微波放电激发大面积矩形表面波等离子体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在大规模集成电路和液晶显示器的制造过程中,大面积等离子体源成为必需;微电子器件制作工序的刻蚀、灰化和等离子体化学气相沉积等迫切需要空间均匀的、高电子密度及高活性化的等离子体源。此外,多晶硅薄膜、金刚石薄膜、碳纳米管等的生成,大面积高密度等离子体源同样充当重要角色。在众多等离子体源中,平板型表面波等离子体(SWP)源是一种有希望同时满足以上苛刻要求的优良等离子体源。因此,大面积高密度SWP的开发及应用研究受到了前所未有的关注,目前研究的重点在于解决高效放电和大面积空间均匀性问题。
     本论文涉及表面波等离子体的产生机理、实现途径、参数特性和数值仿真等四个方面的研究内容,具体工作如下:
     1.根据高密度等离子体和金属在与高频电磁波相互作用时表现出的类似特性,提出高密度等离子体与介质分界面处存在表面等离子体激元偏振(SPPs)现象。采用SWP简正模型,分析了表面电磁波的空间分布特性,探讨了高密度等离子体中SPPs的特征参量,特别是带有密度梯度层的表面电场局域增强效应的半解析证明,从机理上探讨了SWP的产生机制。
     2.根据矩形波导管内的微波分布,确定了波导管宽壁面开槽位置,结合SWP源的结构尺寸,设计了开槽天线阵列。为了达到高效耦合微波能量和稳定表面波放电的目的,根据谐振腔理论和偶极子近场辐射理论设计了单模谐振腔阵列和亚波长衍射光栅,与开槽天线阵列一起构造了高效波模转换器件,这是产生大面积高密度均匀稳定表面波等离子体的核心器件。
     3.搭建带有多模谐振腔的SWP源装置,验证了高密度SWP的产生确实是基于SPPs所携带的表面电磁波维持了稳定放电。改用高效波模转换器进行放电实验,200W低功率输入下,等离子体密度为1.04×1018 m-3,空间均匀性达85.7%,微波吸收率为95%,功效比为4.4 cm2/W。此外,产生的等离子体具有双麦克斯韦电子能量分布和参数稳定可控性,使得综合性能在同类源中处于世界领先。
     4.采用非自洽均匀冷等离子体模型研究了开槽天线激发表面波场的空间分布特性,利用自洽混合模型得出了等离子体参数的空间分布特性,与实验结果相一致,证实了SWP是表面加热和参数扩散分布的事实。用高频电磁仿真软件(HFSS, CST),得出了表面波的空间分布及时空演化过程,解释了表面波放电的实验现象,为下一代超大面积SWP源的建立提供了坚实的工程依据和有益借鉴。
During the past several years, for ultra-large scale integration or liquid crystal display panel manufacturing, large-area plasma sources are needed. In fabricating the electronic devices, such as etching, ashing or plasma chemical vapor deposition, the spatial uniformity of plasma sources are strongly required; besides overdense electrons and radicals are also required. Furthermore, in the fabrication of amorphous or crystalline silicon films, diamond film synthesis and carbon nanotube growth, the large-area overdense plasma source has also been useful. Among the various plasma devices, the planar-type surface-wave plasma (SWP) source is an advanced plasma source, which is a type of the promising plasma source satisfying the above rigorous requirements for the large-area plasma processing. Therefore, the development and application researches of the large-scale overdense SWP have attracted the unprecedented attentions. Furthermore, the current focus of the study is addressed on the efficient discharge and the spatial uniformity in large area.
     Mainly four aspects of the research contents in this thesis, in the context of which are related to generation mechanism, achievement channel, parameter character and numerical simulation, are described specifically as follows:
     1. According to the similar characteristics of overdense plasma and metal interacting with high-frequency electromagnetic waves, the surface plasmon polaritons (SPPs) placed at the interface between overdense plasmas and dielectric is proposed. The generation mechanism of SWP is studied by analyzing the simplified SWP model, from which the spatial distribution characteristics of the surface electromagnetic waves are analyzed, the characteristic parameters of SPPs in overdense plasma are discussed, and especially the semi-analytical confirmation about the local electrical field enhancement in the interlayer with density gradient is presented.
