等离子体微波反射面的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体反射面天线是等离子体天线技术中一种新的应用方向,它能以简便的方式实现波束的快速扫描。由等离子体反射面天线构成的雷达系统,是一种多功能、高性能的新型电扫描雷达系统。等离子体微波反射面是等离子体反射面天线技术的基础,它决定了反射面天线的性能参数及工作模式。本文从等离子体片的基本参数和微波在等离子体片中传播的特性这两个角度出发,对等离子体微波反射面的性能特点进行了较为全面的研究。主要工作及成果有:
     (1)对等离子体微波反射面的实现方法进行了研究,完成了包括介质真空腔体、亥姆霍兹线圈、大尺度线形空心阴极放电电极、真空过渡连接器件、放电电路、测试电路等等离子体放电系统主体部件的设计;完成了等离子体源的基本方案;完成了用于产生等离子体微波反射面的磁约束线形空心阴极放电演示系统的组装调试,使其能稳定地生成大尺度均匀高密度的等离子体片,为等离子体微波反射面的研究提供了实验平台。
     (2)完成了适用于等离子体微波反射面演示系统等离子体特征参数诊断的静电探针研制,利用其进行了等离子体参数的测量,并以实验数据对磁约束线形空心阴极放电的相关机制进行了研究。通过微波与光谱手段对等离子体特征参数进行诊断与分析,验证了静电探针测量结果的可靠性。
     (3)采用分层计算法对电磁波在等离子体中的一般性传播特点进行分析研究,给出了不同的参数条件下电磁波在无限大等离子体片中所发生的反射、透射及相位的变化特征。
     (4)分别采用实验手段和时域有限差分(FDTD)仿真手段对天线发射的微波波束在等离子体微波反射面上的反射性能进行了测试与研究,研究表明等离子体片的密度、厚度及偏转角度对波束反射有明显的影响,得到了等离子体微波反射面在一定频段条件下的理想工作参数。
     (5)结合等离子体微波反射面的反射特性,给出了等离子体反射面天线系统的性能参数特点;对等离子体反射面天线原理样机的辐射方向图进行了初步的测试,为等离了体反射面天线的可行性提供了实验依据。
Plasma reflector antenna technology is a new application in plasma antenna, which provides a simple way for microwave beam steering. The radar with the unique advantages of plasma reflector antenna is a new, multi-functional, high-performance electronic scanning radar system. The plasma microwave reflector is the basic component of plasma reflector antenna technology, which decides the performance parameters and operation mode of the antenna. In this paper, the features of the plasma microwave reflector are studied from two directions: the basic parameters of the plasma sheet and microwave transmission characteristics in the plasma sheet. The main work and outcomes include:
     (1) The research on the generation method of plasma microwave refletor is done. It includes the design of the main components of the plasma discharge system, like the dielectric vacuum chamber, Helmholtz coils, large-scale linear hollow cathode discharge electrodes, vacuum adapters, discharge circuits, and the test circuits. Also, the basic disign of the plasma excitation power is completed. Furthermore, the assembly and debugging of the magnetic constrained linear hollow cathode discharge demonstration device is completed, which is used to produce the plasma microwave reflector. So that, it can stably generate large-scale, high-density uniform plasma sheet, providing an experimental platform for the research of plasma microwave reflector.
     (2) The electrostatic probe fit for the diagnostic of the plasma characteristic parameters of the plasma microwave reflector demonstration device is completed. Based on this, the measurement of plasma parameters is carried out, and the relevant mechanisms of the magnetic confined linear hollow cathode discharge are studied. The plasma characteristics parameters are also diagnosed and analysed through the microwave method and the spectral method, which verify the reliability of the measured results get from electrostatic probe.
     (3) The general propagation characteristics of electromagnetic wave in plasma is analysed through the sequential stratification method. Also the characteristics of reflection, transmission and phase change of electromagnetic wave in the infinite area plasma under different parameters are given.
     (4) The reflection properties of microwave beam in plasma microwave reflector are tested and studied by means of experiment and FDTD (finite difference time domain). Studies show that the plasma’s density, thickness and the deflection angle significantly affect the reflected microwave beam. Also, ideal operating parameters of plasma microwave reflector under certain frequencies are gained.
