添加钽对钨基高密度合金弹性模量的影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用液相烧结技术,对高密度钨合金90W-7Ni-3Fe及其添加有不同含量元素Ta合金的力学性能和显微组织进行了研究。结果表明:经1480℃×1h工艺制备的90W-7Ni-3Fe合金在致密度为99.88%情况下,采取三点抗弯法测得的弹性模量E为286GPa,拉伸强度853MPa,延伸率9%,洛氏硬度HRC25.3。弹性模量随孔隙度P的增加降低迅速。经过1100℃、1200℃热处理之后虽强度略有提高、延伸率、硬度显著增加,但弹性模量却无明显变化。所得样品组织均匀,晶粒度为30μm,存在以W晶粒的穿晶断裂为主的四种断裂方式。
     在添加1—7%Ta范围内合金相结构无剧烈变化,弹性模量大致随合金元素含量的升高而缓慢降低。合金强度与Ta含量关系曲线中存在一临界点成分,即5%Ta,其拉伸强度可达116MPa,在5%Ta之前随合金元素含量升高而升高,之后却快速降低。Ta的添加阻碍合金的致密化,在1440℃烧结后,所有合金密度在96—98.5%之间。合金延伸率明显恶化,除7%Ta添加合金外,其余均低于6%。85W-5Ta-TNi-3Fe合金在1100℃、1200℃热处理之后弹性模量无大的变化,但是强度却有所增加,延伸率经1100℃处理后的几乎不变,但在1200℃却降为4%。所有添加Ta样品硬度HRC均有增加,85W-5Ta-7Ni-3Fe合金达到了35.0。因Ta固溶于基体相中,降低W在基体相中的固溶度,减小了其动态速率常数,从而导致合金W晶粒细化,程度随Ta添加量增加而增强。合金的断裂模式构成发生变化,为以W晶粒穿晶断裂与基体相的延性断裂为主的方式。
     高含量添加Ta(>10%)后,粉体成形性得到改善,即弹性后效降低,压坯密度提高。因合金组织中新增Ta相,并且其含量相当高,从而弹性模量呈现与少量Ta添加时相反的结果,即弹性模量随Ta添加量增加而迅速升高,由10%Ta样品的210GPa增至40%Ta的286GPa。同时,因Ta相的出现,合金强度也表现出降低的规律。所有样品均含一定量的孔隙,延伸率也不大于3%,但硬度却随Ta含量增加而快速升高。在添加Ta量低于20%时,W晶粒尺寸仍降低,但当Ta加至30%以上时,硬质相W及Ta晶粒形状出现显著变化,不再呈现球状形态。10%Ta合金断口形貌中基体相的延性断裂和W晶粒的穿晶断裂仍是该成分合金断裂的重要形式,大量的细小W颗粒从基体相脱出,这些形式的断裂方式决定合金强度较低。Ta粉末粒度对80W-10Ta-7Ni-3Fe合金烧结致密、强度、延伸率、弹性模量、进而组织形态等性能特征都具有影响。
By means of Liquid Phase Sintering (LPS), mechanical quality and micro-structure of tungsten high density alloys W-Ni-Fe and those alloys added with alloying element tantalum of different contents are investigated. The results show that under the condition of density 99.88% specimen fabricated by vacuum sintering 1480 ℃ X lh, elastic modulus of 90W-7Ni-3Fe is 286GPa through Three-Points Bending Method, strength 853Mpa, elongation 9% and hardness HRC 25.3. Elastic modulus decreases sharply with the increase of porosity. After 1100℃ and 1200℃ heating treatment, strength increases slowly and elongation, hardness are enhanced evidently, but elastic modulus has no apparent change. Sample microstructure is uniform and grain size is about 30 u m and four kinds of rupture exist in dominance of tungsten cleavage.