     2. According to the microwave field distributed in the rectangular waveguide, the position of the cavern slot on the width waveguide wall is determined. Combining with the structure size of the SWP source, novel slot-array antennas are exploited. In order to achieve the purpose of coupling microwave energy efficiently and surface-wave discharge stably, in addition based on the resonant chamber theory and the dipole near-field radiation theory, the single-mode resonant chamber array and the subwavelength diffraction grating are designed, respectively. All those three parts consist of an efficient wave mode conversion device, which is the hard core of the SWP device to generate uniform and stable large area overdense plasmas.
     3. The production of overdense SWP is verified as a stable discharge excited by surface electromagnetic waves which is carried by SPPs indeed, through experimenting on the SWP source with a multi-mode resonant chamber. By experimenting on the plasma source with the efficient wave mode conversion device, plasma density of 1.04×1018 m-3, spatial uniformity up to 85.7%, microwave absorption rate of 95% and efficiency ratio of 4.4 cm2/W are obtained under the lower input power of 200 W. Adding the bi-Maxwellian electron energy distribution and the stability and controllability of the plasma parameters, the overall performance of the proposed SWP occupy the global leader position in comparison with the similar sources.
     4. The spatial distribution of the surface wave excited by slot antennas is studied using a non-self-consistent uniform cold plasma model. The spatial distribution of the plasma parameters are simulated by using the self-consistent hybrid model, meanwhile the SWP with the characters of surface heating and plasma parameter diffusing effect is confirmed in comparing with the results of experimental measurement. The spatial distribution and the spatio-temporal evolution of the surface waves are arrived at by adopting the high-frequency electromagnetic simulation software (HFSS, CST), which explain the experimental phenomenon of the surface-wave discharge. The fruits achieved in numerical simulation provide the solid engineering basis and the useful reference for the construction of the next super-area SWP source.
引文
[1]H. Sugai, I. Ghanashev, and M. Nagatsu, "High-density flat plasma production based on surface waves", Plasma Sources Sci. Technol.,1998,7:192-205
    [2]菅井秀郎.等离子体电子工程学.张海波,张丹译.北京:科学出版社,2002.56-60,134-145
    [3]I. Ganachev, and H. Sugai, "Advanced large-area microwave plasmas for materials processing", Surface and Coatings Technology,2003,174-175:15-20
    [4]I. Odrobina, J. Kudela, and M. Kando, "Characteristics of the planar plasma source sustained by microwave power", Plasma Sources Sci. Technol.,1998,7:238-243
    [5]H. Sugai, T. H. Ahn, I. Ghanashev, et al, "Diagnosis for advanced plasma control of materials processing", Plasma Phys. Control. Fusion,1997,39:A445-A458
    [6]M. Nagatsu, S. Morita, I. Ghanashev, et al, "Effect of slot antenna structures on production of large-area planar surface wave plasmas excited at 2.45 GHz", J. Phys. D:Appl. Phys.,2000,33:1143-1149
    [7]Y. Yasaka, and H. Hojo, "Enhanced power absorption in planar microwave discharges", Phys. Plasmas,2000,7:1601-1605
    [8]I. Ghanashev, M. Nagatsu, S. Morita, et al, "Large-area high-density plasma excitation using standing pure and hybrid surface waves", J. Vac. Sci. Technol. A, 1998,16:1537-1541
    [9]T. Yamauchi, K. Aoki, and M. Kanoh, "Large-area plasma produced by surface waves on a metal wall with periodic grooves", J. Vac. Sci. Technol. A,2001,19:2433-2440
