放电等离子烧结(SPS)制备细晶93W-5.6Ni-1.4Fe高比重合金
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
W-Ni-Fe高比重合金是典型的双相复合材料,主要应用于需求高密度领域,如配重块、穿甲弹弹芯和屏蔽材料等。传统液相烧结W-Ni-Fe合金由于钨晶粒粗大(约30~60μm)而不利于其综合性能的进一步提高。后续形变强化虽然可以在一定程度上提高合金的力学性能,但是考虑到材料的利用率、加工成本及变形量等,限制了其在民用和国防工业中的扩大应用。细化钨晶粒被证明是提高合金力学性能的最有效途径,随着钨晶粒尺寸的降低,合金的强度、硬度、韧性等都将有所改善。因此,研究制备高性能细晶W-Ni-Fe合金,具有重要的学术价值和实际意义。
     本文以93W-5.6Ni-1.4Fe元素混合粉末为原始材料,采用放电等离子烧结技术将其致密化,系统地研究了其烧结过程中的致密化与晶粒长大机制。以此为依据,开发了放电等离子循环烧结和瞬时液相烧结两种新的烧结工艺,最终获得了高性能细晶93W-5.6Ni-1.4Fe高比重合金。
     根据经典的烧结动力学、微观组织演变规律以及脉冲电场下粉末孔隙处的局部温度梯度,93W-5.6Ni-1.4Fe粉末的SPS过程可以划为三个阶段:SPS初期,主要为颗粒重排与烧结颈形成和长大,镍铁通过扩散形成γ-(Ni, Fe)固溶体,外加压应力和特有的“SPS效应”促进烧结颈形成和长大;SPS中期,粘性流动(W晶粒转动与滑移)辅助下的W在粘结相中的溶解-再沉析和W晶界扩散共同主导致密化与晶粒长大;SPS后期,致密化停滞而W晶粒迅速长大,其机制为气相扩散与溶解-再沉析。加热速率对93W-5.6Ni-1.4Fe粉末的SPS致密化和晶粒长大行为影响很大。提高加热速率可以增强粘性流动作用,增加粉末的致密化速率,促进粉末SPS后期的致密化并最小化表面扩散进而抑制钨晶粒长大。
     建立了两个不同加热速率阶段93W-5.6Ni-1.4Fe合金的放电等离子烧结MSC曲线。低加热速率阶段的MSC曲线可以准确预测93W-5.6Ni-1.4Fe粉末放电等离子烧结全过程的致密化行为,以及粉末压坯的收缩量和合金最终烧结密度。当加热速率过高时,由于宏观温差增大,其MSC曲线在预测合金的烧结密度上存在困难,但是仍能有效预测粉末的致密化趋势。
     采用放电等离子循环烧结制备了细晶93W-5.6Ni-1.4Fe高比重合金(钨晶粒尺寸小于9μm)。1400oC循环烧结有效改善了合金的钨晶粒形态、粘结相分布以及钨-粘结相界面的内聚力,降低了W-W连接度,合金的力学性能显著提高,具体表现为合金弯曲断裂后,钨晶粒解理断裂与粘结相撕裂增多,且在W-W分离界面上存在许多微区粘结相延性撕裂与钨-粘结相界面分离,有效阻止了裂纹的扩展。合金准静态室温压缩屈服强度与其微观组织,如钨晶粒大小、粘结相体积分数以及W-W连接度有关;其动态力学行为有明显改善,沿最大剪切应力平面存在约30μm的剪切变形区,但是循环烧结对钨晶粒形状的改善有限,削弱了其高应变速率下剪切变形区内钨晶粒的变形协调性,因此其绝热剪切带深度有限。
     通过有效控制SPS工艺(放电等离子瞬时液相烧结),制备了钨晶粒细小(钨晶粒尺寸约6μm)且呈球状的93W-5.6Ni-1.4Fe合金,其相对密度约为0.95,W-W连接度为0.53。与传统的液相烧结钨基高比重合金相比,放电等离子瞬时液相烧结合金的力学性能有明显提高,具体表现为准静态加载条件下具有高弯曲强度(约1580MPa)和高屈服强度(室温下约1050MPa和800oC高温下约640MPa),SPS改善了合金的界面性能,对屈服强度提供了一个额外的强化作用;动态加载条件下随着钨晶粒尺寸的减小,局部绝热剪切带变窄且扩展深度增加。细化球状钨晶粒有利于局部绝热剪切带的形成与扩展,提高穿甲侵彻过程的自锐化效应。
W-Ni-Fe heavy alloys are typical two phases composites used in the applicationsrequiring high density, such as counter weights, kinetic energy penetrators and radiationshields. Conventional liquid-phase sintered W-Ni-Fe alloys manifest a typical microstructurewhere coarsened spherical bcc tungsten grains are dispersed in a fcc Ni-Fe-W solid solutionmatrix. Further improvement of the mechanical properties is restricted. The performance isimproved to some extent after deformation. However,taken the material utilization, cost anddeformation degree, etc, into account, their expanded application in civilian and military fieldare confined. Tungsten grain refinment is proved to be the most effective approach to improvethe mechanical properties. The strength, hardness, toughness and other performances of thealloy will be improved with the decrease of tungsten grain size. For industrial applicationsand academic research, thus, it is of great interest to develop fine-grained W-Ni-Fe alloyswith high performance to meet the advanced requirements.
     The aims of this study are, first, to use the spark plasma sintering (SPS) method toprepare bulk93W-5.6Ni-1.4Fe heavy alloys from blended elemental powders and study theinfluence of various SPS parameters (sintering temperature, dwell duration and heating rate)on the densification and grain growth of the powders, and secondly to perform a formalsintering analysis, in order to help formulate a hypothesis concerning the mechanism(s) whichcontrols densification and grain growth. Regard the above as the basis, cyclic SPS andtransient liquid-phase SPS are developed and fine-grained93W-5.6Ni-1.4Fe heavy alloyswith enhanced performance are prepared successfully.