     (5) The performance parameters of plasma reflector antenna are given out with the reflection characteristics of the plasma microwave reflector. The radiation patterns of the plasma reflector antenna prototype are tested, which provide the experimental evidence for the feasibility of plasma reflector antenna.
引文
[1]菅井秀郎(张海波、张丹译).等离子体电子工程学.北京:科学出版社, 2002.
    [2] F.F.Chen(林光海译).等离子体物理学导论.北京:人民教育出版社, 1980.
    [3]胡希伟.等离子体理论基础.北京:北京大学出版社, 2006.
    [4] Rainer Hippler, Sigismund Pfau, et al. Low Temperature Plasma Physics. New York: Wiley, 2001.
    [5] J.R.Roth.工业等离子体工程(第Ⅰ卷)-基本原理.北京:科学出版社, 1998.
    [6]迈克尔A力伯曼,阿伦J里登伯格(蒲以康等译).等离子体放电原理与材料处理.北京:科学出版社, 2007.
    [7]过增元,赵文华.电弧和热等离子体.北京:科学出版社, 1986.
    [8] C. B.德列斯文(唐福林等译).低温等离子体物理及技术.北京:科学出版社, 1980.
    [9] Brain Chapman. Glow Discharge Processes. New York: Wiley, 1980.
    [10]周健,傅文斌,袁润章.微波等离子体化学气相沉积金刚石膜.北京:中国建材工业出版社, 2002.
    [11]彭国贤,气体放电-等离子体物理的应用.北京:知识出版社, 1988.
    [12]赵青,刘述章,童洪辉.等离子体技术及应用.北京:国防工业出版社, 2009.
    [13]等离子体物理学科发展战略研究课题组.核聚变与低温等离子体-面向21世纪的挑战和对策.北京:科学出版社, 2004.
    [14] Stefano Atzeni, Jürgen Meyer-ter-Vehn(沈百飞译).惯性聚变物理.北京:科学出版社, 2008
    [15]庄钊文,袁乃昌,刘少斌等.等离子体隐身技术.北京:科学出版杜,2005.
    [16] Destler W W, DeGrange J E, Fleischmann H H, Rodgers J, and Segalov Z. Experimental studies of high-power microwave reflection, transmission, and absorption from a plasma-covered plane conducting boundary [J]. J. Appl. Phys., 1991, 69(9): 6313~6318.
    [17] Jenn D C. Plasma Antennas: Survey of Techniques and the Current state of the Art[R]. NPS-CRC-03-001 (Report for Naval Postgraduate School), 2003.
    [18]张德文.电可控等离子反射镜.电子战技术文选, 1998 2: 24~32.
    [19] Manheimer W. Plasma Reflectors For Electronic Beam Steering in Radar Systems. IEEE Trans. Plasma Sci. 1991 19: 1228~1234.
    [20] Robson A, Morgan R and Meger R. Demonstration of a Plasma Mirror for Microwaves[J]. IEEE Trans. Plasma Sci, 1992 20: 1036~1040.
    [21] Meger R, Mathew J, Gregor J, Pechacek R, Fernsler R, Manheimer W and Robson A. Experimental investigamtion s of the formation of a plasma mirror for high-frequency microwave beam steering[J]. Phy. Plasma, 1995 2: 2532~2538.
    [22] Mathew J, Meger R, Gregor J, et al. Electronically steerable plasma mirror for radar applications. in Proceedings IEEE International Radar Conference, Alexandria, USA, 1995: 742~747.
    [23] Mathew J, Meger R, Fernsler R. Retarding field energy analyzer for the characterization of negative glwe sheet plasmas in a magnetic field. Rev. Sci. Instrum, 1996 67: 2818~2825
    [24] Mathew J, Fernsler R, Meger R, Gregor J, Murphy D, Pechacek R and Manheimer W. Genaeration of large area, sheet plasma mirrors for redirection high frequency microwave beams. Phys. Rev. Lett, 1996 77: 1982~1985.