    [10]M. Nagatsu, G Xu, I. Ghanashev, et al, "Mode identification of surface waves excited in a planar microwave discharge", Plasma Sources Sci. Technol.,1997,6:427-434
    [11]I. Ghanashev, M. Nagatsu, G Xu, et al, "Mode jumps and hysteresis in surface-wave sustained microwave discharges", Jpn. J. Appl. Phys.,1997,36:4704-4710
    [12]I. Ghanashev, and H. Sugai, "Multiple eigenmode analysis and density jumps in planar surface-wave plasmas with slot-antenna excitation", Phys. Plasmas,2000,7: 3051-3061
    [13]M. Nagatsu, G. Xu, M. Yamage, et al, "Optical emission and microwave field intensity measurements in surface wave-excited planar plasma", Jpn. J. Appl. Phys., 1996,35:L341-L344
    [14]H. Kousaka, K. Ono, N. Umehara, et al, "Plasma distribution in a planar-type surface wave-excited plasma source", Thin Solid Films,2006,506-507:503-507
    [15]M. Nagatsu, I. Ghanashev, and H. Sugai, "Production and control of large diameter surface wave plasmas", Plasma Sources Sci. Technol.,1998,7:230-237
    [16]M. Nagatsu, K. Naito, A. Ogino, et al, "Production of large-area surface-wave plasmas with an internally mounted planar cylindrical launcher", Plasma Sources Sci. Technol.,2006,15:37-41
    [17]I. Ghanashev, M. Nagatsu, and H. Sugai, "Surface wave eigenmodes in a finite-area plane microwave plasma", Jpn. J. Appl. Phys.,1997,36:337-344
    [18]J. Kudela, T. Terebessy, I. Odrobina, et al, "T-junction tuning system for large-area surface-wave plasma sources", Appl. Phys. Lett.,2002,80:1132-1134
    [19]H. Sugai, I. Ghanashev, and K. Mizuno, "Transition of electron heating mode in a planar microwave discharge at low pressures", Appl. Phys. Lett.,2002,77:3523-3525
    [20]E. Tatarova, F. M. Dias, J. Henriques, et al, "A large-scale Ar plasma source excited by a TM330 mode", IEEE Trans. Plasma Sci.,2005,33:866-875
    [21]J. Henriques, E. Tatarova, F. M. Dias, "Spatial structure of a slot-antenna excited microwave N2-Ar plasma source", J. Appl. Phys.,2008,103:103304
    [22]T. J. Wu, and C. S. Kou, "A large-area plasma source excited by a tunable surface wave cavity", Rev. Sci. Instrum.,1999,70:2331-2337
    [23]T. J. Wu, and C. S. Kou, "Analysis of waves in the plasma guided by a periodical vane-type slow wave structure", Phys. Plasmas,2005,12:103504
    [24]T. J. Wu, W. J. Guan, C. M. Tsai, et al, "Experimental study of the plasma resonance in a planar surface wave plasma", Phys. Plasmas,2001,8:3195-3198
    [25]张家豪,魏鸿文,翁政辉,et al,“电浆源原理与应用用之介绍”,物理雙月刊,2006,28: 440-451
    [26]吴(?)聚.微波激发之大面积高密度表面波电浆源之研究,博士学位论文,国立清华大学(台湾)图书馆,2001
    [27]X. Xu, F. Liu, Q. Zhou, et al, "Visual phenomena of surface plasmon polaritons at the dielectric-plasma interface"Appl. Phys. Lett.,2008,92:011501
    [28]C. Wu, R. Zhan, X. Wen, et al, "Characterization of the slot antenna microwave plasma source", IEEE Trans. Plasma Sci.,2001,29:13-18
    [29]Y. Liang, Q. Ou, B. Liang, et al, "Large volume and high density surface wave plasmas sustained by two microwave launchers", Chin. Phys. Lett.,2008,25: 1761-1763
    [30]B. Liang, Q. Ou, Y. Liang, et al, "Large area planar plasma sustained by surface microwave", Chin. Phys.,2007,16:3732-3737
    [31]詹如娟,吴丛风,温小辉,et al, "Waveguide-surfatron型表面波等离子体源的特性研究”,真空科学与技术,2001,21:30-33
    [32]吴从风,温小辉,詹如娟,“大面积均匀微波等离子体源的电磁场计算及优化设计”,微波学报,1998,14:147-152
    [33]欧琼荣,梁荣庆,“大面积平面表面波等离子体的研究”,真空与低温,2002,8:28-33
    [34]聂传辉,苏小保,“环形波导微波场分布的计算”,真空与低温,2000,6:111-117
    [35]M. Liu, H. Sugai, X. Hu, et al, "Properties of large-area surface wave plasma", Acta. Phys. Sin.,2006,55:5905-5908