     Based on a detailed report on microstructure development and the local temperaturegradient in the vicinity of the pores, and by means of classical kinetics laws, the densificationand grain growth behavior are analyzed. The whole densification process can be roughlydivided into three stages. Particle rearrangement and neck formation and growth aredominating in the initial stage. The γ-(Ni, Fe) matrix phase has formed in this stage. Appliedpressure and particular “SPS effect” enhance the neck formation and growth. In theintermediate stage, dissolution-precipitation of W grains in the viscous matrix phase and Nienhanced grain boundary diffusion with viscous process (grain rotating and sliding) dominate the simultaneous densification and grain growth. During the final stage, grain growthpredominates and densification stagnates. The grain growth is controlled through both the gasphase diffusion and dissolution-precipitation mechanisms. Heating rate strongly influencedthe SPS densification and grain growth of93W-5.6Ni-1.4Fe heavy alloys. Higher heating rateincreases the viscous flow contribution to the densification, as well as the densification rate,resulting in an enhanced densification behavior at the SPS final stage. At the same time,coarsening induced by surface diffusion is minimized, and then grain growth is suppressed.
     Two master sintering curves (MSC) in different heating rate stage of93W-5.6Ni-1.4Feheavy alloys during SPS process are developed. The master sintering curve in low heating ratestage can accurately predict the densification behavior of93W-5.6Ni-1.4Fe heavy alloysduring SPS process, as well as the shrinkage and final density. In the high heating rate stage,the developed MSC is difficult in prediction of the final density of93W-5.6Ni-1.4Fe heavyalloys, resulting from the increase of macroscopic temperature difference. However, it can beused to predict the densification behavior of93W-5.6Ni-1.4Fe heavy alloys.
     Fine-grained93W-5.6Ni-1.4Fe heavy alloys are prepared by cyclic spark plasmasintering. Cyclic SPS at1400oC improves the tungsten grain morphology and the matrixdistribution, as well as the cohesion of tungsten-matrix interface, resulting in reduced W-Wcontiguities and enhanced performance of the alloys. The bending fracture is mainlycharacterized as tungsten-tungsten intergranular rupture, increased tungsten cleavage andmatrix rupture. Moreover, micro matrix ductile tearing and W-matrix separation at the W-Wseparated interfaces prevent the crack extension. Quasi-static compression yield strength atroom temperature of the93W-5.6Ni-1.4Fe heavy alloys is dependent on the microstructuralparameters such as tungsten grain size, matrix volume fraction and tungsten-tungstencontiguity. Dynamic mechanical behavior of the alloys is improved. Shear deformation zonealong the maximum shear stress plane is about30μm. However, the limited improvement ofthe tungsten grain morphology by Cyclic SPS weakens the deformation compatibility oftungsten grains within the shear deformation zone, and then the depth of the adiabatic shearband under high strain rate.
     Finer spherical tungsten grains (about6μm in diameter) were obtained by control of theSPS process (transient liquid-phase SPS). After SPS, the alloy shows a relative density of0.95 and tungsten-tungsten contiguity of0.53. Compared with conventional liquid-phase sinteredtungsten heavy alloys, transient liquid-phase SP-sintered93W-5.6Ni-1.4Fe heavy alloysexhibit high bending strength (about1580MPa), and high yield strength (about1050MPa atroom temperature and about640MPa at800oC), due to the fine-grained structure. SPS offersan additional strengthening effect on the yield strength of the93W-5.6Ni-1.4Fe heavy alloys.The dynamic performance of transient liquid-phase SP-sintered93W-5.6Ni-1.4Fe heavyalloys is improved. The width of local adiabatic shear band decreases with the tungsten grainsize, whereas the depth of local adiabatic shear band increases with the decrease of tungstengrain size. Therefore, spherical tungsten grain refinement is beneficial for the formation andextension of local adiabatic shear band, as well as the self sharpening behavior duringpenetration.
引文
[1]赵慕岳,王伏生,范景莲.我国钨基高比重合金的发展现状与展望[J].粉末冶金材料科学与工程,2000,5(1):27-32
    [2] Lee K.H., Cha S.I., Ryu H.J., et al. Effect of two-stage sintering process onmicrostructure and mechanical properties of ODS tungsten heavy alloy[J]. MaterialsScience and Engineering: A,2007,458(1):323-329
