钛基合金温压成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,低成本高性能粉末冶金钛合金逐步成为国际上新材料研究的重要内容。为此,以纯Ti粉和TC4粉末为原材料,对钛合金粉末温压成形行为和粉末表面堆积形态对压坯致密化的影响进行研究,探讨在较低压制压力下制备高性能粉末冶金钛合金的可行途径。
     对钛合金粉末的温压特征及其致密化机理的研究结果表明,在同一压制压力下,Ti粉或TC4粉的压坯密度均在温压温度为140℃左右达到最大值,高于或低于这一温度,压坯密度反而下降。压制压力与压坯密度之间的关系和川北公夫压制方程相吻合。在500MPa压力下,温压成形的Ti粉压坯密度为3.72g.cm~(-3),比室温成形的增加0.21g.cm~(-3);温压成形的TC4压坯密度达3.62g.cm~(-3),比室温成形的提高0.18g.cm~(-3)。并且,在压力为500MPa成形时,温压成形的脱模力比室温成形的脱模力降低约26%。
     通过对钛粉的动态压制曲线、脱模力曲线、X射线衍射、显微硬度和压坯显微组织等分析,认为钛粉的温压致密化机理:在温压初期阶段,粉末的重排占主导地位,其对致密化的贡献明显高于室温成形,而在后期温压致密化以塑性变形为主,温度对钛粉塑性变形程度的改善又为粉末颗粒的二次重排起到了协调作用,使钛粉获得更大程度的颗粒填充密度。
     为了进一步改善钛合金温压过程的粉末流动性,提高压坯密度及其均匀性,采用MSC.Marc2001软件,数值模拟了钛粉呈平式、凹式、凸式3种不同粉末表面堆积形态的压制过程,并进行了相应的实验验证。结果表明,凸式打破了平式压制过程中粉末移动困难的局面,无论轴向和径向,都产生了比平式更显著的运动,在提高压坯密度的同时,还有效地提高了压坯密度的均匀性。
     根据钛粉的特点,将粉末表面凸式堆积应用于钛粉温压成形技术,在500MPa压力下,钛粉的压坯密度达3.87g.cm~(-3),比传统的室温成形提高0.27g.cm~(-3),增幅达7.5%。这为低成本高性能粉末冶金钛合金的制备探索了一条新的途径。
It is vital to manufacture lower cost, high performance titanium-based powder metallurgy materials. In this thesis, warm compaction and the surface shape of loading powder have been studied. Powder designed for warm compaction is fabricated from titanium powder and Ti-6A1-4V powder.
    Both characteristics and densification mechanism of warm compaction have been researched. The results show that the green density does not increase linearly with compaction temperature. At the optimum temperature of 140℃, the green density will be highest. The compacts density of titanium powder and Ti-6A1-4V powder by warm compaction can reach 3.72g.cm-3 and 3.62g.cm-3 respectively after being pressed at 500MPa. Compared to room compaction, the increase in green density are 0.21and 0.18 g.cm-3, respectively. The relation of green density and compression force is consistent with Kawakita's powder compaction equation in warm compaction. The ejection force of warm compaction is 26% lower than that of cold compaction after being pressed at 500MPa.
    Researches on the dynamic compacting curve of titanium powder, ejection force curve, X-ray diffraction, micro-hardness and microscopic structure of compact results show the densification mechanism of warm compaction: during the initial stage, the rearrangement of powder particles is the main factor which contribute more to the densification of warm compaction than to that of cold compaction; during the later stage, the plastic deformation is primary, and the improvement of plastic deformation by temperature can harmonize the second rearrangement of powder particles.
    With the aid of MSC.Marc 2001 Software, a numerical simulation of compaction on titanium powder has been researched. Results show that the powder movement of the convex model is more obvious than that of the level model. The former improves uniformity of density distribution.
    When the warm compaction combined with the convex model, the compact of titanium powder with density up to 3.87g.cm-3 can be
    
