金属粉末高致密化成形及其数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉末冶金零部件已广泛用于机械、汽车、电子、自动化等领域,市场前景非常广阔。但孔隙的存在显著影响着粉末冶金制品性能,也增加了精密成形的难度,而传统的粉末压制制品相对密度一般小于90%,如何获得高密度高性能的粉末冶金制品成为目前粉末冶金行业的发展方向和研究重点。有限元数值模拟技术可以快捷、有效、详细的对粉末成型致密化过程进行研究。故此本文就粉末高致密化成型技术致密化机理、多孔材料力学性能与密度的关系以及粉末成型有限元数值模拟进行研究:
     (1)分析了粉末温压工艺关键要素—粉末模具控制温度和压制力对粉末温压致密化的影响,设计了电阻式加热控温的方法,验证了该加热控温方法的有效性。研究了铁基合金温压粉末在不同温度下流动性,获得温压过程中粉末控制温度范围。分析粉末和模具温度以及压制力变化对制品密度变化影响规律,得出了最佳温压工艺路线,分析了粉末温压成形致密化机理。
     (2)分析了电磁感应加热技术在粉末温压工艺中应用,设计了电磁感应温压加热控温系统,验证了电磁感应加热加热和控制温度的有效性。试验结果显示,电磁感应加热技术可以快速、精确、有效性的控制模具温度,成功地将电磁感应加热技术应用于金属粉末温压工艺,温压试验结果显示电磁感应加热温压加热系统可以获得了较高密度的粉末制品,磁化对致密化没有影响。
     (3)采用冲击锤法和分离式霍普金森高速撞击试验两种方法对铁基合金粉末(Distaloy4600A)和纯钛粉末(Ti-Dupont)高速成形变形过程进行了分析。利用National Instruments公司生产的数据采集模块(SCXI-1520和SCXI-1314)和采集软件Labview,编写了应变信息采集程序,研究了粉末高速成形过程模具变形特征。对于冲击锤法,研究了冲击锤高度和重量、粉末类型和质量、不同压制工艺等对高速成形制品密度的影响。对于分离式霍普金森高速撞击试验,分析了不同撞击压力下粉末致密化规律。分析了两种方法粉末致密化规律,研究了高速成形制品密度均匀性。试验结果显示冲击锤方法可以获得较高密度且均匀性较高粉末冶金制品,多次冲击对提高制品密度的作用是有限的。对于分离式霍普金森高速撞击试验,试验结果显示应力波对致密化没有影响。
     (4)研究了铁基合金粉末制品密度与力学性能的关系,成功的建立了相对密度与杨氏模量关,为了粉末成形有限元数值模拟建立了模型基础;分析了粉末压制过程中的摩擦行为,得到随着粉末制品密度的增加,摩擦先增加,达到一定程度后,几乎直线降低的规律。研究了铁基合金粉末、纯钛粉末、铝基合金粉末制品相对密度与维氏硬度之间的关系,成功的建立了相对密度与维氏硬度关系模型,通过此方法可以简单方便的研究制品局部密度分别规律,特别是复杂形状制品。
     (5)基于粉末温压成形致密化研究基础,建立了热力耦合的有限元模型,考虑温度、摩擦对压坯变形与性能的影响,采用更新的拉格朗日方法,对粉末温压成型过程进行了有限元数值模拟。分析了不同加热方式、不同摩擦状况、不同压坯高径比、不同压制方式、摩擦有利化和三轴向压制等多种不同的压制工艺形式对粉末温压工艺的致密化规律的影响,分析了压制过程的粉末颗粒变形,获得了粉末温压成形制品密度变化和应力分布规律。
The powder metallurgic parts have wildy been applied in mechanics, automobiles, electronics, automation and so on, it is has wide market prospect in industry. But the inherent pores have an important influence on the properties of PM parts, and also add difficulties to high precise forming. The relative density of PM parts are generally lower than 90% by conventional powder compaction processes, therefore how to get high density and high properties of powder metallurgic parts becomes to the current development and research focus of powder metallurgic industry. Finite element simulation technology is a rapid, effective and detailed method to analyze densification of powder compaction process. In this article, high densification principle of powders compaction processes, relationship between mechanical properties and density, and finite element simulation of powder compaction are studied:
     (1) The key influences on densification of warm compaction process: powder and die temperature, pressing pressure, are analyzed. And the resistance heating method is designed for warm compaction process and the effectiveness of this method is verified. Research on fluidity of Fe-based alloy powder at different temperatures is done, and the controlling temperature range of powder is obtained for warm compaction process. The influence of powder and die temperature variation under different pressing pressures are analyzed on densification of powder compaction. The optimism of process parameters for warm compaction process is concluded. And the densification mechanism of warm compaction process is studied.
     (2) The application of electromagnetic induction heating technology in warm compaction process is researched. Electromagnetic induction heating system is designed for warm compaction process, and effectiveness of this system is verified. The experimental results of this system show that electromagnetic induction heating technology can rapidly, accurately and effectively control die temperature, and this heating technology is successfully applied in warm compaction process. Experimental results of compaction process show that electromagnetic induction heating system for warm compaction process can get high density of PM parts, and there is no influence of magnetism of powders and dies on densification of powder.
