. ZHANG, H. TENG, et al. Blast waves produced by interactions of femtosecond laser pulses with water[J]. Physical Review E 2003,67:056403.
    [6]LIU W, KOSAREVA O, GOLUBTSOV I S, et al. Random deflection of the white light beamduring self-focusing and filamentation of a femtosecond laser pulse in water[J]. Applied Physics B 2002,75:595-599.
    [7]LIU W, KOSAREVA O, GOLUBTSOV I S, et al. Femtosecond laser pulse filamentation versus optical breakdown in H2O[J]. Applied Physics B 2003,76: 215-229.
    [8]DUBIETIS A, SAUSKAS G T, DIOMIN I, et al. Self-guided propagation of femtosecond light pulses in water [J]. Optics Letters 2003,28:1269-1271.
    [9]COOK K, KAR A K, LAMB R A. White-light supercontinuum interference of self-focused filaments in water[J]. Applied Physics Letters 2003,83:3861-3863.
    [10]CHARFI B, HARITH M A. Panoramic laser-induced breakdown spectrometry of water[J]. Spectrochimica Acta Part B 2002,57:1141-1153.
    [11]MARTI-LOPEZ L, OCANA R, PORRO J A, et al. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes[J], Applied Optics 2009,48:3671-3680.
    [12]WENINGER K R, BARBER B P, PUTTERMAN S J. Pulsed mie scattering measurements of the collapse of a sonoluminescing bubble[J]. Physical Review Letters 1997,78:1800-1802.
    [13]OHL C D, LINDAU O, LAUTERBORN W. Luminescence from Spherically and Aspherically Collapsing Laser Induced Bubbles[J]. Physical Review Letters 1998,80:394-396.
    [14]BAGHDASSARIAN O, TABBERT B, WILLIAMS G A. Luminescence Characteristics of Laser-Induced Bubbles inWater[J]. Physical Review Letters 1999,83:2437-2440.
    [15]COUAIRONA A, MYSYROWICZB A. Femtosecond filamentation in transparent media[J]. Physics Reports 2007,441:47-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700