    In the range of 1-7% tantalum addition, alloys have no tremendous change in microstructure, thus elastic modulus approximately decreases as more alloying element is added. Critical point exists in the plot of strength-Ta content, namely 5%Ta, the tensile strength is as high as 1164 MPa, theretofore it increases as more Ta content is doped, but decreases subsequently. Ta blocks alloys densification, and density is in the range of 96-98.5% when sintered at 1440℃. Plasticity deteriorates and all the values are lower than 6% except specimen with 7%Ta adding. Elastic modulus of 85W-5Ta-7Ni-3Fe alloy changes scarcely after 1100℃ and 1200℃ heating treatment, but strength increases appreciably. Elongation almost has no change when treated at 1100℃, yet decreases to 4% at: 1200℃. All adulterated alloys are much harder than original W-Ni-Fe alloy, that of 85W-5Ta-7Ni-3Fe is up to HRC35.0. The solution degree of tungsten in y phase decreases because of Ta solution in matrix, therefore the kinetic rate constant is depre
    ssed, W grain size is attenuated and the degree is more obvious with the increase of Ta addition. Alloy's fracture mode changes with the prominence of tungsten cleavage and matrix intergranular rupture.
    Compressibility of powders is improved when more Ta is added (>10%), namely green's spring back is declined and pressed density increased. Because in alloys with Ta a new phase Ta appears and its content is comparative with W and matrix phase elastic modulus differs from that of alloys with lower Ta adoption. Elastic modulus increases markedly when more Ta is added, i.e. elevating 286 GPa possessed by alloy with 40% Ta from 210 GPa of 10% Ta added alloy. Meanwhile the
    
    
    
    strength is reduced completely by reason of the abundance of Ta in alloy . All specimens bear a certain degiee of pores, thus they have an elongation capability lower than 3%, and yet hardness is elevated when alloys have a larger Ta content. Tungsten grain appears finer as 10% and 20% Ta are doped to alloys, while Ta addition is up to 30%, Ta and W grain configuration change greatly and are not spherical in shape. Matrix intergranular rupture and tungsten cleavage are still important manners in the micrograph of 80W-10Ta-7Ni-3Fe alloy, and lots of fine W grain separates with matrix, which determines its bad tensile strength. Particle size possesses influence on densification, strength, elongation, elastic modulus and micrograph of 80W-10Ta-7Ni-3Fe alloy.
引文
1 赵慕岳,王伏生,梁容海,等.高比重合金在国防工业和民用工业中的应用.粉末冶金技术,1983,1(16):20-23
    2 赵慕岳,王伏生,范景莲.我国钨基高比重合金的发展现状与展望.粉末冶金材料科学与工程,2000,5(1):27-32
    3 黄振德,王伏生.高密度钨合金在军工中的应用及展望.湖南有色金属,1997,13(3):44-46
    4 王伏生、赵慕岳、梁容海,等.W-Ni-Cu合金材质均匀性的工艺因素的研究.粉末冶金技术,1993,11(1):39-41
    5 黄宁,黄建忠.镍的添加方式对钨基高密度合金显微组织和性能的影响.矿冶工程,1997,17(3):69-71