    [25] Mathew J, Meger R, Gregor J, et al. Electronically steerable plasma mirror for surveillance radar applications. IEEE National Radar Conference. Univ. of Michigan, 1996: 196~201
    [26] Mathew, J. et al. , Electronically steerable Plasma Mirror, 1996 IEEE International Symposiumon Phased Array Systems and Technology [C]. Boston, MA. Oct. 15- 18,1996.
    [27] Meger R, Fernsler R F, Gregor J, et al. X-Band Microwave Beam Steering Using a Plasma Mirror[R]. Proceedings IEEE Aerospace Conference, 1997, 4: 49~56.
    [28] Manheimer W, Fernsler R F and Gitlin,M S. High power, fast, microwave components based on beam generated plasmas. IEEE Transactions on Plasma Science, 1998 26: 1543~1555.
    [29] Murphy D, Fernsler R, Pechacek R and Meger R. Microwave emission from plasmas produced by magnetically confined-electron beams. IEEE transactions on plasma science, 2002 30: 436~441.
    [30]黄光周,张书生,于继荣,梁迪众,杨英杰.高密度等离子体源的新发展.真空与低温1998 4(1): 52.
    [31]王平,杨银堂,徐新艳,杨桂杰.应用于超大规模集成电路工艺的高密度等离子体源研究进展.真空科学与技术, 2002 22: 274.
    [32] Manheimer W, Fernsler R, Lampe M and Meger R. Theoretical overview of the large-area plasma processing system (LAPPS). Plasma Sources Sci. Technol, 2000 9:370~386.
    [33] Gregor J, Fernsler R and Meger R. Measurement of a planar discharge and its interaction with a neutral background gas. IEEE transactions on plasma science, 2003 31: 1305~1312.
    [34] Alexeff I,Kang W L,Rader M,Douglass C,Kintner D,Ogot R,Norris E.A plasma stealth antenna for the US navy. IEEE International Conferrence on Plasma Science, 1998: 277.
    [35] Alexeff I, Anderson T, Parameswaran S, Pradeep E, Hulloli J and Hulloli P. Experimental and Theoretical Results With Plasma Antennas. IEEE transactions on plasma science, 2006 34: 166~172.
    [36] Alexeff I, Anderson T, et al. Recent results for plasma antennas. Phys. Plasma, 2008 15: 057104.
    [37] Kang W L,Rader M,Alexeff I. A microwave plasma closing switch and stealth plasma antenna. IEEE International Conferrence on Plasma Science, 1995: 141.
    [38] Kang W L,Rader M,Alexeff I.A conceptual study of stealth plasma antenna. IEEE International Conferrence on Plasma Science,1996: 261.
    [39] Istomin E N, Karfidov D M, Minaev I M, Rukhadze A A, Tarakanov V P, Sergeichev K F, Trefilov A Y. Plasma asymmetric dipole antenna excited by a surface wave. Plasma physics reports, 2006, 32: 388~400.
    [40] Novikov V E, Puzanov A O, Sinkov V V, Soshenko V A. Plasma antenna for magneto cumulative generator. IEEE Conference on antenna theory and techniques, 2003: 692~695.
    [41] Cerri G, Deleo R, Primiani M, Russo P.Plasma antenna characterization. IEEE Conference on applied electromagnetics and communications, 2005: 1~4.
    [42] Cerri G, Deleo R, Primiani M, Russo P. Measurement of the properties of a plasma column used as a radiating element. IEEE transactions on instrumentation and measurement, 2008, 57(2): 242~247.
    [43] Chung Max, Chen Wen-Shan, and Yu Yen-Hao. Dynamically scanned plasma reflector array for beam forming. IEEE 35th international conf. Plasma Science (ICOPS 2008), Karlsruhe, Germany, 2008
    [44] Kumar R, Rora D. Areconfigurable plasma antenna. J. Appl. Phys. 2010 107: 053303.
    [45] Shen W, Scharer J, et al. Properties of a vacuum ultraviolet laser created plasma sheet for a microwave reflector. Journal of Applied Physics 1995 12: 6974~6979.