     (3) The dropping hammer and split Hopkinson bar test are applied for researching on high velocity compaction process. The deformation of two powder materials, Fe-based alloy powder (Distaloy4600A) and Pure Ti powder (Ti-Dupont), are analyzed for high velocity compaction process. The data collecting mode (SCXI-1520 and SCXI-1314) and data collecting software (Labview) made by National Instruments, In.. are applied for studying dies deformation during high velocity compaction process. The data collecting program is designed for this research in this article. For dropping hammer test method, height and weight of hammer, type and weight of powder and different compacting processes, and so on are researched on densification of powder. For split Hopkinson bar test, the influence of different impacting pressure on densification of powder is analyzed. The densification mechanism of powder is studied for these two methods, and uniformity of density distribution is researched for high velocity compaction process. The experimental results show that high density and good uniformity of density distribution can be obtained for PM parts by dropping hammer process, it is limited to improve density of PM parts for several hitting on powder.. And the experimental results also show that stress wave has no effect on densification of powder for split Hopkinson bar test.
     (4) The relationship between density and mechanical properties of Fe-based alloy powder metallurgic parts are studied, and the relationship between relative density and Young’s modulus is generalized, this mode can offer basic material information for powder compaction by finite element simulation. And the frictional behavior of powder compaction is also researched in this article, and the results express that at the initial stage of powder compaction, with the increasing of PM parts density, the friction parameter increases, and when the frictional parameter reaches some value, it will almost linearly decrease. The relationship between relative density and Vickers hardness is analyzed for Fe-based alloy powder, Pure Ti powder, and Al6061 powder. And the relationship between relative density and Vickers hardness are established, this mode can be easily applied for analyzing the distribution of local density of powder metallurgic parts, especially complex PM parts.
     (5) Based on the research of powde densification for warm compaction process, the couple thermal-mechanical finite element mode is obtained for simulating the warm compaction process. The influence of temperature and frictional behavior on the deformation and properties of green are considered. And the updated Lagrangian Method is applied for the simulation of warm compaction process. In this article the influence of different compaction processes on densification of warm compaction are researched, including different heating methods, different frictional status, different ratio of height and diameter, different compaction methods, favorable of conversion of friction, and three-axial compaction method. The deformation of powder particles are analyzed, variation of density and stress distribution are obtained for warm compaction process.
引文
[1]韩凤麟.世界粉末冶金零件工业动态[J].粉末冶金技术,2001,(4):225-263.
    [2]元家钟,陈蓓京,陈利民.世界粉末冶金工业一瞥[J].中国冶金,2005,15(9):4-8.
    [3]郑雪萍,李平,曲选辉.世界粉末冶金行业的发展现状[J].稀有金属快报,2005,24(3):6-9.
    [4]刘咏,黄伯云,龙郑易,贺跃辉.从PM2004看世界粉末冶金的发展现状[J].粉末冶金材料科学与工程,2005,10(1):10:20.
    [5]邹志强,曲选辉,黄伯云.国外粉末冶金的最新进展[J].粉末冶金技术,1997,15(1):66-70.
    [6]韩凤麟.中国(大陆)粉末冶金零件行业2004年进展[J].粉末冶金技术,2006,24(1):56 -59.
    [7]蔡韻,吴菊清.我国汽车粉末冶金零件发展动向趋势分析[J].新材料产业,2005,(1): 60-62.
    [8]黄培云.粉末冶金原理[M].冶金工业出版社.北京:冶金工业出版社,2000.
    [9]李元元,肖志俞,陈维平等.粉末冶金高致密化成形技术的新进展[J].粉末冶金材料科学与工程,2005,(1):1-9.
    [10] G. Sethi,N. S. Myers,Randall M. German. An overview of dynamic compaction in powder metallurgy[J]. International Materials Reviews,2008,53(4):219-234.
    [11] Rutz H G,Hanejko F G,Luk S H. Warm compaction offers high density at low cost[J]. Metal Powder Report,1994,49(9):40-47.
    [12]韩凤麟. ANCORDENSE~(TM)温压工艺特性[J].粉末冶金技术,1995,13(4):294-302.
    [13]肖志瑜,李元元,邱诚.温压工艺及其关键技术[J].机械工程材料,2001,25(1):18-21.
    [14]李元元,肖志瑜,倪东惠等.温压成形技术的研究进展[J].华南理工大学学报(自然科学版),2002,30(11):15-20.
    [15]吴菊清,倪冠曹.温压成形技术及用于发动机连杆生产的可能性探讨[J].上海有色金属,1998,19(4):147-153.
    [16]何峰,汪武祥.温压工艺在粉末冶金中的研究与应用[J].材料工程,2001,(6):41-47.
    [17]肖志瑜,柯美元,李元元等.温压工艺在汽车工业中的应用[J].汽车工艺与材料,2002,(5):7-10.
    [18]李元元,肖志瑜,潘国如等.温压技术的应用、发展及其在我国的工业化前景[J].粉末冶金技术,2002,20(6):360-364.
    [19]肖志瑜,李元元.温压技术及其应用[J].材料开发与应用,2000,15(2):35-39.
    [20]果世驹.粉末冶金温压技术的进展[J].粉末冶金工业,2003,12(2):3-8.