    6 Edelman D C,Palatka B J, Subhash G. Mechanical alloying of W-Hf-Ti alloys, Tungsten Refract. Met-1994, Proc. Int. Conf, 2nd. New Jersy: Metal Powder International Federation. Bose A and Dowding R L eds,1995,227-233
    7 范景莲.W-Ni-Fe高比重合金纳米晶预合金粉的制备.粉末冶金技术,1999,17(2):89-93
    8 Haredtle S T. Thomas Hug and Theodor Staneff, Taylor-made tungsten heavy alloys by solid state sintering of Prealloyed powder and subsequent cold working, Tungsten Refract. Met-1994,Proc. Int. Conf, 2nd. New Jersy: Metal Powder International Federation. Bose A and Dowding R L eds, 1995,169-178
    9 范景莲,曲选辉,黄伯云,等.高密度合金强化烧结工艺的研究.稀有金属材料与工程,1999,28(5):313-316
    10 Kemp P B and German R M. Grain growth in liquid-phase-sintered W-Mo-Ni-Fe alloys. Journal of Less-Common Metals,1991,175: 353-368
    11 Kark J K, Kong S J L, Eun K Y, etal. Microstructure change during liquid phase sintering of W-Ni-Fe alloy. Metallurgical Transaction, 1989,20A(5): 837-845
    12 黄培云.粉末冶金原理.第二版。北京:冶金工业出版社,1997.310-317
    13 German R M. Powder metallurgy science. 2nd edtion. Princeton: Library of Congress cataloging -in-Publication Data, 1994. 274-281
    14 赵幕岳,易屏华,王伏生.添加CeO_2与La_2O_3的新型钨基合金的研究.稀有金属材料与工程,1988,(3):9—12
    15 Guillerment A F and stlund L. Experimental and theoretical study of the phase
    
    equilibria in the Fe-Ni-W system. Metall. Trans.,1986, 17A: 1809
    16 Jounson J L, Upadhyaya A and Geranm R M. Microstmctural effects on distortion and solid-liquid segregation during liquid phase sintering under microgravity conditions. Metallurgical and materials transactions B, 1998, 29B: 857-866
    17 范景莲,曲选辉,李益民,等.高比重合金的固相烧结.中国有色金属学报,1999,9(2):328-329
    18 范爱国,师一华.国外弹用高性能钨重合金研究进展.兵器材料科学与工程,1999,22(1)45-48
    19 Katai B, Nikaevi M, ivojinovi B, etal. Effects of Plastic Deformation on the Properties of W-Ni-Fe Heavy Alloys. Science of Sintering, 2001,33: 47-56
    20 Katai B, Odanovi Z, Aleksi R, etal. Effects of Heat Treatment on Mechanical and Structural Properties of the Rotary forged W-Ni-Fe Heavy Alloy. Science of Sintering, 2001, 32(3): 153-166
    21 Chaiat,等.钨基重合金中某些烧结后热处理效应.第11届国际普兰西难熔金属和硬质合金会议译文集,中南工业大学粉末冶金研究所编译.长沙:中南工业大学出版社,1987:85-92
    22 Wendy L, etal. Improving mechanical properties of tungsten heavy alloy composites through thermomechanical processing. Proceedings of the International Symposium on Tungsten and Tungsten Alloys, 1992, 127-134
    23 Hogwood M C, Bentley A R. The development of high strength and toughness fibrous microstmctures in tungsten-nickle-iron alloys for kinetic energy penctrator applications. Proceedings of Tungsten Refractory Metal, 1994, 37-45
    24 王伏生,周载明,梁容海.提高W-Ni-Cu合金膨胀系数等性能的实例分析.中国有色金属学报,1997,7(1):103-106
    25 黄伯云,范景莲.纳米钨合金材料的研究与应用.中国钨业,2001,16(5-6):38-43
    26 Kemp P B, German R M. Mechanical properties of Mo alloyed liquid phasc-sintering tungsten-based composites. Metallurgical and Matcrial Transaction A, 1995,26A(8): 2187-2189