    [36]Z. Chen, M. Liu, P. Zhou, et al, "A novel structure of slot-antenna array for producing large-area planar surface-wave plasmas", Plasma Sci. Technol.,2008,10:655-660
    [37]C. Lan, X. Hu, and M. Liu, "Numerical study of spontaneous outspread of large-scale surface-wave plasma excited by slot antenna array", Chin. Phys. Lett.,2009,26: 035204
    [38]C. Lan, Z. Chen, X. Hu, et al., "There dimensional numerical simulation of surface-wave plasma source", Plasma Sci. Technol.,2009,11:66-70
    [39]Z. Chen, M. Liu, C. Lan, et al, "Estimation of plasma density by surface plasmons for surface-wave plasmas", Chin. Phys. Lett.,2008,25:4333-4335
    [40]F.F.Chen.等离子体物理学导论.林光海译.北京:人民教育出版社,1980.2-11
    [41]马腾才,胡希伟,陈银华.等离子体物理原理.合肥:中国科技大学出版社,1988. 20-76
    [42]A. W. Trivelpiece, and R. W. Gould, "Space charge waves in cylindrical plasma columns", J.Appl. Phys.,1959,30:1784-1793
    [43]M. Moisan, "Description and properties of an RF plasma used for the study of parametric interaction of a strong E-M field with plasma", Plasma Phys.,1974,16: 1-17
    [44]A. Shivarova, and I. Zhelyazkov, "Surface waves in homogeneous plasma sharply bounded by a dielectric", Plasma Phys.,1978,20:1049-1073
    [45]M. Moisan, Z. Zakrzewski, and R. Pantel, "The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns", J. Phys. D:Appl. Phys.,1979,12:219-237
    [46]M. Moisan, Z. Zakrzewski, R. Pantel, et al, "A waveguide based laucher to sustain long plasma columns through the propagation of a electromagnetic surface wave", IEEE Trans. Plasma Sci.,1984, PS-12:203-214
    [47]M. Moisan, and Z. Zakrzewski, "Plasma sources based on the propagation of electromagnetic surface waves", J. Phys. D:Appl. Phys.,1991,24:1025-1048
    [48]M. Moisan, C. Beaudry, and P. Leprince, "A new device for the production of long plasma columns at a high electron density", Phys. Lett.,1974,50A:125-126
    [49]M. Moisan, C. Beaudry, and P. Leprince, "A small microwave plasma source for long column production without magnetic field", IEEE Trans. Plasma Sci.,1975, PS-3: 55-59
    [50]Z. Zakrzewski, M. Moisan, V. M. N. Glaude, et al, "Attenuation of a surface wave in an unmagnetized RF plasma column", Plasma Phys.,1977,19:77-83
    [51]M. Moisan, A. Shivarova, and A. W. Trivelpiece, "Experimental investigations of the propagation of surface waves along a plasma column", Plasma Phys.,1982,24: 1331-1340
    [52]M. Moisan, "New surface wave launchers for sustaining plasma columns at submicrowave frequencies (1-300 MHz)", Rev. Sci. Instrum.,1987,58:1895-1900
    [53]J. Margot, and M. Moisan, "Characteristics of surface-wave propagation in dissipative cylindrical plasma columns", J. Plasma Phys.,1993,49:357-374
    [54]C. Tian, T. Nozawa, K. Ishibasi, et al, "Characteristics of large-diameter plasma using a radial-line slot antenna", J. Vac. Sci. Technol. A,2006,24:1421-1424
    [55]Y. Yasaka, N. Ishii, T. Yamamoto, et al, "Development of a slot-excited planar microwave discharge device for uniform plasma processing", IEEE Trans. Plasma Sci.,2004,32:101-107
    [56]T. Yamamoto, M. Ono, M. Ando, et al, "Near-field distribution of radial line slot antenna for surface-wave-coupled plasma generation", Jpn. J. Appl. Phys.,2001,40: 380-387
    [57]Y. Yasaka, K. Koga, N. Ishii, et al, "Planar microwave discharges with active control of plasma uniformity",Ahys. Plasmas,2002,9:1029-1035
    [58]Y. Yasaka, D. Nozaki, K. Koga, et al, "Production of large-diameter plasma using multi-slotted planar antenna", Plasma Sources Sci. Technol.,1999,8:530-533
    [59]M. Nagatsu, F. Terashita, H. Nonaka, et al, "Effects of oxygen radicals in low-pressure surface-wave plasma on sterilization", Appl. Phys. Lett.,2005 86: 211502