    [21]曹顺华,易健宏,奉东文.温压致密化机理及其在温压粉末设计中的应用[J].粉末冶金材料科学与工程,2001,6(3):9-11,22.
    [22]李明怡,果世驹,康志君等.不同类型金属粉末的温压行为[J].粉末冶金技术,2000,18(4):261-264.
    [23]林信平,曹顺华,李炯义,等.对温压工艺制备温压工艺在粉末冶金Ti合金制备中的应用[J].稀有金属与硬质合金,2004,32(3):36-39,13.
    [24]罗述东,唐新文,易健宏,等.钨基高密度合金粉末的温压成形行为研究[J].粉末冶金工业,2003,13(3):31-35.
    [25]李明怡,果世驹,林涛,等.无粘结剂铁粉的温压工艺研究[J].粉末冶金工业,1996,6(6):5-9.
    [26]果世驹,林涛,魏延萍,等.细磷铁粉的制备及其对铁粉温压行为的影响[J].粉末冶金技术,1997,15(1):14-17.
    [27]果世驹,杨霞,陈邦峰,等. 316L不锈钢粉末温压与模壁润滑的高密度成形[J].粉末冶金技术,2005,23(6):403-408.
    [28]李金花,倪东惠,朱权利,等.利用温压工艺制备了粉末冶金温压工艺制备Fe—Cu—C材料[J].机械工程材料,2005,29(5):38-40.
    [29]郭瑞金,S.St-Laurent,F.Chagnon.粉末混合料配方对温压试样的生坯与烧结件性能的影响[J].粉末冶金工业,2004,14(1):1-9.
    [30]项品峰,张双益,李元元,等.聚合物加入方式对粉末冶金温压成形的影响[J].机械工程材料,2001,25(3):23-24,34.
    [31]李金花,李元元,潘国如,等.几种润滑剂对温压工艺的影响[J].粉末冶金工业,2004,14(3):5-8.
    [32]林涛,果世驹.粘结剂和润滑剂对铁粉流动性和松装密度的影响[J].粉末冶金技术,2000,18(1):8-11.
    [33]屈盛官,夏伟,肖志瑜,等.大功率发动机高性能粉末冶金油泵齿轮研究[J].中国机械工程,2005,16(10):852-856.
    [34]杨霞,陈邦峰,果世驹,等.粉末冶金静电模壁润滑中复合润滑剂的静电荷电与润滑特性[J].北京科技大学学报,2004,26(4):407-410.
    [35]曹顺华,林信平,李炯义,等.模壁润滑温压工艺的研究[J].材料导报,2004,18(10):85-88,102.
    [36]果世驹,林涛.侧压系数及压坯高径比对温压有效性的影响[J].粉末冶金工业,1998,8(4):7-10.
    [37]欧阳鸿武,何世文,韦嘉,等.装粉方式对钛粉压制成形影响的数值模拟[J].中国有色金属学报,2004,14(8):1318-1323.
    [38]成小乐,高义民,邢建东,等. WC/45钢复合材料的温压烧结工艺及其磨损性能[J].西安交通大学学报,2005,39(1):53-56.
    [39]程继贵,王成福,夏永红,等. CF/Cu-10Sn复合轴承材料温压成形致密化规律和其有关性能研究[J].矿冶工程,2002,22(4):95-98.
    [40]何世文,欧阳鸿武,刘咏,等.钛合金粉末温压成形行为[J].稀有金属材料与工程,2005,34(7):1119-1122.
    [41]周洪强,陈志强.钛合金粉末冶金内润滑温压成形[J].稀有金属材料与工程,2008,37(11):2020-2022.
    [42]谢海东,周照耀.粉末冶金温压斜齿轮系统传动性能[J].制造技术与机床,2009(4):70-74.
    [43] S. St-Laurent,F. Chagon.温压工艺设计的混合粉[J].粉末冶金技术,1998,16(1):40-51.
    [44]张双益,李元元.温压技术及其致密化机制的研究进展[J].材料科学与工程,1999,17(4):96-100.
    [45]李元元,项品峰,徐铮,等.温压技术中的致密化机制[J].材料科学与工程,2001,19(1):39-42.
    [46] HVC punches PM to new mass production limits [J]. Metal Powder report,2002,57(9):26 - 31.
    [47]迟悦,果世驹,孟飞,等.粉末冶金高速压制成形技术[J].粉末冶金工业,2005,15(6):41-45.
    [48]李元元,肖志瑜,陈维平,等.粉末冶金高致密化成形技术的新进展[J].粉末冶金材料科学与工程,2005,10(1):1-9.
    [49]肖志瑜,陈维平,李元元.粉末冶金高致密化的新途径[J].材料导报,2003,17(11): 5-8.
    [50]邓三才,肖志瑜,陈进.粉末冶金高速压制技术的研究现状及展望[J].粉末冶金材料科学与工程,2009,14(4):213-217.
    [51]闫志巧,蔡一湘,陈峰.粉末冶金高速压制技术及其应用[J].粉末冶金技术,2009,27(6):455-460
    [52]郑洲顺,于万春子,诸葛金平.粉末高速压制成形二维流动的元胞自动机模拟[J].系统真学报,2009,21(21):6825-6828.