    27 Bose A, and German R M. Microstmctural refinement of W-Ni-Fe heavy alloys by alloying additions. Metallargical Transaction A. 1988,19: 3100-3103
    28 张兰亭,唐志宏译.加铝的钨重合金.中国钨业,2001,16(3):36-39
    29 Bose A, and German R M. Sintering atmosphere effects on tensile properties of
    
    heavy alloys. Metallurgical Transaction A. 1988,19: 2467-2476
    30 German R M and Churn K S. Sintering atmosphere effects on ductility of W-Ni-Fe heavy metals. Metallurgical Transaction A. 1984,15: 747-754
    31 Farooq S, Kemp P B, German R M, etal. Effect of initial oxygen content and sintering atmosphere dew point on the properties of tungsten based heavy alloys. RM & HM, 1989,Dec.: 236-243
    32 周国安,刘勇,邓欣,等.Si、Na掺杂的W-Ni-Fe高比重合金界面结构的影响.兵器材料科学与工程,1999,22(3):3-8
    33 齐芸馨,赵彤,王改莲,等.液相烧结钨合金的氧富集脆化机理及韧化工艺的研究.兵器材料科学与工程,1999,22(1):3-6
    34 Katavi B, Nikaevi M, ivojinovi B, etal. Effects of plastic deformation on the properties of W-Ni-Fe heavy alloys. Science of Sintering, 2001,33: 47-56
    35 齐志望,樊存山,侯福青,等.大变形锻造钨合金显微组织特征研究.兵器材料科学与工程,1999,22(4):18-22
    36 冯端.金属物理学,第一卷 结构与缺陷.北京:科学出版社,1998,13-43,108
    37 虞觉奇,易文质,陈邦迪,等.二元合金状态图集.上海:上海科学技术出版社,696-699
    38 李振寰.元素性质数据手册.石家庄:河北人民出版社,1985:26-74
    38 中国金属学会,中国有色金属学会.金属材料物理性能手册第一册金属物理性能及测试方法.北京:冶金工业出版社,1987:47-64
    39 Muddle B C. Interphase boundary precipitation in liquid phase sintered W-Ni-Fe and W-Ni-Cu alloys. Metallurgical Transaction, 1984,15A: 1089-1098
    40 Bourguignon L L, German R M. Sintering temperature effects on tungsten heavy alloys. The International Journal of Powder Metallurgy, 1988,24(2): 115-121
    41 Yang S C, Mani S S and German R M. The effect of contiguity on growth kinetics in liquid-phase sintering. JOM, 1990,Apri.: 16-19
    42 Posthill J B, Hogwood M C and Edmonds D V. Precipitation at tungsten/tungsten interfaces in tungsten-nickel-iron heavy alloys. Powder metallurgy, 1986,29(1): 45-51
    43 Woodward R L, Mcdonald I G and Gunner A. Comparative structure and physical properties of W-Ni-Fe alloys containing 95 and 25wt% tungsten. J of Materials Science Letters, 1986, 5: 413-414
    44 周国安,赖和怡,吴青莲.钴、锰在W-Ni-Fe合金中的作用及其浸润机理的探讨.上海有色金属,1997,18(1):6—9
    
    
    45 雷秉强,朱桂森.液相烧结W-Ni-Fe合金中析出相的研究.金属学报,1987,23(3):182-186
    46 金子武.焼结合金引张破壊特性.粉体粉末冶金,1993,30(6):637-644
    47 金子武,天野良成.热处理对W-Ni-Fe烧结合金机械性能的效果.兵器材料科学与工程,1989,(9):67-69
    48 朱桂森,刘铭成,林忠杰,等.氢对高比重合金(W-3.5Ni-1.5Fe)力学性能的影响.金属学报,1981,10(1):39-43
    49 张云廷.钨合金真空热处理机理探讨.兵器材料科学与工程,1990,(3):20-24
    50 朱桂森.高比重合金(二).稀有金属材料与工程,1988,17(3):36-44
    51 马长英,刘铭成.含钼高比重钨合金性能对碳和烧结后热处理的敏感性.1994年全国粉末冶金学术论文集,577-580
    52 Rabin B H and German R M. Microstructure effects on tensile properties of tungsten-nickle-iron composites. Metallurgical Transaction A, 1988,19: 1523-1532
    53 王德云.钨基高密度合金组织于性能的研究.兵器材料科学于工程,1992,15(6):34-38
    54 黄继华,赖和怡,周国安,等.高比重合金的微观结构和性能的关系.粉末冶金技术,1992。10(1):63-68
    55 张宝生.热处理对W-Ni-Fe合金性能的影响.第3届难熔金属文集.《难熔金属文集》编辑组编.宝鸡:《稀有金属合金加工》编辑部,1980,12:4-7