    [60]L. Xu, F. Terashita, H. Nonakal, et al, "Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization", J. Phys. D: Appl. Phys.,2006,39:148-152
    [61]S. Moreau, M. Moisan, M. Tabrizian, et al, "Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores:Influence of the operating conditions", J. Appl. Phys.,2000,88:1166-1174
    [62]Y. Miyamoto, Y. Tamai, K. Daimon, et al, "Experiment and modeling of plasma and neutral transports in slot-excited microwave discharges", Thin Solid Films,2006, 506-507:622-625
    [63]A. Tsuji, Y. Yasaka, and H. Takeno, "Wave analysis in microwave-excited plasma reactor using MSP antenna", Surface& Coatings Technol.,2008,202:5306-5309
    [64]Y. Tamai, Y. Miyamoto, T. Hayashi, et al, "Wave propagation and plasma production in slot-excited microwave discharges", Thin Solid Films,2006,506-507:626-630
    [65]A. P. Jain, and J. Parashar, "Excitation of surface plasma waves over corrugated slow-wave structure", J. Phys.,2005,65:311-321
    [66]H. Sugai, I. Ghanashev, M. Hosokawa, et al, "Electron energy distribution functions and the influence on fluorocarbon plasma chemistry", Plasma Sources Sci. Technol., 2001,10:378-385
    [67]G. Kumar, and V. K. Tripathi, "Excitation of a surface plasma wave over a plasma cylinder by a relativistic electron beam", Phys. Plasmas,2008,15:073504
    [68]J. Levaton, A. Ricard, J. Henriques, et al, "Measurements of N(4S) absolute density in a 2.45 GHz surface wave discharge by optical emission spectroscopy", J. Phys. D: Appl. Phys.,2006,39:3285-3293
    [69]M. Aramaki, J. Kobayashi, A. Kono, et al, "Development of high-efficiency laser Thomson scattering measurement system for the investigation of EEDF in surface wave plasma", Thin Solid Films,2006,506-507:679-682
    [70]Y. Hotta, H. Toyoda, and H. Sugai, "High-speed μc-Si films deposition and large-grain poly-Si films deposition by surface wave discharge", Thin Solid Films, 2007,515:4983-4987
    [71]E. Stamate, N. Holtzer, and H. Sugai, "Improvement of the dose uniformity in plasma immersed ion implantation by introducing a vertical biased ring", Thin Solid Films, 2006,506-507:571-574
    [72]M. Siry, S. Sakata, T. Terebessy, et al, "Investigation of quartz side wall influence on radial plasma density profiles in low-pressure surface wave plasma source", Jpn. J. Appl. Phys.,2006,45:2749-2756
    [73]S. Nakao, E. Stamate, and H. Sugai, "Plasma parameters in the vicinity of the quartz window of a low pressure surface wave discharge produced in O2", Thin Solid Films, 2007,515:4869-4873
    [74]D. Mezerette, M. Kuroda, and H. Sugai, "Production and control of high-pressure surface-wave plasmas for water-repellant fluorocarbon film deposition", Thin Solid Films,2005,475:178-182
    [75]Y. Takagi, Y. Gunjo, H. Toyoda, et al, "Rapid treatment of polyimide film surfaces using high-density microwave plasma for enhancement of Cu layer adhesion", Vacuum 2009,83:501-505
    [76]I. P. Ganachev, and H. Sugai, "Surface-wave propagation along a corrugated plasma-dielectric interface", Surface& Coatings Technol.,2005,200:792-795
    [77]Y. Hara, S. Takashima, K. Yamakawa, et al, "Tunable low-energy Ar fast atom source with large diameter", Appl. Phys. Lett.,2007,91:231502
    [78]Y. Hara, S. Takashima, K. Yamakawa, et al, "Characteristics of low energy atom and molecule beams generated by the charge exchange reaction", J. Appl. Phys.,2008, 103:053301
    [79]K. J. Bowers, High Frequency Electron Resonances and Surface Waves in Unmagnetized Bounded Plasmas, Doctor degree thesis, University of California, Berkeley,2001