    [53]郑洲顺,朱远鹏,裴朝旭.高速压制成形中应力波传播的特征[J].系统真学报,2009,21(2):226-229,233.
    [54]易明军,尹海清,曲选辉.力与应力波对高速压制压坯质量的影响[J].粉末冶金技术,2009,27(3):207-211.
    [55] Bruska Azhdara,Bengt Stenberga,Leif Kari. Development of a High-Velocity Compaction process for polymer powders[J]. Polymer Testing,2005,(24):909–919.
    [56] Bruska Azhdar,Bengt Stenberg,Leif Kari. Determination of springback gradient in the die on compacted polymer powders during high-velocity compaction[J]. Polymer Testing,2006,(25):114– 123.
    [57] P. Jonsén,H-?. H?ggblad,L. Troive. Green Body Behaviour of High Velocity Pressed Metal Powder[J]. Materials Science Forum,2007, (534-536):289-292.
    [58] J.Z. Wang,X.H. Qu,H.Q. Yin. High velocity compaction of ferrous powder[J]. Powder Technology,2009,192(1):131-136.
    [59] D. Souriou,P. Goeuriot,O. Bonnefoy. Influence of the formulation of an alumina powder on compaction[J]. Powder Technology,2009,190(1-2):152-159.
    [60] D. Souriou,P.Goeuriot,O. Bonnefoy. Comparison of conventional and High Velocity Compaction of alumina powders[J]. 11th International Ceramics Congress and 4th Forum on New Materials,Acireale, Sicily,Italy, June 4-9,2006,France.
    [61] G. Sethi1,E. Hauck,R. M. German. High velocity compaction compared with conventional compaction[J]. Materials Science and Technology,2006,22(8):955-959.
    [62] Y. L. Guennec,P. Dorémus,D. Imbault. The multiple layers of High Velocity Compaction[J]. Metal Powder Report,2009,64(1):25-26,28.
    [63]汪俊.粉末金属成形过程建模及成形工艺计算机仿真[D].上海交通大学博士论文,1999.
    [64]董林峰.粉末金属成形中的缺陷预测与成形过程的计算机仿真[D].上海交通大学博士论文,2001.
    [65]程勇.粉末成形规律和过程模拟研究[D].武汉理工大学硕士论文,2001.
    [66]陈革维.粉末压制成形过程实时质量监控技术研究及动态特性分析[D].华南理工大学博士论文,2003.
    [67]陈普庆.金属粉末压制过程的力学建模和数值模拟[D].华南理工大学博士论文,2004.
    [68]周洁.粉末成形过程的计算机模拟[D].昆明理工大学硕士论文,2005
    [69]赵伟斌.金属粉末温压成形的力学建模和数值模拟[D].华南理工大学博士论文,2005.
    [70]李健.钼粉末温压成形过程的有限元数值模拟研究[D].西北工业大学,2007
    [71]宾小丽.温压粉末冶金模具工作状况的数值模拟[D].广西大学硕士论文,2007.
    [72]汪俊,李从心,阮雪榆.粉末金属压制过程建摸方法(1)──金属塑性力学方法[J].金属成型工艺,2000,18(2):1-4.
    [73]汪俊,李从心,阮雪榆.粉末金属压制过程建模方法(2)──广义塑性力学方法和内蕴时间方法[J].金属成型工艺,2000,18(3):1-2.
    [74]汪俊,李从心,阮雪榆.粉末金属压制过程建模方法(3)──微观力学方法[J].金属成型工艺,2000,18(4):1-4.
    [75]汪俊,李从心,阮雪榆.粉末金属压制过程数值模拟建模方法[J].机械科学与技术,2000,19(7):436-438.
    [76]华林,赵仲治.粉末烧结材料屈服条件[J].武汉汽车工业大学学报,1999,21(2):26-30.
    [77]华林,秦训鹏.粉末烧结材料屈服函数形状[J].塑性工程学报,2004,11(3):39-42.
    [78]华林,秦训鹏.粉末烧结材料屈服条件研究和进展[J].武汉理工大学学报,2004,26(4):1-5.
    [79]任学平.粉末体的屈服准则[J].粉末冶金技术,1992,10(1):8-12.
    [80]任学平.粉末金属屈服准则和流动应力的研究[D].哈尔滨工业大学博士论文,1989
    [81]陈振华.金属粉末压缩成形的应力松弛[J].稀有金属材料与工程,1994,23(1):21-25.
    [82]黄春曼、邵明、刘华.粉末温压中模具的加热设计及有限元热场分析[J].华南理工大学学报,2005,38(3):33-35.
    [83]赵伟斌,李元元,周照耀等.金属粉末温压成形的数值模拟研究[J].粉末冶金工业,2004(5):28-32.
    [84] H.A.Kuhn,C.L.Downey. Deformation Characteristics and Plasticity Theory of Sintered Powder Materials[J]. International Journal of Powder metallurg,1971,7(1):15-25.
    [85] R.J.Green. A Plasticity Theory for Porous Solids[J].International Journal of Mechanical Science,1972,14(3):215-224.
    [86] M.Oyane,S.Shima,Y.Kono.Theroy of plasticity for porous metals[J].Bull. J SEM,1977,(16):1254-1261.