    [3] Islam S.H., Qu X., He X. Investigation of composition and microstructure effect onfracture behaviour of tungsten heavy alloys[J]. Powder Metallurgy,2007,50(1):11-13
    [4]赵慕岳,王伏生,梁容海.高比重合金在国防工业和民用工业中的应用[J].粉末冶金技术,1983,1(6):20-23
    [5]张存信,秦丽柏,米文宇,等.我国穿甲弹用钨合金研究的最新进展与展望[J].粉末冶金材料科学与工程,2006,11(3):127-132
    [6] Ekbom L.B. Tungsten heavy metals[J]. Scandinavian Journal of Metallurgy,1991,20(3):190-197
    [7] White G.D., Gurwell W.E. Freeze-dried tungsten heavy alloys[R]. Richland, WA (USA),Pacific Northwest Lab.,1989
    [8] Mulligan S., Dowding R.J. Sinterability of tungsten powder CVD coated with nickel andiron[R]. Watertown, WA, U.S. Army Mat. Tech. Lab.,1990
    [9] Aning A.O., Wang Z., Courtney T.H. Tungsten solution kinetics and amorphization ofnickel in mechanically alloyed Ni-W alloys[J]. Acta metallurgica materialia,1993,41(1):165-174
    [10]冉广,张中武,周敬恩.纳米钨合金块体材料的制备[J].中国稀土学报,2003,21(1):52-53
    [11]范景莲,曲选辉.高能球磨钨基高密度合金超细粉末的烧结[J].中南工业大学学报,1998,29(5):450-453
    [12]范景莲,黄伯云. W-Ni-Fe高比重合金纳米晶预合金粉的制备[J].粉末冶金技术,1999,17(2):89-93
    [13] Akhtar F. An investigation on the solid state sintering of mechanically alloyednano-structured90W-Ni-Fe tungsten heavy alloy[J]. International Journal of RefractoryMetals and Hard Materials,2008,26(3):145-151
    [14] Ryu H.J., Hong S.H., Baek W.H. Mechanical alloying process of93W-5.6Ni-1.4Fetungsten heavy alloy[J]. Journal of Materials Processing Technology,1997,63(1):292-297
    [15] Lu L., Lai M.O., Zhang S. Diffusion in mechanical alloying[J]. Journal of MaterialsProcessing Technology,1997,67(1):100-104
    [16]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006:239-253
    [17]马运柱,黄伯云,范景莲,等.离心式喷雾干燥制备纳米晶粉末的工艺原理及其影响因素[J].硬质合金,2002,19(3):173-176
    [18]马运柱,黄伯云,范景莲,等.纳米级(W, Ni, Fe)复合氧化物粉末的制备[J].矿冶工程,2004,24(4):65-67
    [19]张丽英,吴庆华.硬质合金用纳米级(W, Ni, Fe, V)系复合氧化物粉末的制备[J].金属学报,1999,35(2):152-154
    [20]张丽英,吴庆华.纳米级W-Ni-Fe-Y系硬质合金复合氧化物粉末的制备[J].粉末冶金工业,1998,8(6):23-26
    [21] Seegopaul P., McCandlish L.E., Shinneman F.M. Production capability and powderprocessing methods for nanostructured WC-Co powder[J]. International Journal ofRefractory Metals and Hard Materials,1997,15(1):133-138
    [22]陈庆华,曹自平,孙俊赛,等.溶胶-凝胶法在材料复合制备技术中的应用[J].有色金属,2001,53(2):71-76
    [23] Srikanth R., David L.B. Synthesis and evaluation of advanced nanocrystallinetungsten-based materials[J]. P/M Science and Technology Briefs,1999,1(1):9-14
    [24]吴悦梅,熊计,赖人铭.溶胶-凝胶法在硬质合金刀具制备技术中的应用[J].硬质合金,2007,24(2):124-128
    [25]曲选辉,毛金英,李志林. MIM工艺对W-Ni-Fe高密度合金力学性能的影响[J].稀有金属材料与工程,1999,28(3):166-170
    [26] Huang B., Fan J., Liang S., et al. The rheological and sintering behavior of W-Ni-Fenano-structured crystalline powder[J]. Journal of Materials Processing Technology,2003,137(1):177-182
    [27] Zu Y.S., Lin S.T. Optimizing the mechanical properties of injection moldedW-4.9%Ni-2.1%Fe in debinding[J]. Journal of Materials Processing Technology,1997,71(2):337-342
    [28]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006:298-302
    [29] Hong S.H., Ryu H.J. Combination of mechanical alloying and two-stage sintering of a93W-5.6Ni-1.4Fe tungsten heavy alloy[J]. Materials Science and Engineering A,2003,344(1):253-260
    [30]马金龙,童学锋,彭虎.烧结技术的革命——微波烧结技术的发展及现状[J].新材料产业,2001,6(11):30-32
    [31]范景莲,黄伯云,刘军,等.微波烧结原理与研究现状[J].粉末冶金工业,2004,14(1):29-33
    [32] Upadhyaya A., Tiwari S.K., Mishra P. Microwave sintering of W-Ni-Fe alloy[J]. ScriptaMaterialia,2007,56(1):5-8
    [33]彭元东,易健宏,吴彬,等.微波烧结W-Ni-Fe高比重合金及其机理研究[J].稀有金属材料与工程,2008,37(1):125-129
    [34]龙雁.纳、微米晶铁基粉末的电流烧结技术研究[D].广州:华南理工大学,2005
    [35]李汶霞,鲁燕萍,果世驹.等离子烧结与等离子活化烧结[J].真空电子技术,1998,1:17-23
    [36]Jung Y., Ha C., Shin J., et al. Fabrication of functionally graded ZrO2/NiCrAlYcomposites by plasma activated sintering using tape casting and it's thermal barrierproperty[J]. Materials Science and Engineering A,2002,323(1):110-118
    [37]高濂,宫本大树.放电等离子烧结技术[J].无机材料学报,1997,2(14):129-133
    [38] Groza J.R., Risbud S.H., Yamazaki K. Plasma activated sintering of additive-free AlNpowders to near-theoretical density in5minutes[J]. Journal of materials research,1992,7(10):2643-2645
    [39]张久兴,刘科高,周美玲.放电等离子烧结技术的发展和应用[J].粉末冶金技术,2002,20(3):129-134
    [40]张东明,傅正义.放电等离子加压烧结(SPS)技术特点及应用[J].武汉工业大学学报,1999,21(6):15-17
    [41]白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术,2007,25(3):217-223
    [42]罗锡裕.放电等离子烧结材料的最新进展[J].粉末冶金工业,2001,11(6):7-16
    [43]杨俊逸,李小强,郭亮,等.放电等离子烧结(SPS)技术与新材料研究[J].材料导报,2006,20(6):94-97
    [44] Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by sparkplasma sintering[J]. Materials Science Forum,1999,308-311:83-88