    [80]D. J. Cooperberg, and C. K. Birdsall, "Surface wave sustained plasmas in a metal bound plasma slab", Plasma Sources Sci. Technol.,1998,7:41-53
    [81]H. Schluter, and A. Shivarova, "Travelling wave sustained discharges", Phys. Reports, 2007,443:121-255
    [82]Q. Chen, P. H. Aoyagi, and M. Katsurai, "Numerical analysis of surface wave excitation in a planar-type nonmagnetized plasma processing device", IEEE Trans. Plasma Sci.,1999,27:164-170
    [83]T. Toba, and M. Katsurai, "Modeling of argon discharge characteristics of planar-type surface wave plasmas in an electron fluid model", IEEE Trans. Plasma Sci.,2002,30: 2095-2101
    [84]H. Igarashi, K. Watanabe, T. Ito, et al, "A finite-element analysis of surface wave plasmas", IEEE Trans. Plasma Sci.,2004,30:605-608
    [85]Y. Okamura, Y. Yamamoto, K. Fujita, et al, "TM01-mode microwave propagation property analysis for plasmas with disk-plate windows by a finite-difference time-domain method", J. Vac. Sci. Technol. A,2007,25:816-823
    [86]M. Nagatsu, K. Naito, A. Ogino, et al, "Characteristics of surface-wave and volume-wave plasmas produced with internally mounted large-area planar microwave launcher",Appl. Phys. Lett.,2005,87:161501
    [87]H. Kousaka, and K. Ono, "Numerical analysis of the electromagnetic Fields in a microwave plasma source excited by azimuthally symmetric surface waves", Jpn. J. Appl. Phys.,2002,41:2199-2206
    [88]I. B. Denysenko, A. V. Gapon, N. A. Azarenkov, et al, "Parameters and equilibrium profiles for large-area surface-wave sustained plasmas", Phys. Rev. E,2002,65: 046419
    [89]K. Hassouni, T. A. Grotjohn, and A. Gicquel, "Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor", J. Appl. Phys.,1999,86:134-151
    [90]Z. Chen, M. Liu, C. Lan, et al, "A numerical simulation of surface wave excitation in a rectangular planar-type plasma source", Chin. Phys. B,2009,18:3484-3489
    [91]C. Lan, X. Hu, Z. Chen, et al, "Self-consistent three-dimensional modeling and simulation of large-scale rectangular surface-wave plasma source", Chin. Phys. B, 2009,18:2412-2419
    [92]M. Graf, E. Rauchle, H. Urban, et al, "Numerical simulation of microwave field distribution for bifocal plasma sources", Surface& Coatings Technol.,2005,200: 904-908
    [93]V. M. Agranovich, and D. L. Mills. Surface polaritons-electromagnetic waves at surfaces and interfaces. Netherlands:Elsevier,1982. Chaps.1 and 9
    [94]J. M. Pitarke, V. M. Silkin, E. V. Chulkov, et al, "Theory of surface plasmons and surface-plasmon polaritons", Rep. Prog. Phys.,2007,70:1-87
    [95]Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, "Total absorption of an electromagnetic wave by an overdense plasma", Phys. Rev. Lett.,2005,95:165003
    [96]L. Wang, J. Cao, Y. Wang, et al, "Excitation of surface plasmons at the boundary of overdense plasma", Chin. Phys. B,2008,17:2257-2262
    [97]I. Ghanashev, H. Sugai, S. Morita, et al, "Local resonant excitation of plasma oscillations in a planar surface-wave plasma device", Plasma Sources Sci. Technol., 1999,8:363-369
    [98]H. Hitoshi, S. Akihiro, U. Naoto, et al, "Surface wave analysis with plasma resonance", J. Plasma Fusion Res.,2004,80:719-720
    [99]郭硕鸿.电动力学(2版).北京:高等教育出版社,1997.158-173
    [100]李绪益.电磁场与微波技术.广州:华南理工大学出版社,2000.8-10,76-82,220-224,326-332
    [101]陈伟.静电探针数字采集系统的研制,硕士学位论文,华中科技大学图书馆,2009
    [102]M. Sugawara, B. L. Stansfield, S. Handa, et al. Plasma etching fundamentals and applications. New York:Oxford University Press Inc.,1998.101-116
    [103]R. L. Stenzel, "Microwave resonator probe for localized density measurements in weakly magnetized plasmas", Rev. Sci. Instrum.,1976,47:603-607