    [87] S.Shima,M.Oyane. Plasticity Theory for Porous Metallurgy[J].International Journal of Mechanical Science,1976,18(6):285-291.
    [88] A.L.Gurson. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: PartⅠ-Yield Criteria and Flow Rules for Porous Ductile Media[J].Journal of Engineering Materials and Technology,1977,(ASME99):2-5.
    [89] S.M.Domivelu,H.L.Gegel,l.S.Gunasekera,et al. A New Yield Function for Compressible P/M Materials[J].International Journal of Mechanical Science,1984,26(9/10):527-535.
    [90] D.N. Lee,H.S. Kim. Plastic yield behaviour of porous metals [J].Powder Metallurgy,1992,35(4):275-279.
    [91] P.C.Chou,J. Carleone,C.M. Hsu. Elastic constants of layered media [J]. Journal of Composite Materials,1972,6(1):80-93.
    [92] H.S. Kim. Yield and compaction behavior of rapidly solidified Al-Si alloy powders[J].Materials Science and Engineering,1998,A251(1):100-105.
    [93] L. M.M. Alves,P. A.F. Martins,O. M.C. Rodrigues. A new yield function for porous materials[J].Journal of Materials Processing Technology,2006,(179):36–43.
    [94]龚晓南.土塑性力学[M].浙江:浙江大学出版社,2001.
    [95]赵志业.金属塑性加工力学[M].北京:冶金工业出版社,1999.
    [96]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟[M].北京:冶金工业出版社,1997.
    [97]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社,1999.
    [98] D.C.Drucker,W.Prager. Soil Mechanics and Plastic Analysis or Limit Design[J]. Quarterly Journal of Applied Mathematics,1952,(10):157-165.
    [99] D.C.Drucker,R.E.Gibson,D.J.Henkel.Soil Mechanics and Workhardening Theories of plasticity[J].Transactions,1953,(122):338-346.
    [100] A.W.Jenike , R.T.Shield. On the Plastic flow of coulomb solids beyond original failure[J].Journal of applied Mechanicals,1959,(26):599-602.
    [101] N.P.Suh. A yield criterion for plastic , frictional , work-hardening granular materials[J].International Journal of Powder Metallurgy,1969,(5):69–78.
    [102] K.H.Roscoe,A.N.Schofield and C.P. Wroth. On the yielding of soils[J].Géotechnique,1958,(8): 22-53.
    [103] K.H.Roscoe,J.B.Burland. On the generalized stress-strain behaviour of‘wet’clay. In Engineering plasticity[M].Cambridge University Press,1968:535-609.
    [104] F.L.DiMaggio,I.S.Sandler. Material model for granular soils[J].Journal of Engneering Mechanical,1971,(ASCE97):935-950.
    [105] R.W.Lewi , A.R Khoei. A plasticity model for metal powder forming process [J].International Journal of Plasticity,2001,(17):1659-1692.
    [106] A.K.Ariffin,Md.Mujibur. Themal-mechanical mode of warm powder compaction process[J]. Journal of Materials Technology,2001,(116): 67-71.
    [107] B.Wikman,A.Svoboda,H.-Aê. Haggblad. A combined material model for numerical simulation of hot isostatic pressing[J]. Computer Methods of Applied Mechanical Engneering,2000, (189):901-913.
    [108] L.M?hler,M. Ekh,K. Runesson. A class of thermo-hyperelastic–viscoplastic models for porous materials: theory and numerics[J].International Journal of Plastic,2001,(17):943-969.
    [109] A.R.Khoei,S.Iranfar. 3D numerical simulation of elasto-plastic behaviour in powder compaction process using a quasi-nonlinear technique[J].Journal of Materials Processing Technology,2003,(143–144):886–890.
    [110] A.R.Azami,A.R.Khoei. 3D computational modeling of powder compaction processes usinga three-invariant hardening cap plasticity model[J]. Finite Elements in Analysis and Design,2006,(42):792–807.
    [111] J.G..Justino , M.K.Alves , A.N.Klein , H.A.Al-Qureshi. A comparative analysis of elasto-plastic constitutive models for porous sintered materials[J].Journal of Materials Processing Technology,2006,(179):44–49.
    [112] H.S.Kim,Y.Estrin,E.Y.Gutmanas. A constitutive model for densification of metal compacts: the case of copper[J].Materials Science and Engineering,2001,(A307):67–73.
    [113] A.R. Khoei,A. Bakhshiani A constitutive model for finite deformation of endochronic plasticity in powder forming processes[J].Journal of Materials Processing Technology,2004,(153–154):12–19.
    [114] R.W.Lewis , D.T.Gethin. A combined finite-discrete element method for simulating pharmaceutical powder tableting[J].International Journal for Numerical Methods in Engineering,2005,(62):853–869.
    [115] N.A.Fleck,L.T.Kuhn,R.M.McMeeking. Yielding of metal powder bonded by isolated contacts[J].Journal of the Mechanics and Physics of Solids,1992,(40):1139-1162.
    [116] K.T.Kim , J.H.Cho. A densification model for mixed metal powder under cold compaction[J].International Journal of Mechanical Sciences,2001,(43):2929–2946.
    [117] R.S. Ransing,D.T. Gethin,A.R. Khoei,P. Mosbah,R.W. Lewis. Powder compaction modelling via the discrete and finite element method[J].Materials and Design,2000,(21):263-269.