    [46] Anderson T. An Electronically Steerable and Focusing Plasma Reflector Antenna and An Electronically Steerable and Focusing Bank of Plasma Tubes. http://www.haleakala-research.com/ uploads/ Satellite_Plasma_Antenna_Aug09.pdf
    [47] Jenn D, Rusch W. Low-sidelobe Reflector Synthesis and Design Using Resistive Surfaces. IEEETrans. on Antennas and Propagation, 1991, 39: 1372~1375.
    [48] Borg G., Harris J, et al. Plasmas as antennas: Theory, experiment and applications. Phys Plasmas, 2000 7: 2198-2202.
    [49] Borg G., Harris J, et al. Application of plasma columns to radiofrequency antennas. Appl. Phys. Lett., 1999 74: 3272~3274.
    [50]刘良涛,祝大军,刘盛刚.等离子体天线的原理与设计.雷达与对抗, 2004 4: 26~30.
    [51]陈林松,马红星.等离子体技术在天线隐身中的应用.雷达科学与技术, 2005 3(3): 140~143.
    [52]杨兰兰,屠彦,王保平.等离子体天线中波的色散关系的研究.真空科学与技术学报, 2004 24(6): 424~426.
    [53]莫锦军,刘少斌,袁乃昌.非磁化等离子体密度与目标雷达隐身的关系.电波科学学报, 2003, 18(1): 57~61.
    [54]刘平,刘黎刚,邓记才,贾琦.等离子体天线的发射特性.郑州大学学报(工学版), 2006 27(3): 126~128.
    [55]陈林松,马红星.等离子体技术在天线隐身中的应用.雷达科学与技术, 2005 3(3): 140~143.
    [56]张颋,李红波,刘国强.等离子体天线的基本特性研究.信息工程大学学报, 2006, 7(3): 241~243.
    [57]袁忠才,时家明,余桂芳.表面波激励等离子体天线的原理与实现.电子信息对抗技术, 2006 21(4): 38~41.
    [58]赵国伟,陈诚,徐跃民.柱形等离子体辐射场的数值计算和分析.空间科学学报, 2005 25(2): 91~97.
    [59]赵国伟,徐跃民,陈诚.等离子体天线色散关系和辐射场数值计算.物理学报, 2007, 56(9): Wang Zhijiang, Zhao Guowei, Xu Yuemin, Liang Zhiwei,Xu Jie. Propagation of Surface Wave Along a Thin Plasma Column and Its Radiation Pattern. Plasma Science and Technology, 2007 9: 526~529.
    [60]王之江,赵国伟,梁志伟,徐跃民,徐杰.等离子体天线中波传播的计算与测量.天线学报,2007,1(1):79~82.
    [61]赵国伟,王之江,徐跃民,梁志伟,徐杰.射频激励等离子体非线性效应的FDTD数值模拟.物理学报,2007,56(9):5304~5308.
    [62]梁志伟,王之江,赵国伟,徐杰,徐跃民.等离子体天线的噪声测量及分析.电波科学学报,2007,22(6):971~975.
    [63]赵国伟,王之江,徐跃民,梁志伟,徐杰.等离子体天线轴向密度数值模拟和辐射图计算.中国科学院研究生院学报,2007,24(4):419~424.
    [64]赵国伟,徐跃民.等离子体隐身中天线参数的数值计算.天线学报,2007, 1(1):23~27.
    [65]徐杰,赵国伟,梁志伟,王之江,徐跃民.柱形等离子体电离阻抗测量及分析.空间科学学报,2007,27(4):315~320.
    [66]徐杰,赵国伟,梁志伟,徐跃民.柱形等离子体辐射体输入阻抗测量.无线电工程,2007, 37(8):32~34.
    [67] LIANG Chao, XU Yue-Min, and WANG Zhi-Jiang. Numerical Simulation of Plasma Antenna with FDTD Method, Chinese Physics Letters, 2008 25: 3712~3715.
    [68]梁超,丁亮,程芝峰.基于FDTD方法的等离子体天线参数的数值计算.中科院研究生院学报. 2009 26: 268~273.