    [45] Song X., Liu X., Zhang J. Neck Formation and Self-Adjusting Mechanism of NeckGrowth of Conducting Powders in Spark Plasma Sintering[J]. Journal of the AmericanCeramic Society,2006,89(2):494-500
    [46]梅雪珍,贾成厂,尹法章,等. W-Ni-Fe高比重合金的SPS烧结行为[J].北京科技大学学报,2007,29(5):475-478
    [47]郑峰.高密度钨合金的电流烧结技术研究[D].广州:华南理工大学,2008
    [48]辛红伟.高密度W-9.8Ni-4.2Fe合金的放电等离子烧结(SPS)技术研究[D].广州:华南理工大学,2010
    [49]米格兰比H.材料的塑性变形与断裂[M].颜鸣皋译.北京:科学出版社,1998:167-213
    [50] Luo A., Shin K.S., Jacobson D.L. Effects of thoria particles on the high-temperaturetensile properties of a W-26wt.%Re alloy[J]. Materials Science and Engineering A,1992,150(1):67-74
    [51] Hsu C., Lin S. Coalescence of tungsten grains around molybdenum grains in thepresence of a liquid phase[J]. Scripta materialia,2002,46(12):869-873
    [52] Kemp P.B., German R.M. Mechanical properties of molybdenum alloyed liquidphase-sintered tungsten-based composites[J]. Metallurgical and Materials TransactionsA,1995,26(8):2187-2189
    [53]范景莲,赵慕岳.钼对钨基合金砧块性能的影响[J].粉末冶金技术,1993,11(2):119-124
    [54] Bose A., German R.M. Microstructural refinement of W-Ni-Fe heavy alloys by alloyingadditions[J]. Metallurgical and Materials Transactions A,1988,19(12):3100-3103
    [55] Liu M., Cowley J. Particle/dislocation interactions in a dispersion strengthened tungstenalloy at ultrahigh temperatures[J]. Scripta metallurgica materialia,1993,28(3):307-312
    [56] Luo A., Shin K.S., Jacobson D.L. High temperature tensile properties of W-Re-ThO2alloys[J]. Materials Science and Engineering A,1991,148(2):219-229
    [57] Park S., Kim D., Lee S., et al. Dynamic deformation behavior of an oxide-dispersedtungsten heavy alloy fabricated by mechanical alloying[J]. Metallurgical and materialstransactions A,2001,32(8):2011-2020
    [58] Ryu H.J., Hong S.H. Fabrication and properties of mechanically alloyed oxide-dispersedtungsten heavy alloys[J]. Materials Science and Engineering A,2003,363(1):179-184
    [59] Shin K.S., Luo A., Chen B., et al. High-temperature properties of particle-strengthenedW-Re[J]. Journal of the Minerals Metals and Materials Society,1990,42(8):12-15
    [60]王玉金,宋桂明,周玉,等.合金元素及第二相对钨的影响[J].宇航材料工艺,1998,23(5):11-18
    [61]王玉金,宋桂明,周玉,等.合金元素及第二相对钨的影响[J].宇航材料工艺,1998,23(6):13-15
    [62] Wu G.C., You Q., Wang D. Influence of the addition of Lanthanum on a W-Mo-Ni-Feheavy alloy[J]. International Journal of Refractory Metals and Hard Materials,1999,17(4):299-304
    [63] Hong S.H., Kang S.L., Yoon D.N. High toughness tungsten based heavy alloycontaining La and Ga manufacturing thereof[P]. U.S.:5306364,1994, Apr.26
    [64]冯庆芬,丁华东,方民宪,等. La、Ce对93W-Ni-Fe合金动态拉伸性能的影响[J].兵器材料科学与工程,2003,26(3):7-10
    [65]王换玉,才鸿年,李刚,等.液力挤压法制备新型钨合金穿甲弹芯材料技术[J].金属成形工艺,2003,5:35-36
    [66]李志,杨蕴林.高比重钨合金的旋锻形变强化[J].兵器材料科学与工程,1998,21(2):56-59
    [67]张朝晖,王富耻,李树奎,等.高比重钨合金的静液挤压强化[J].兵器材料科学与工程,2000,23(4):28-32
    [68] Bentley A.R., Hogwood M.C., Power M. Microstructural aspects of highly deformedtungsten heavy alloys[A]. Bose A. Tungsten and Refractory Metals[C]. Princeton, NJ:MPIF,1994:145-156
    [69] Zhang Z., Wang F., Li S., et al. Deformation characteristics of the93W-4.9Ni-2.1Fetungsten heavy alloy deformed by hydrostatic extrusion[J]. Materials Science andEngineering A,2006,435-436(5):632-637
    [70] Sudarshan T.S.表面改性技术工程师指南[M].范玉殿译.北京:清华大学出版社,1993:380
    [71] Pehlivanturk N.Y., Inal O.T. Ion nitriding[M]. Metals Park, OH: ASM Int.,1987:179-183
    [72] Eroglu S., Ekren H., Baykara T. Surface hardening of tungsten heavy alloys[J]. Scriptamaterialia,1997,38(1):131-136
    [73]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006:52
    [74] German R.M., Hanafee J.E., DiGiallonardo S.L. Toughness variation with testtemperature and cooling rate for liquid phase sintered W-3.5Ni-1.5Fe[J]. MetallurgicalTransactions A,1984,15(1):121-128
    [75]范爱国,师一华.国外弹用高性能钨重合金研究进展[J].兵器材料科学与工程,1999,22(1):45-48
    [76] Gurwell W.E. A Review of Embrittlement Mechanisms in Tungsten Heavy Alloys[R].Richland, WA: Pacific Northwest Laboratory,1986
    [77] German R.M., Bose A., Kemp P.B., et al. Additive effects on the microstructure andproperties of tungsten heavy-alloy composites[J]. Advance in Powder Metallurgy,1989,1:401-413
    [78] German R.M. Liquid phase sintering[M]. Princeton, NJ: Plenum Publishing Corporation,1985:112-138
    [79]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006:62-63.
    [80]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006:72.