    
    
    achieved after being pressed at 500MPa. The increase in green density is 0.27g.cm"3 over conventional compaction. It is considered a new way of a lower cost to produce high performance powder metallurgy titanium alloys.
引文
[1] Lane L. Titanium aerospace alloys. Advanced Materials & Processes, 1998, 153(5): 45-46
    [2] Anon. Titanium alloys for aerospace. Advanced Materials & Processes, 1999, 155(3):39-41
    [3] Boyer R R. Overview on the use of titanium in the aerospace industry. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 213:103-114
    [4] Sherman A M, Sommer C J, Froes F H. Use of titanium in production automobiles: potential and challenges. JOM, 1997,49(5): 38-41
    [5] Okazaki Y, Ito Y, Kyo K, et al. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. J. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 213:138-147
    [6] Robert V. Opportunities for the titanium industry in bicycles and wheelchairs. JOM, 1997,49(6): 24-27
    [7] Froes F H, Jones R H. The 14th International Ti Applications Conference and Exhibition. JOM, 1999, 51(6): 40-41
    [8] 韩凤麟.世界粉末冶金零件工业动态.粉末冶金技术,2001,19(4):225-232
    [9] Faller K, Froes F H. The use of titanium in family automobiles: current trends. JOM, 2001, 53(2): 27-28
    [10] Rutz H G, Hanejko F G, Luk S H. Warm compaction offers high density at low cost. Metal Powder Report, 1994,49(9):40-47
    [11] Simchi A, Veltl G. Investigation of warm compaction and sintering behaviour of aluminium alloys. Powder Metallurgy, 2003,46(6):159-164
    [12] 程继贵,王成福,夏永红.CF/Cu一10Sn复合轴承材料温压成形致密化规律和其有关性能研究.矿冶工程,2002,22(4):95—98
    [13] 罗述东,唐新文,易建宏,等.钨基高密度合金粉末的温压成形行为研究.粉末冶金工业,2003,13(3):31-35
    [14] 程继贵,夏水红.温压法制备铜铅轴承合金的研究.材料科学与工程,2001.19(1):43—46
    
    
    [15] Warm compaction moves into production. Metal Powder Report, 1996:51 (7/8): 38
    [16] 余智勇,康永林,李亚军.金属粉末件钢模压制成形与质量控制方法,锻压技术,2000,(1):33-37
    [17] 曹顺华,易建宏,曲选辉,等.温压技术的发展、特点及其技术问题分析.材料科学与工程,1999,17(1):58-61
    [18] St—Laurent S,Changnon F.为温压工艺设计的混合粉.粉末冶金技术,1998,16(1):40-51
    [19] Engstrom U,Johnsson B,jacosom O.温压粉末冶金材料的性能与公差.粉末冶金工业,1997,7(2):10-15
    [20] Anon. Warm compaction moves into production. Metal Powder Report, 1996, 51(7/8):38
    [21] 曹顺华,易建宏.温压粉末原料的设计.中南工业大学学报,2000,3l(6):532-535
    [22] 曹顺华,易建宏,曲选辉,等.高密度铁基粉末冶金零部件制造原料的研究.粉末冶金科学与工程,2000,5(4):259-263
    [23] Oliver C, Clisby S. Method of Making on an Iron/Polymer Powder Composition, US patent. No5321060,1993
    [24] Luk S. Metal Powder Compositions Containing Binding Agents for Elevated Temperature Compaction. US patent. No5429792,1995
    [25] Luk S. Iron-based Powder Compositions Containing Green Strength Enhanceing Lubrication. US patent. No5429792,1995
    [26] Semel F J, Luk S. Method for Preparing Binder-Treated Metallurgical Powders Containing an Organic Lubrication. US patent. No5256185,1993
    [27] Warm compaction attracts scientific interest. Metal Powder Report, 1996,51(10):12
    [28] 亓家钟.铁基材料高密度温压工艺.粉末冶金工业,1996,6(2):14-18
    [29] 果世驹,林涛,魏延平,等.细磷铁粉的制备及其对铁粉温压行为的影响.粉末冶金技术,1997,15(1):14-17
    [30] 果世驹,林涛.温压压力强化因子及压制方程的唯象分析.粉末冶金技术,1998,16(3):165-168
    [31] 果世驹,林涛.侧压系数及压坯高径比对温压有效性的影响.粉末冶金工业,1998,8(4):7-10
    [32] Guo Shiju, Lin Tao, Li Mingyi. Predicting equation for adjusting
    