    [118] A.Zavaliangos. A Multiparticle Simulation of Powder Compaction Using Finite Element Discretization of Individual Particles[J].Materials Research Society,2002,(731):W7.1.1-W7.1.7.
    [119] W.WU,G.R.H.WAGONER,G.S.DAEHN. Experimental and numerical investigation of idealized consolidation - Part 1 Static compaction [J].Acta mater,2000,(48):4323–4330.
    [120]张菊红,肖志瑜,李元元.粉末冶金流动温压成形技术[J].粉末冶金技术,2006,24(1):45-48.
    [121]陈维平,麦明仁,屈盛官等.温压用铁粉松装密度的优化粒级匹配试验研究[J].粉末冶金技术,2006,24(5):323-326,368.
    [122]白春礼.纳米科学与技术[M]. 1995.
    [123]张立德.纳米材料学[M].辽宁:辽宁科学技术出版,1994.
    [124]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2001.
    [125] Toyota hits on smooth fomula for compaction. metal powder report,2002,57(9):30-31.
    [126]刘华,邵明,陈维平,等.分级电阻式粉末冶金温压加热系统结构的研究[J].机械科学与技术,2004,23(3):341-343.
    [127]刘华,邵明,陈维平,等.用于粉冶温压的分级电阻式加热系统及控制研制[J].锻压设备与工业炉,2003(4):19-21.
    [128]刘华,邵明,陈维平等.分级电阻式粉末冶金温压加热系统[J].现代制造工程,2003,(7):7-9.
    [129]刘华.粉末冶金温压加热系统的研究[D].华南理工大学,2002.
    [130]徐铮,用于粉末冶金温压的粉料加热系统的研究[D].华南理工大学硕士论文2001.
    [131]汪志锋.粉末温压加热系统的研究[D].华南理工大学硕士论文,2004.
    [132]李元元,徐铮,倪东惠.产业化温压设备中的加热系统[J].粉末冶金工业,2000,10(6):14-18
    [133] Press makers signal faith in warm compaction[P]. Metal Powder Report,1994,49(7/8):24.
    [134]廖寄乔.粉末冶金实验技术[M].湖南:中南大学出版社,2003.
    [135]姚若浩.金属压力加工中的摩擦与润滑[M].北京:冶金工业出版社,1990.
    [136] (德)T.曼格,W.德雷泽尔.润滑剂与润滑[M].北京:化学工业出版社,2003.
    [137]约翰.戴维斯(英).感应加热手册[M].北京:国防工业出版社,1985.
    [138]梁文林,夏越良.高频感应加热设备的原理、工程计算、调整与维修[M].北京:机械工业出版社,1986.
    [139]金晓昌.感应加热技术中的趋肤效应[J].湖北:武汉化工学院学报,1995, 17(4):65-68.
    [140]赵长汉,姜士林.感应加热原理与应用[M].天津:天津科技翻译出版公司,1993.
    [141]潘天明.现代感应加热装置[M].北京:冶金工业出版社,1996.
    [142]储乐平,马骏,刘玉君等.钢板感应加热机理及电磁—热耦合场的数值模拟[J].中国造船,2005,46(1):98-105.
    [143] P. Skoglund. High Density P/ M components by High velocity compaction [A ] . 2001 Conf . on Power Transmission Components[C],USA :2001 :16– 17.
    [144] B. Hopkinson. A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets[J]. Philos. Trans. R. Soc.,1914,(213):437–456.
    [145] R.M. Davies. A Simple Modification of the Hopkinson Pressure Bar[J]. Proc. 7th Int. Cong. on Applied Mechanics,1948,(1):404-412.
    [146] R.M. Davies. A Critical Study of the Hopkinson Pressure Bar[J]. Philos. Trans. R. Soc.,1948,(240):375–457.
    [147] H. Kolsky. An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading[J]. Proc. Phys. Soc.,1949,(62B):676–700.
    [148] G..I. Taylor. The Use of Flat Ended Projectiles for Determining Yield Stress, Part I: Theoretical Considerations,Proc. R. Soc.,1948,(194):289–299.
    [149] J.C. WANG. Young's modulus of porous materials Part 1. Theoretical derivation of modulus-porosity correlation [J]. Journal of Materials Science,1984,19(3):801-808.
    [150] K.K.Phani,S.K.Niyogi. Young's modulus of porous brittle solids [J]. Journal of Materials Science,1987,22 (1) :257-263.
    [151] T.J.Griffiths,A.Ghanizadeh. Determination of elastic constants for porous sintered iron powder compacts[J]. powder metallurgy,1986,29(2):129-133.
    [152] C.H.Turner,S.C.Cowin. Dependence of elastic constants of an anisotropic porous material upon porosity and fabric[J]. Journal of Materials Science,1987,22 (9):3178-3184.
    [153] R. Haynes,J. T. Egediege. Effect of porosity and sintering conditions on elastic constants of sintered irons [J]. Powder Metallurgy,1989,32(1):47-52.
    [154] J. R. Moon. Elastic moduli of powder metallurgy steels[J]. Powder Metallurgy,1989,32(2):132-139.