    [81] Kim D., Lee S., Noh J. Dynamic and quasi-static torsional behavior of tungsten heavyalloy specimens fabricated through sintering, heat-treatment, swaging and aging[J].Materials Science and Engineering A,1998,247(1):285-294
    [82]唐长国,朱金华,周惠久.应变率对钨合金抗拉强度及断口形貌的影响[J].稀有金属,1996,20(6):22-25
    [83]杨扬,程信林.绝热剪切的研究现状及发展趋势[J].中国有色金属学报,2002,12(3):401-408
    [84]魏志刚,李永池,李剑荣,等.冲击载荷作用下钨合金材料绝热剪切带形成机理[J].金属学报,2000,36(12):1263-1268
    [85] Bose A., German R.M. Sintering atmosphere effects on tensile properties of heavyalloys[J]. Metallurgical Transactions A,1988,19(10):2467-2476
    [86] German R.M., Bose A., Mani S.S. Sintering time and atmosphere influences on themicrostructure and mechanical properties of tungsten heavy alloys[J]. MetallurgicalTransactions A,1992,23(1):211-219
    [87] Ryu H.J., Hong S.H., Baek W.H. Microstructure and mechanical properties ofmechanically alloyed and solid-state sintered tungsten heavy alloys[J]. MaterialsScience and Engineering A,2000,291(1):91-96
    [88] Edmonds D.V., Jones P.N. Interfacial embrittlement in liquid-phase sintered tungstenheavy alloys[J]. Metallurgical Transactions A,1979,10(3):289-295
    [89] Muddle B.C. Interphase boundary precipitation in liquid phase sintered W-Ni-Fe andW-Ni-Cu alloys[J]. Metallurgical Transactions A,1984,15(6):1089-1098
    [90] Posthill J.B., Edmonds D.V. Matrix and interfacial precipitation in the W-Ni-Fesystem[J]. Metallurgical Transactions A,1986,17(11):1921-1934
    [91] Chiou Y.H., Zu Y.S., Lin S.T. Structural evolution of matrix phase for liquid phasesintered93W-4.9Ni-2.1Fe[J]. Journal of Materials Science,1996,31(15):4039-4046
    [92] Lea C., Muddle B.C., Edmonds D.V. Segregation to interphase boundaries in liquidphase sintered tungsten alloys[J]. Metallurgical Transactions A,1983,14(3):667-677
    [93] Ai J., He F. X-ray photoelectron spectroscopy and scanning auger microprobe studies onoxidation-induced embrittlement mechanism of liquid-phase-sintered95W-Ni-Fealloy[J]. Metallurgical and Materials Transactions A,2003,34(2):355-359
    [94] Fortuna E., Sikorski K., Kurzydlowski K.J. Experimental studies of oxygen and carbonsegregation at the interfacial boundaries of a90W-7Ni-3Fe tungsten heavy alloy[J].Materials characterization,2004,52(4):323-329
    [95] German R.M, Churn K.S. Sintering atmosphere effects on the ductility of W-Ni-Feheavy metals[J]. Metallurgical Transactions A,1984,15(4):747-754
    [96] Bose A., Sims D., German R.M. Test temperature and strain rate effects on theproperties of a tungsten heavy alloy[J]. Metallurgical Transactions A,1988,19(3):487-494
    [97] O'Donnell R.G., Alkemade S.J., Woodward R.L. Effect of sinter duration on themechanical properties of a tungsten alloy[J]. Journal of Materials Science,1992,27(23):6490-6494
    [98] O'Donnell R.G, Woodward R.L. Influence of temperature on the fracture of a W-Ni-Fealloy[J]. Journal of Materials Science,2000,35(17):4319-4324
    [99] Zhu Y.B., Wang Y., Zhang X.Y., et al. W/NiFe phase interfacial characteristics ofliquid-phase sintered W-Ni-Fe alloy[J]. International Journal of Refractory Metals andHard Materials,2007,25(4):275-279
    [100] German R.M. Sintering Theory and Practice[M]. New York, NY: John Wiley&Sons,1996:78-95
    [101] Fan J.L., Wang B.Y., Qu H.X. W-Ni-Fe nanostructure materials synthesized by highenergy ball milling[J]. Transactions of Nonferrous Metals Society of China,2000,10(1):57-59
    [102] Gurwell W.E. Solid-state sintering of tungsten heavy alloys[J]. Material andManufacturing Process,1994,9(6):1115-1126
    [103] Sylvia T.H., Thomas H., Theador S. Taylor-made tungsten heavy alloy by solid statesintering of pre-alloyed powder and subsequent add working[A]. Bose A., Dowding R.J.Tungsten Refract Met-1994[C]. Princeton, NJ: MPIF,1995:169-176
    [104] Hong S., Kang S.L., Yoon D.N., et al. The reduction of the interfacial segregation ofphosphorus and its embrittlement effect by lanthanum addition in a W-Ni-Fe heavyalloy[J]. Metallurgical Transactions A,1991,22(12):2969-2974
    [105] Zhou C., Yi J., Luo S., et al. Effect of heating rate on the microwave sintered W-Ni-Feheavy alloys[J]. Journal of Alloys and Compounds,2009,482(1): L6-L8
    [106] Mondal A., Agrawal D., Upadhyaya A. Microwave Sintering of RefractoryMetals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe Alloys[J]. Journal ofMicrowave Power and Electromagnetic Energy,2010,44(1):28-44
    [107] Mondal A., Upadhyaya A., Agrawal D. Microwave and conventional sintering of90W-7Ni-3Cu alloys with premixed and prealloyed binder phase[J]. Materials Scienceand Engineering A,2010,527(26):6870-6878
    [108] Mondal A., Upadhyaya A., Agrawal D. Effect of heating mode and sinteringtemperature on the consolidation of90W-7Ni-3Fe alloys[J]. Journal of Alloys andCompounds,2011,509(2):301-310
    [109] Li X., Xin H., Hu K., et al. Microstructure and properties of ultra-fine tungsten heavyalloys prepared by mechanical alloying and electric current activated sintering[J].Transactions of Nonferrous Metals Society of China,2010,20(3):443-449
    [110] Groza J.R. Field activation provides improved sintering[J]. Metal Powder Report,2000,55(7):16-18
    [111] Kandukuri S. A FAST winner for fully dense nano powders[J]. Metal Powder Report,2008,63(10):22-27
    [112] R thel J., Herrmann M., Beckert W. Temperature distribution for electricallyconductive and non-conductive materials during field assisted sintering (FAST)[J].Journal of the European Ceramic Society,2009,29(8):1419-1425
    [113] Zavaliangos A., Zhang J., Krammer M., et al. Temperature evolution during fieldactivated sintering[J]. Materials Science and Engineering A,2004,379(1):218-228
    [114] Park S.J., Martin J.M., Guo J.F., et al. Grain growth behavior of tungsten heavy alloysbased on the master sintering curve concept[J]. Metallurgical and MaterialsTransactions A,2006,37(11):3337-3346