    glass temperature of binder used for P/M warm compaction processing. Journal of University of Science and Technology BeiJing, 1998,5(1):39-40
    [33] 张双益,李元元.温压工艺中聚合物添加剂的加入方式.金属成形工艺,1999,17(3):21-22
    [34] 项品峰,李元元,龙雁,等.聚合物加入方式对粉末冶金温压成形的影响.机械工程材料,2001,25(3):23-25
    [35] 张双益,李元元.铁基粉末冶金材料的温压工艺.机械工程材料,2000,24(1):26-28
    [36] Degoix C N, Griffo A, German R M. Effect of Lubrication Mode and Compaction Temperature on the Properties of Fe-Ni-Cu-Mo-C. The International Journal of Powder Metallurgy, 1998,34(2):29-33
    [37] Warm Compaction gathers pace. Metal Powder Report, 1997,52(2):10-12
    [38] QMP looks at high density products. Metal Powder Report, 1994,49(7/8):23
    [39] 韩凤麟.ANCORDENSE~(TM)温压工艺特性.粉末冶金技术,1995,13(4):294-296
    [40] 亓家钟.Ancordense温压工艺.粉末冶金工业,1995,5(1):14-16
    [41] Engstroem H, Johansson B. Metal powder composition for warm compaction and method for products. US patent. No. 5744433.1998
    [42] 林涛,果世驹,李明怡等.温压过程致密化机制探讨.北京科技大学学报,2000,22(2):131-133
    [43] 李明怡,果世驹,林涛,等.铁粉特性对温压生坯密度的影响.粉末冶金技术,2000,18(3):172-177
    [44] 李明怡,果世驹,康志君,等.不同金属粉末的温压行为.粉末冶金技术,2000,18(4):261-264
    [45] Robert F. Additional application of Cincinnati EL-TEMP~(TM) systems. Advance in Powder Metallurgy&Particulate Materials, 1995(2):2-3
    [46] Press Makers Signal Faith in Warm Compaction. MPR, 1994,49(7/8):24
    [47] 李元元,徐铮,倪东惠.产业化温压设备中的加热系统.粉末冶金工业,2000,10(6):14-18
    [48] Rutz G F, Murphy T F, Cimino T M. The Effect of microstructure on fatigue properties of high density ferrous P/M materials. Advances in Powder Metallurgy and Particulate Materials, 1994,5:135-155
    [49] Bocchini G F. Warm compaction of metal powders: why it works, why
    
    it requires a sophisticated engineering approach. Powder Metallurgy, 1999, 42 (2): 171-180
    [50] Capus J. Warm compacted Turbine Hub Leads New PM Thrust. Metal Powder Report, 1997,61(9):19
    [51] Warm Compaction Turbine Hub Earns Top Ferrous Prize from MPIF. Metal Powder Report, 1997, 7/8:12-14
    [52] 曹顺华,易建宏,奉东文,等.温压致密化机理及其在温压粉末设计中的应用.粉末冶金材料与工程,2001,6(3):199
    [53] 张双益.铁基粉末冶金材料温压制备技术及理论的研究:[工学博士学位论文].广州:华南理工大学,1999,6:88
    [54] 项品峰.铁基粉末冶金材料的温压致密化机理研究:[工学博士学位论文].广州:华南理工大学,2001,5:94-95
    [55] 张双益,李元元,徐铮,等.温压技术及其致密化机制的研究进展.材料科学与工程,1999,17(4):96-99
    [56] 李元元,项品峰,徐铮,等.温压技术中的致密化机制.材料科学与工程,2001:2001,19(1):39-42
    [57] Lothar Albano-Mvler.新千年初的欧洲粉末冶金.粉末冶金工业,2001,11(2):7-13
    [58] Peter J, Keith B G, Roger L. Densification strategies for high endurance P/M components. PMI, 1997,33(2):37-44
    [59] JPMA Awards Highlight PM's Innovative Strengths. MPR, 2000, 55(3):10
    [60] Skoglund P, Bengtsson S, Berstroem M. Material for warm compaction heavy truck transmission part. Advances in Powder Metallurgy and Particulate Materials, 2000,6:6-10
    [61] Gay D. Slot heater your short-out to warm compacting. Powder Metallurgy, 1996,39(1):13-17
    [62] Capus J. Warm Compaction Turbine Hub Leads new PM Thrust. MPR, 1997,61(9):19
    [63] Press makers signal faith in warm compaction. MPR, 1994,49(7/8):24
    [64] Engstroem U. Experience with Warm Compaction of Densmix Powders in the Production of Complex Parts. China-Sweden symposium on Powder Metallurgy, Changsha, P.R. China, 27-30March 2001
    [65] http://www. clima, org. cn/news_images/article/783, html. 2002.10. 10
    [66] Veltl G, Oppert A, Petzoldt F. Warm Flow Compaction Fasters More
    