    [155] S.T.S.Al-Hassani,P.W.Tennant,M.A.Sarumi. Stress wave method for measuring elastic moduli of powder compacts in tension and compression[J]. Powder metallurgy,1989(32):204-208.
    [156] A. S. WAGH,R. B. POEPPEL,J. P. SINGH. Open pore description of mechanical properties of ceramics[J]. Journal of Materials Science,1991,26(14):3862-3868.
    [157] A. R. Boccaccini,Z.Fan. A New Approach for the Young’s Modulus-Porosity Correlation of Ceramic Materials[J]. Ceramics lniernational,1997,23(3):239-245.
    [158] Liangsheng Wang,Kevin.K. Tesng. A multi-scale framework for effective elastic properties of porous materials[J]. Journal of Materials Science,2003,38(14):3019– 3027.
    [159] A.K. Mukhopadhyay,K.K. Phani. An analysis of microstructural parameters in the minimum contact area model for ultrasonic velocity-porosity relations[J]. Journal of the European Ceramic Society,2000,20(1):29-38.
    [160] K.K. Phani,D.Sanyal. A new approach for estimation of Poisson’s ratio of porous powder compacts[J]. Journal of Materials Science,2007,42(19):8120–8125.
    [161] C. Feng,B.S. Kang. Young’s Modulus Measurement Using a Simplified Transparent Indenter Measurement Technique [J]. Experimental Mechanics,2008,48(1):9–15.
    [162] O.Sahin,O.Uzun,M.S.Lizer. Dynamic hardness and elastic modulus calculation of porous SiAlON ceramics using depth-sensing indentation technique [J]. Journal of the European Ceramic Society,2008,28(6):1235–1242.
    [163] W.Pabst,E.Gregorov. A cross-property relation between the tensile modulus and the thermalconductivity of porous materials [J]. Ceramics International,2007,33(1):9–12.
    [164] ASTM volume 03.01 metals mechanical testing elevated and low temperature tests metallography,E8–00bStandard Test Methods for Tension Testing of Metallic Materials,page13.
    [165] T.J.McCabe,L.V.Godby,J.R.L.Trasorras. Metallographic sample preparation techniquse and images for density distribution determination in steel powder compacts[C],Advances in powder metallurgy,PM2TEC’94,Mai 1994:175-183.
    [166] D.P.Johnson,L.F. Pease. Nondestructive flaw detection and density measurements in powder metallurgy parts[J]. Powder metallurgy world congress,1992,(2):281-289.
    [167] P.M.J.Wang,D.R.Faron,B.J.Vaughan. An X-ray computed tomography (CT) approach for density gradient characteriztion of powder compacts[J]. Powders, characterization, testing and quality control advances in powder metallurgy and particulate materials,1993,(1):263-271.
    [168] J.Muller,L.Ackermann,D.Babot. Quantitative nondestructive evaluation of density of green state compressed products[J]. Measurements and controls , powder metallurgy world congress,1994,(2):1041-1047.
    [169] Y.T.Chen. Characterization of P/M parts by relative electrical resistivity measurements[J]. Advances in powder metallurgy,1989,(1):461-476.
    [170] V.I.Kushch,S.A.Ivanov. The Experimental Theoretical Procedure for Determination of Local Density of Porous Materials[J]. Journal of Superhard Materials,2007,29(1):40–46.
    [171] G.Michel,HédiChtourou. Generalization of the Vickers hardness local density measurement technique to different powder materials[C]. Proceedings of the World Congress on Powder Metallurgy and Particulate Materials,1996,1(4):31–40.
    [172] G.Michel,HédiChtourou,S.Parent. Characterization of PM parts by relative electrical resistivity measurements[C]. Proceeding of the PM2TEC’95 Conference,Seattle 1995:31-47.
    [173]温诗铸,黄平.摩擦学原理[M].清华大学出版社.北京:清华大学出版社,2002.
    [174]茹铮,余望,阮熙寰,孟宪堂.塑性加工摩擦学[M].科学出版社.北京:科学出版社,1992.
    [175]格鲁捷夫(苏),焦明山,袁瑞琛.金属压力加工中的摩擦和润滑手册[M].航空工业出版社.北京:航空工业出版社,1990.
    [176]赵振铎,邵明志,张如铎.金属塑性成形中的磨擦与润滑[M].化学工业出版社.北京:化学工业出版社,2004.
    [177]王德广,邓小民.芯棒位置对管材内径尺寸精度影响的有限元模拟[J].重型机械,2005(1):51-54,57.
    [178]王德广,邓小民.高精度管材拉拔过程计算机模拟研究[J].重型机械,2006(3):35-39.
    [179]汪俊,罗思东,李从心等.金属粉末零件压制过程有限元模拟的研究[J].中国机械工程,1997,8(4):40-42.
    [180] A. R KHOEI,Roland W LEWIS. Finite element simulation for dynamic large elastoplastic eformation in metal powder forming [J]. Finite Elements in Analysis and Design,1998(30):335-352.
    [181] A. K ARIFFIN,Md. Mujibur RAHMAN,N MUHAMAD,et al. Themal-mechanical mode of warm powder compaction process [J]. Journal of Materials Technology,2001,(116):67-71.