    [115] E112-96, Standard Test Methods for Determining Average Grain Size[S]. Philadelphia,PA: ASTM,1996
    [116] Anselmi-Tamburini U., Garay J.E., Munir Z.A. Fundamental investigations on the sparkplasma sintering/synthesis process: III. Current effect on reactivity[J]. MaterialsScience and Engineering A,2005,407(1):24-30
    [117] Aman Y., Garnier V., Djurado E. Pressure-less spark plasma sintering effect onnon-conventional necking process during the initial stage of sintering of copper andalumina[J]. Journal of Materials Science,2012,47(15):5766-5773
    [118] Cordier A., Kleitz M., Steil M.C. Welding of yttrium-doped zirconia granules byelectric current activated sintering (ECAS): Protrusion formation as a possibleintermediate step in the consolidation mechanism[J]. Journal of the European CeramicSociety,2012,32(8):1473-1479
    [119] Demirskyi D., Borodianska H., Agrawal D., et al. Peculiarities of the neck growthprocess during initial stage of spark-plasma, microwave and conventional sintering ofWC spheres[J]. Journal of Alloys and Compounds,2012,523(15):1-10
    [120] Frei J.M., Anselmi-Tamburini U., Munir Z.A. Current effects on neck growth in thesintering of copper spheres to copper plates by the pulsed electric current method[J].Journal of applied physics,2007,101(11):114914-114921
    [121] Toyofuku N., Kuramoto T., Imai T., et al. Effect of pulsed DC current on neck growthbetween tungsten wires and tungsten plates during the initial stage of sintering by thespark plasma sintering method[J]. Journal of Materials Science,2012,47(5):2201-2205
    [122] Park S.J., German R.M., Martin J.M., et al. Densification behavior of tungsten heavyalloy based on master sintering curve concept[J]. Metallurgical and MaterialsTransactions A,2006,37(9):2837-2848
    [123] Chausse C., Nardou F. Evolution of the microstructure in a W alloy during sinteringbefore the formation of a liquid phase[J]. Materials at high temperatures,1999,16(1):37-41
    [124] Gendre M., Ma tre A., Trolliard G. A study of the densification mechanisms duringspark plasma sintering of zirconium (oxy-) carbide powders[J]. Acta Materialia,2010,58(7):2598-2609
    [125] Hulbert D.M., Anders A., Andersson J., et al. A discussion on the absence of plasma inspark plasma sintering[J]. Scripta Materialia,2009,60(10):835-838
    [126] Langer J., Hoffmann M.J., Guillon O. Direct comparison between hot pressing andelectric field-assisted sintering of submicron alumina[J]. Acta Materialia,2009,57(18):5454-5465
    [127] Langer J., Hoffmann M.J., Guillon O. Electric Field-Assisted Sintering in Comparisonwith the Hot Pressing of Yttria-Stabilized Zirconia[J]. Journal of the American CeramicSociety,2011,94(1):24-31
    [128] Langer J., Hoffmann M.J., Guillon O. Electric Field‐Assisted Sintering and HotPressing of Semiconductive Zinc Oxide: A Comparative Study[J]. Journal of theAmerican Ceramic Society,2011,94(8):2344-2353
    [129] Kang S.L. Sintering: densification, grain growth and microstructure[M]. Oxford U.K.:Elsevier Butterworth-Heinemann,2005:39-56
    [130] Coble R.L. Diffusion models for hot pressing with surface energy and pressure effectsas driving forces[J]. Journal of Applied Physics,1970,41(12):4798-4807
    [131] Wang K, Fu Z., Wang W., et al. Study on fabrication and mechanism in of porousmetals by spark plasma sintering[J]. Journal of Materials Science,2007,42(1):302-306
    [132] Demirskyi D., Borodianska H., Grasso S., et al. Microstructure evolution duringfield-assisted sintering of zirconia spheres[J]. Scripta Materialia,2011,65(8):683-686
    [133] Anderson K.R., Groza J.R., Fendorf M., et al. Surface oxide debonding in field assistedpowder sintering[J]. Materials Science and Engineering: A,1999,270(2):278-282
    [134] Groza J.R., Zavaliangos A. Sintering activation by external electrical field[J]. MaterialsScience and Engineering A,2000,287(2):171-177
    [135] Munir Z.A., Quach D.V., Ohyanagi M. Electric current activation of sintering: a reviewof the pulsed electric current sintering process[J]. Journal of the American CeramicSociety,2011,94(1):1-19
    [136] Rahaman M.N. Ceramics Processing and Sintering[M]. New York, NY: Marcel Dekker,2003:514-539
    [137] Stanciu L.A., Kodash V.Y., Groza J.R. Effects of heating rate on densification and graingrowth during field-assisted sintering of α-Al2O3and MoSi2powders[J]. Metallurgicaland Materials Transactions A,2001,32(10):2633-2638
    [138] Olevsky E.A., Froyen L. Impact of thermal diffusion on densification during SPS[J].Journal of the American Ceramic Society,2009,92(s1): S122-S132
    [139] Wilthan B., Cagran C., Pottlacher G. Combined DSC and pulse-heating measurementsof electrical resistivity and enthalpy of tungsten, niobium, and titanium[J]. InternationalJournal of Thermophysics,2005,26(4):1017-1029
    [140] White G.K., Collocott S.J. Heat Capacity of Reference Materials, Cu and W[J]. Journalof Physical and Chemical Reference Data,1984,13:1251-1257
    [141] Chaim R., Marder-Jaeckel R., Shen J.Z. Transparent YAG ceramics by surfacesoftening of nanoparticles in spark plasma sintering[J]. Materials Science andEngineering A,2006,429(1):74-78
    [142] Moon I., Kim K., Oh S., et al. Nickel-enhanced grain growth in tungsten wire[J].Journal of Alloys and Compounds,1993,201(1):129-137
    [143] Kang S.L. Sintering: densification, grain growth and microstructure[M]. Oxford, U.K.:Elsevier Butterworth-Heinemann,2004:145-162
    [144] German R.M. Sintering theory and practice[M]. New York, NY: John Wiley&Sons,1996:482
    [145] Zhou Y., Hirao K., Yamauchi Y., et al. Densification and grain growth in pulse electriccurrent sintering of alumina[J]. Journal of the European Ceramic Society,2004,24(12):3465-3470