    [104]R. B. Piejak, V. A. Godyak, R. Garner, et al, "The hairpin resonator:A plasma density measuring technique revisited", J. Appl. Phys.,2004,95:3785-3791
    [105]F. A. Haas, J. Al-Kuzee, and N. St. J. Braithwaite, "Electron and ion sheath effects on a microwave "hairpin" probe", Appl. Phys. Lett.,2005,87:201503
    [106]H. Kokura, K. Nakamura, I. Ghanashev, et al, "Plasma absorption probe for measuring electron density in an environment soiled with processing plasmas", Jpn. J. Appl. Phys.,1999,38:5262-5266
    [107]K. Nakamura, M. Ohata, and H. Sugai, "Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas", J. Vac. Sci. Technol. A,2003,21: 325-331
    [108]M. Lapke, T. Mussenbrock, and R. P. Brinkmann, "The multipole resonance probe:A concept for simultaneous determination of plasma density, electron temperature, and collision rate in low-pressure plasmas", Appl. Phys. Lett.,2008,93:051502
    [109]C. Scharwitz, M. Boke, J. Winter, et al, "Practical implementation of a two-hemisphere plasma absorption probe", Appl. Phys. Lett.,2009,94:011502
    [110]J. H. Kim, S. C. Choi, Y. H. Shin, et al, "Wave cutoff method to measure absolute electron density in cold plasma", Rev. Sci. Instrum.,2004,75:2706-2710
    [111]S. Dine, J. P. Booth, G A. Curley, et al, "A novel technique for plasma density measurement using surface-wave transmission spectra", Plasma Sources Sci. Technol., 2005,14:777-786
    [112]J. H. Kim, S. J. You, D. J. Seong, et al, "Electron temperature measurements in plasmas with surface wave absorption and wave cutoff frequency", Appl. Phys. Lett., 2007,91:201502
    [113]C. H. Chang, C. H. Hsieh, H. T. Wang, et al, "A transmission-line microwave interferometer for plasma electron density measurement", Plasma Sources Sci. Technol.,2007,16:67-71
    [114]J. Xu, K. Nakamura, Q. Zhang, et al, "Simulation of resistive microwave resonator probe for high-pressure plasma diagnostics", Plasma Sources Sci. Technol.,2009,18: 045009
    [115]D. J. Kraft, R. D. Bengtson, B. N. Breizman, et al, "Analysis of multifrequency interferometry in a cylindrical plasma", Rev. Sci. Instrum.,2006,77:10E910
    [116]A. Kamran, E. S. John, M. T. Shane, et al, "Plasma interferometry at high pressures", Rev. Sci. Instrum.,2003,74:966-971
    [117]X. P. Lu, and M. Laroussi, "Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer", Appl. Phys. Lett., 2008,92:051501
    [118]K. H. Becker, U. Kogelschatz, K. H. Schoenbach, et al. Non-Equilibrium Air Plasmas at Atmospheric Pressure, NY:Taylor& Francis,2005, Chap.8-484
    [119]M. Emami, and H. Rasouli, "Plamsa electron density measurement by a digital signal processor based millimeter-wave interferometer", Meas. Sci. Technol.,2004,15: 1000-1004
    [120]Z. Chen, M. Liu, L. Tang, et al, "A planar-type surface-wave plasma source with a subwavelength diffraction grating inclusion for large-area plasma applications", J. Appl. Phys.,2009,106:013314
    [121]M. Siry, J. Husarik, and M. Kando, "Spatial investigation of the electron energy distribution function of the high-energy electron beam sustained in the low-pressure microwave surface-wave plasma", Appl. Phys. Lett.,2007,91:071501
    [122]K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat.,1966, AP14:302-307
    [123]谢拥军,王鹏,李磊,et al.Ansoft HFSS基础及应用.西安:西安电子科技大学出版社,2007.23-37
    [124]蓝朝晖.大面积矩形表面波等离子体源的数值模拟.博士学位论文,华中科技大学图书馆,2009
    [125]E. A. Fattah. Surface heating of plasma in VHF and microwave discharges. Doctor degree thesis, Nagoya University Library,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700