    [182] SINKAA. I.C,CUNNINGHAMB. J.C,ZAVALIANGOS. A.The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker–Prager Cap model[J].Powder Technology,2003,(133):33-43.
    [183] J.C CUNNINGHAMB.,SINKAA. I.C,ZAVALIANGOS. A.Analysis of Tablet Compaction. I. Characterization of Mechanical Behavior of Powder and Powder/Tooling Friction [J].JOURNAL OF PHARMACEUTICAL SCIENCES,2004,(93):2022-2039.
    [184] KIM. K.T,LEE. H.T.Effect of friction between powder and a mandrel on densification of iron powder during cold isostatic pressing [J].Ira. J. Mech. Sci,1998,(40):507-519.
    [185] WIKMAN. B,SOLIMANNEZHAD. N,LARSSON. R,etc.Wall friction coefficient estimation through modelling of powder die pressing experiment[J].Powder Metallurgy,2000,(43):132-138.
    [186] GUYONCOURT. D. M. .M,TWEED. J.H,GOUGH. A,etc.Constitutive data and friction measurements of powders using instrumented die[J].Powder Technology,2001,(44):25– 33.
    [187] SOLIMANJAD. N,LARSSON. R.Die wall friction and influence of some process parameters on friction in iron powder compaction[J].Materials Science and Technology December,2003,(19):1777-1782.
    [188] SOLIMANJAD. N.NNew method for measuring and characterization of friction coefficient at wide range of densities in metal powder compaction[J].Powder Metallurgy,2003,(46):49-54.
    [189] TURENNE. S,GODèRE. C,THOMAS. Y,MONGEON. P.-é.Evaluation of friction conditions in powder compaction for admixed and die wall lubrication[J] . Powder Metallurgy,1999,(42):263-268.
    [190] I.M.Cameron,D.T.Gethin,J.H.Tweed. Friction measurement in powder die compaction byshear plate technique [J]. Powder Metallurgy,2002,(45):345-353.
    [191] DOREMUS. P,TOUSSAINT. F,PAVIER. E.Investigation of iron powder friction on tungsten carbide tool wall[J].Powder Metallurgy,2001,(44):243-247.
    [192] PM Modnet Methods and Measurements Group. Measurement of friction for powder compaction modeling-comparison between laboratories[J].Powder Metallurgy,2000,(43):364-374.
    [193] KLEMN. U,SOBEK. D,SCH?NE. B, STOKMANN. J.Friction Measurements during Dry Compaction of Silicon Carbide[J].Journal of the European Ceramic Society,1997,(17):141-145.
    [194] ARIFFIN.A.K,RAHMAN.Md.Mujibur,MUHAMAD. N,SAHARI. J.Themal-mechanical mode of warm powder compaction process [J] . Journal of Materials Processing Technology,2001,(116):67-71.
    [195] BRISCOE. B.J,ROUGH. S.L.The effects of wall friction in powder compaction [J].Colloids and Surfacces A: Physicochemical and Enginnering Aspects,1998,(137):103-116.
    [196] CANTA. T,FRUNZA. D.Friction-assisted pressing of PM components[J].Journal of Materials Processing Technology,2003,(143–144):645-650.
    [197]李志刚.中国模具设计大典(第一卷)[M].江西:江西科学技术出版社,2003.
    [198]吕丽萍.有限元法及其在锻压工程中的应用[M].西安:西北工业大学出版社,1989.
    [199]陈如欣.塑性有限元法及其在金属成形中的应用[M].重庆:重庆大学出版社,1989.
    [200]谢水生.塑性有限元法及其在塑性加工中的应用[M].武汉:华中理工大学出版社,1990.
    [201]李胜祗.金属塑性成形有限元模拟[M].安徽工业大学,2002.
    [202]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社2003.
    [203]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003.
    [204] [美]S.S.劳尔.工程中的有限法[M].北京:科学出版社,1997.
    [205]雷晓燕.有限元法[M].北京:中国铁道出版社,2000.
    [206]甘舜仙.有限元技术与程序[M].北京:北京理工大学出版社,1988.
    [207]谢水生,王祖唐.金属性能成形工步的有限元数值模拟[M].北京:冶金工业出版社,1997.
    [208]张鸿庆,王鸣.有限元的数学理论[M].北京:科学出版社,1991.
    [209]匡震邦.非线形连续介质力学[M].上海:上海交通大学出版社,2002.
    [210]肖志瑜,张菊红,邵明,等.金属粉末流动温压成形的特点及其技术问题分析[J].中国机械工程,1997,16(3):257-259,281.
    [211]屠挺生,林大为.金属粉末烧结材料泊松比模型的探讨[J].金属成形工艺,2001,19 (2):4-7.
    [212]赵镇南.传热学[M].北京:高等教育出版社,2002.
    [213] Marc reference[M]. MSC corporation.. Santa Ana CA USA : MSC Corporation,2003.
    [214]果世驹,林涛.侧压系数及压坯高径比对温压有效性的影响[J].粉末冶金工业,1998,8(4):7-10.
    [215] A.K.Ariffin,Md.Mujibur. Themal-mechanical mode of warm powder compaction process[J].Journal of Materials Technology,2001,(116):67-71.
    [216]韩凤麟.粉末冶金基础教程[M].广州:华南理工大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700