    [146] Shen Z., Johnsson M., Zhao Z., et al. Spark plasma sintering of alumina[J]. Journal ofthe American Ceramic Society,2002,85(8):1921-1927
    [147] Kim B., Hiraga K., Morita K., et al. Effects of heating rate on microstructure andtransparency of spark-plasma-sintered alumina[J]. Journal of the European CeramicSociety,2009,29(2):323-327
    [148] Zhang Z., Wang F., Wang L., et al. Ultrafine-grained copper prepared by spark plasmasintering process[J]. Materials Science and Engineering: A,2008,476(1):201-205
    [149] Ohser-Wiedemann R., Martin U., Seifert H.J., et al. Densification behaviour of puremolybdenum powder by spark plasma sintering[J]. International Journal of RefractoryMetals and Hard Materials,2010,28(4):550-557
    [150] Kodash V.Y., Groza J.R., Cho K.C., et al. Field-assisted sintering of Ni nanopowders[J].Materials Science and Engineering A,2004,385(1):367-371
    [151] Olevsky E.A., Kandukuri S., Froyen L. Consolidation enhancement in spark-plasmasintering: Impact of high heating rates[J]. Journal of applied physics,2007,102(11):114913-114924
    [152] Chu M.Y., Rahaman M.N., Jonghe L.C., et al. Effect of heating rate on sintering andcoarsening[J]. Journal of the American Ceramic Society,1991,74(6):1217-1225
    [153] Zhang J. Numerical simulation of thermoelectric phenomena in field activatedsintering[D]. Philadelphia: Drexel University,2004
    [154] Vanmeensel K., Laptev A., Hennicke J., et al. Modelling of the temperature distributionduring field assisted sintering[J]. Acta Materialia,2005,53(16):4379-4388
    [155] Wang X., Casolco S.R, Xu G., et al. Finite element modeling of electriccurrent-activated sintering: The effect of coupled electrical potential, temperature andstress[J]. Acta Materialia,2007,55(10):3611-3622
    [156] Anselmi-Tamburini U., Gennari S., Garay J.E., et al. Fundamental investigations on thespark plasma sintering/synthesis process: II. Modeling of current and temperaturedistributions[J]. Materials Science and Engineering A,2005,394(1):139-148
    [157] Villars P., Prince A., Okamoto H. Handbook of Ternary Alloy Phase Diagrams[M].Materials Park, OH: ASM INTERNATIONAL,1997:10670
    [158] Lee J.S., Moon I.H. The dependence of solid state sintering of W-Ni powder compacton Ni concentration[J]. Scripta metallurgica,1987,21(9):1175-1178
    [159] Smith J.T. Diffusion Mechanism for the Nickel-Activated Sintering of Molybdenum[J].Journal of Applied Physics,1965,36(2):595-598
    [160] Heaney D.F., German R.M., Ahn I.S. The gravitational effects on low solid-volumefraction liquid-phase sintering[J]. Journal of Materials Science,1995,30(22):5808-5812
    [161] Johnson J.L., German R.M. Solid-state contributions to densification during liquidphase sintering[J]. Metallurgical and Materials Transactions B,1996,27(6):901-909
    [162] Vasilos T., Smith J.T. Diffusion mechanism for tungsten sintering kinetics[J]. Journalof Applied Physics,1964,35(1):215-217
    [163] Garay J.E. Current-activated, pressure-assisted densification of materials[J]. AnnualReview of Materials Research,2010,40:445-468
    [164] Coble R.L. Sintering crystalline solids. I. Intermediate and final state diffusionmodels[J]. Journal of Applied Physics,1961,32(5):787-792
    [165] Gao Z., Viola G., Milsom B., et al. Kinetics of Densification and Grain Growth of PureTungsten During Spark Plasma Sintering[J]. Metallurgical and Materials TransactionsB,2012,43(6):1608-1614
    [166] Hansen J.D., Rusin R.P., Teng M.H., et al. Combined-Stage Sintering Model[J]. Journalof the American Ceramic Society,1992,75(5):1129-1135
    [167] Su H., Johnson D.L. Master sintering curve: a practical approach to sintering[J]. Journalof the American Ceramic Society,1996,79(12):3211-3217
    [168] Ewsuk K.G., Ellerby D.T., DiAntonio C.B. Analysis of nanocrystalline andmicrocrystalline ZnO sintering using master sintering curves[J]. Journal of theAmerican Ceramic Society,2006,89(6):2003-2009
    [169] Kutty T., Khan K.B., Hegde P.V., et al. Development of a master sintering curve forThO2[J]. Journal of Nuclear Materials,2004,327(2):211-219
    [170] Mazaheri M., Simchi A., Dourandish M., et al. Master sintering curves of a nanoscale3Y-TZP powder compacts[J]. Ceramics International,2009,35(2):547-554
    [171] Blaine D.C., Gurosik J.D., Park S.J., et al. Master sintering curve concepts as applied tothe sintering of molybdenum[J]. Metallurgical and materials transactions A,2006,37(3):715-720
    [172] Blaine D.C., Park S.J., German R.M., et al. Application of work-of-sintering conceptsin powder metals[J]. Metallurgical and Materials Transactions A,2006,37(9):2827-2835
    [173] Markovi S., Uskokovi D. The master sintering curves for BaTi0.975Sn0.025O3/BaTi0.85Sn0.15O3functionally graded materials[J]. Journal of the European CeramicSociety,2009,29(11):2309-2316
    [174] An K., Johnson D.L. The pressure-assisted master sintering surface[J]. Journal ofMaterials Science,2002,37(21):4555-4559
    [175] An K., Han M.K. Microstructural evolution based on the pressure-assisted mastersintering surface[J]. Materials Science and Engineering A,2005,391(1):66-70
    [176] Guillon O., Langer J. Master sintering curve applied to the Field-Assisted SinteringTechnique[J]. Journal of Materials Science,2010,45(19):5191-5195
    [177] Enneti R.K., Bothara M.G., Park S., et al. Development of master sintering curve forfield-assisted sintering of HfB2-20SiC[J]. Ceramics International,2012,38(5):4369-4372
    [178] German R.M. Handbook of mathematical relations in particulate materials processing
    [M]. New York, NY: John Wiley&Sons,2008:52-53
    [179] Furukawa M., Horita Z., Nemoto M., et al. Microhardness measurements and theHall-Petch relationship in an Al-Mg alloy with submicrometer grain size[J]. Actamaterialia,1996,44(11):4619-4629
    [180]黄建忠,李晋尧,周保辉. W-Ni-Cu重合金液相烧结过程的电子显微断口研究[J].稀有金属材料与工程,1985,6:1-4.