    56 Goren-Muginstein G R, Rosen A. The effect of cold deformation on grain refinement of heavy metals. Materials Science and Engineering A, 1997,238: 351-356
    57 白淑珍,张宝生.高密度钨合金静液挤压形变研究及其形变失效强化的研究.粉末冶金技术,1995,13(3):186-190
    58 Ekbom L, Antonsson T. Tungsten heavy alloy: deformation texture and recrystallization of tungsten particles. International Journal of Refractory Metals and Hard Materials, 2002,20: 375-379
    59 Erwin P, Subodh K. Deformation mechanisms operation in a tungsten heavy alloy. Materials Science and Engineering A, 1997,234-236: 102-105
    60 Katavi B, Odauovi Z and Aleksi R. Effect of heat treatment on mechanical and structural properties of the rotary forged W-Ni-Fe Heavy Alloy. Science of Sintering, 2000,32(3): 153-166
    
    
    61 何肇基.金属的力学性质.北京:冶金工业出版社,1982:16-32
    62 李昕,蒋瑞兴,陈洪荪,等.弹性与非弹性的测量和应用.北京:冶金工业出版社,1999:1-20
    63 陈复明,李国俊,苏德达,等.弹性合金.上海:上海科学技术出版社,1986:3-11
    64 束德林.金属力学性能.北京:机械工业出版社,1987:8-15
    65 Bose A, Sims D and German R M. Test temperature and strain rate effects on the properties of a tungsten heavy alloy. Metalllurgican Transactions A, 1988,19A; 487-494
    66 Zamora K M O, Sevillano J G and Pérez M F. Fracture toughness of W heavy metal alloys. Materials Science and Engineering, 1992,A 157: 151-160
    67 James C W. Young's modulus of porous Materials, Part 1: Theoretical derivation of modulus-porosity correlation. J of Materials Science, 1984,19: 801-808
    68 Kxistie V, Erb U and Palumbo G. Effect of porosity on Young's Modulus of nanoerystalline materials. Sedpta Metallurgiea, 1993, 29: 1501-1504
    69 Leheup E R and Moon J R. Elastic Behaviour of High Density Powder-Forged Samples of Iron and Iron-Graphite. Powder Metallurgy, 1980,23(1): 15-22
    70 徐润泽.粉末冶金结构材料学.长沙:中南工业大学出版社,1998:12-23
    71 Leheup E R and Moon J R. Elastic Behaviour of High Density Powder-Forged Samples of Iron and Iron-Graphite. Powder Metallurgy, 1980,23(1): 15-22
    72 孙伟,常明,杨保和.纳米晶体弹性模量的模拟研究.应用数学和力学,1999,20(5):525-530
    73 Mustafa E U. Modeling tungsten carbide/cobalt composites. Advanced Materials & Processes, 1997,3: 35-36
    74 Dean E A and Lopez J Q. Empirical Dependence of Elastic Modulus on Porosity for Ceramic Materials. J American Ceramic society, 1983,66(5): 366-370
    75 美国金属学会.金属手册.第二卷,性能与选择:有色合金及纯金属.第九版.北京:机械工业出版社,1994,321-638
    76 Matucha K H.材料科学与技术丛书(第8卷):非铁合金的结构与性能(中译本).北京:科学出版社,1999:531—541
    77 沙穆索诺夫,康士坦诺夫.钽与铌.中国科学院矿冶研究所译.北京:中国工业出版社,1962:13
    78 吴铭.钽、铌冶金工艺学.北京:中国有色金属工业总公司职工教育教材编审
    
    办公室,1986:2-3
    79 娄燕雄,刘贵材.钽铌译文集.长沙:中南工业大学出版社,1987:21-27
    80 朱祖芳.有色金属的耐腐蚀性及其应用.北京:化学工业出版社,1995:286-294
    81 郭庚辰.液相烧结粉末冶金材料.北京:化学工业出版社,2003:69
    82 German R M, Bose A, Kemp P B,etal. Additive effects on the microstructure and properties of tungsten heavy alloy composites. Advances in Powder Metallurgy, 1989,2: 401-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700