    Complex PM Parts.Metal Powder Report,2001,56(2):26-28
    [67] 肖志瑜,柯美元,李元元,等.温压工艺最新进展—流动温压技术.粉末冶金工业,2002,12(5):28-32
    [68] PM Modnet Research Group. Numerical Simulation of Powder Compaction for Two Multilevel Ferrous Parts, Including Powder Characterisation and Experimental Validation. Powder Metallurgy, 2002, 4(45): 335-344
    [69] Aivain O, Doremus P, Bouvard D.[会议发言]. PM' 2000: world congress on powder metallurgy. 2000, Tokyo, Japan, Society of Powder and Powder Metallurgy
    [70] Doremus P, Pavier I. [会议发言]. PM' 98: world congress on powder metallurgy. 1998, Shrewsbury, EPMA
    [71] Ernst E, Thummler F, Beiss P, et al. Friction Measurement During Powder Compaction. Powder Metallurgy International, 1991, 23(2): 77~84
    [72] Doremus P, Pavier I, Kergadallan J, et al. Axisymmetric part compaction data base for numerical simulation. International Journal of Powder Metallurgy, 1999,35(3):63~69
    [73] Cocks A C E, Dihoru L, Lawrence L. [会议发言]. Proc EURO PM2001-European Congress on Powder Metallurgy. Nice: EPMA, 2001
    [74] Chuan-Yu Wu, Cocks C F, Gillia 0 T. Die filling and powder transfer. The international journal of powdermetallurgy, 2003,39(4):51-64
    [75] Kondoh M, Iakemoto S, Urata I. PM' 98: world congress on powder metallurgy. 1998, Shrewsbury, EPMA
    [76] Morimto Y, Hayashi T, Takei T. Mechanical Behavior of Powder during Compaction a Mold with Variable Cross Sections. The International Journal of Powder Metallurgy & Powder Technology, 1982,18(2):129-145
    [77] 陈火红.Marc有限元实例分析教程.北京:机械工业出版社,2002.271-272
    [78] 黄培云,金展鹏,陈振华.粉末冶金基础理论与新技术.长沙:中南工业大学出版社,1995:21-32.
    [79] 黄培云.粉末冶金原理,第二版.北京:冶金工业出版社,1997:173-195
    [80] Mars O. Dynamic properties of warm compacted high strength sintered steels. Advances in Powder Metallurgy & Particulate Materials, 1996, Part5, Volume2.171-180
    
    
    [81] 黄培云.粉末冶金原理,第二版.北京:冶金工业出版社,1997:205
    [82] Krezalek I C, Sivakumar K. Computational simulation of powder movement during uni-axial die compaction of metal powders. Journal of Materials Processing Technology, 1995, 48: 421-427
    [83] Oethin D T, Tran V D, Lewis R W, et al. An investigation of powder compaction processes. International Journal of Powder Metallurgy, 1994,30(4): 385-398
    [84] 王盘鑫.粉末冶金学.北京:冶金工业出版社,1997:120-124
    [85] 黄培云.粉末冶金原理,第二版.北京:冶金工业出版社,1997:130-131
    [86] 美国金属学位.粉末冶金.金属手册.第9版,第七卷.北京:机械工业出版社,1994:405-407
    [87] Hewitt R L, Wallace W, Malherbe M C. Plastic deformation in metal powder compaction. Powder Metallurgy, 1974,17(33):6-7
    [88] Fischmeister H F, Arzt E. Densification of powder by particulate deformation. Powder Metallurgy, 1983,26(2):82-88
    [89] Fischmeister H F, Arzt E, Olsson L R. Particulate deformed and sliding during compaction of spherical powder: A study by quantitative metallography. Powder Metallurgy, 1978,21(4): 179-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700