    [181] Noh J., Kim E., Song H., et al. Matrix penetration of W/W grain boundaries and itseffect on mechanical properties of93W-5.6Ni-1.4Fe heavy alloy[J]. MetallurgicalTransactions A,1993,24(11):2411-2416
    [182] Noh J., Hong M., Kim G., et al. The cause of matrix penetration of W/W grainboundaries during heat treatment of W-Ni-Fe heavy alloy[J]. Metallurgical andMaterials Transactions A,1994,25(12):2828-2831
    [183] Smithells C.J. Metal Reference Book[M]. London: Butterworth and Co.,1967:687
    [184] German R.M., Bourguignon L.L., Rabin B.H. Microstructure limitations of hightungsten content heavy alloys[J]. Journal of the Minerals Metals and Materials Society,1985,37(8):36-39
    [185] Fan J., Liu T., Chen H., et al. Preparation of fine grain tungsten heavy alloy with highproperties by mechanical alloying and yttrium oxide addition[J]. Journal of MaterialsProcessing Technology,2008,208(1):463-469
    [186] Lee K.H., Cha S.I., Ryu H.J., et al. Effect of oxide dispersoids addition on mechanicalproperties of tungsten heavy alloy fabricated by mechanical alloying process[J].Materials Science and Engineering A,2007,452-453:55-60
    [187] Gong X., Fan J.L., Huang B.Y., et al. Microstructure characteristics and a deformationmechanism of fine-grained tungsten heavy alloy under high strain rate compression[J].Materials Science and Engineering A,2010,527(29):7565-7570
    [188]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006:65
    [189] Kim D., Lee S., Song H. Effects of tungsten particle shape and size on dynamicdeformation and fracture behavior of tungsten heavy alloys[J]. Metals and Materials,1998,4(3):508-515
    [190] Ramesh K.T., Coates R.S. Microstructural influences on the dynamic response oftungsten heavy alloys[J]. Metallurgical Transactions A,1992,23(9):2625-2630
    [191] Fressengeas C., Molinari A. Instability and localization of plastic flow in shear at highstrain rates[J]. Journal of the Mechanics and Physics of Solids,1987,35(2):185-211
    [192] Hong S.H., Ryu H.J., Baek W.H. Matrix pools in a partially mechanically alloyedtungsten heavy alloy for localized shear deformation[J]. Materials Science andEngineering A,2002,333(1):187-192
    [193] Lankford Jr J. High Strain Rate Damage Development and Failure Mechanisms inTungsten Heavy Alloys[R]. San Antonio, TX: Southwest Research Inst.,1992
    [194] Lee W., Lin C., Xiea G. Dynamic shear deformation and failure behaviour of purepolycrystalline tungsten[J]. Materials Science and Engineering: A,1998,247(1):102-112
    [195] Jung S., Kang S.L., Lee S., et al. Control of surface carburization and improvement ofdynamic fracture behavior in tungsten heavy alloys[J]. Metallurgical and MaterialsTransactions A,2002,33(4):1213-1219
    [196] Rittel D., Weisbrod G. Dynamic fracture of tungsten base heavy alloys[J]. InternationalJournal of Fracture,2001,112(1):87-98
    [197] Kim D., Lee S., Ryu H.J., et al. Correlation of microstructure with dynamic deformationbehavior and penetration performance of tungsten heavy alloys fabricated bymechanical alloying[J]. Metallurgical and Materials Transactions A,2000,31(10):2475-2489
    [198] Wei Z., Yu J., Hu S., et al. Influence of microstructure on adiabatic shear localization ofpre-twisted tungsten heavy alloys[J]. International Journal of Impact Engineering,2000,24(6):747-758
    [199] T. Weerasooriya P M R D. Effect of W-W contiguity on the high shear strain ratebehavior of93W-5Ni-2Fe tungsten heavy alloy[A]. Bose A., Dowding R.J. Proceedingsof the2nd International Conference on Tungsten and Refractory Metals[C], Mclean,VA: Metal Powder Industries Federation,1994:401-409
    [200] Bose A. H C J J. Influence of microstructure on shear localization in tungsten heavyalloys[A]. Bose A., Dowding R.J. Proceedings of the1st International Conference onTungsten and Tungsten Alloys[C], Mclean, VA: Metal Powder Industries Federation,1992:291-298
    [201] Zhou X., Li S., Liu J., et al. Self-sharpening behavior during ballistic impact of thetungsten heavy alloy rod penetrators processed by hot-hydrostatic extrusion and hottorsion[J]. Materials Science and Engineering: A,2010,527(18):4881-4886
    [202] German R.M. The contiguity of liquid phase sintered microstructures[J]. MetallurgicalTransactions A,1985,16(7):1247-1252
    [203] Rabin B.H., German R.M. Microstructure effects on tensile properties oftungsten-nickel-iron composites[J]. Metallurgical Transactions A,1988,19(6):1523-1532
    [204] Clayton J.D. Continuum multiscale modeling of finite deformation plasticity andanisotropic damage in polycrystals[J]. Theoretical and Applied Fracture Mechanics,2006,45(3):163-185
    [205] Clayton J.D. Dynamic plasticity and fracture in high density polycrystals: constitutivemodeling and numerical simulation[J]. Journal of the Mechanics and Physics of Solids,2005,53(2):261-301
    [206] Armstrong R.W., Codd I., Douthwaite R.M., et al. The plastic deformation ofpolycrystalline aggregates[J]. Philosophical Magazine,1962,7(73):45-58
    [207] Das J., Appa Rao G., Pabi S.K., et al. Deformation behaviour of a newer tungsten heavyalloy[J]. Materials Science and Engineering A,2011,528(19):6235-6247
    [208] Das J., Appa Rao G., Pabi S.K. Microstructure and mechanical properties of tungstenheavy alloys[J]. Materials Science and Engineering A,2010,527(29):7841-7847
    [209]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006:71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700