    [69] Meger R, Blackwell D, et al. Beam-generated plasmas for processing applications. Phys. Plasmas, 2001 8: 2558~2564.
    [70] Walton S, Muratore C, et al. Electron-beam-generated plasmas for materials processing. Surface& Coatings Technology, 2004 186: 40~46.
    [71] Lock E, Fernsler R and Walton S. Experimental and theoretical evaluations of electron temperature in continuous electron beam generated plasmas. Plasma Sources Sci. Technol, 2008 17: 025009.1~025009.8
    [72] Leonhardt D, Walton S and Fernsler R. Fundamentals and applications of a plasma-processing system based on electron-beam ionization. Phys. Plasmas, 2007 14: 057103
    [73] Macheret S, Shneider M and Miles R. Modeling of discharges generated by electron beams in dense gases: Fountain and thunderstorm regimes. Phys. Plasmas, 2001 8: 1518~1528.
    [74] Larigaldie S and Caillault L. Dynamics of a helium plasma sheet created by a hollow-cathode electron beam. J. Phys. D: Appl. Phys, 2000 33: 3190~3197.
    [75] Caillault L and Larigaldie S. Mechanisms of a linear hollow cathode used for the production of a helium plasma sheet, J. Phys. D: Appl. Phys. 2002 35: 1010~1019.
    [76] Zhang L, Zhang H X, Yang X Z, Fang C H, Qiao B and Wang L. Sheet plasma produced by hollow cathode discharge. Chin. Phys. Lett., 2003 20(11): 1984
    [77]冯祥芬,谢涵坤,张菁.低温等离子体表面处理技术在生物医用材料中的应用.物理, 2002 31: 27~30.
    [78]崔福斋,郑传林.等离子体表面工程新进展.中国表面工程, 2003 16: 7~11.
    [79] Hutchinson I. H. Principles of Plasma Diagnostics(second edition). Cambridge: Cambridge University Press, 2002.
    [80] Huddlestoune R H and Leonard S L. Plasma Diagnostic Techniques. New York: Academic Press, 1965.
    [81]项志遴,俞昌旋.高温等离子体诊断技术(上册).上海:上海科学技术出版社, 1982.
    [82]项志遴,俞昌旋.高温等离子体诊断技术(下册).上海:上海科学技术出版社, 1982.
    [83] Orlando Auciello, Deniel L. Flamm (郑少白等译).等离子体诊断(第一卷).北京:电子工业出版社,1994.
    [84] Bora D, Jayakumar R and Vijayashankar M. A simple microwave technique for plasma density measurement using frequency modulation. Plasma Physics and Controlled Fusion, 1984 26: 853~857.
    [85]马柳,时家明,袁忠才,张玮.圆柱形介质阻挡放电等离子体光谱诊断.光散射学报, 2008 20: 282~285.
    [86]徐家鸾,金尚宪.等离子体物理学.北京:原子能出版社, 1981.
    [87]郭硕鸿.电动力学(第二版).北京:高等教育出版社, 2004.
    [88] H.G.布克.冷等离子体波.北京:科学出版社, 1985.
    [89]赵宏康,陆建萍.平面电磁波在等离子体中的吸收衰减.北京理工大学学报, 2004 24.
    [90]刘少斌,袁乃昌,莫锦军,张光莆.斜入射到非磁化等离子体的电磁波的吸收.系统工程与电子技术, 2003 25.
    [91]宋法伦,曹金祥,王舸.电磁波在径向非均匀球对称等离子体中的衰减.物理学报, 2004 53.
    [92]王东华,鄢扬,郭军.电磁波在等离子体层中衰减的数值分析.电子技术大学学报, 2004 33.
    [93]孙爱萍,李丽琼,邱孝明,董玉英.电磁波与非磁化等离子体的相互作用.核聚变与等离子体物理, 2002 22.
    [94]黄平,徐延献,季惠明.均匀等离子体与2.45GHz微波相互作用的数值分析.微波学报, 2004 20.
    [95] Vidmar, R J. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers [J]. IEEE Trans. on Plasma Sci., 1990, 18 (4): 733~741.
    [96]吕爱龙,许家栋.非均匀磁化等离子体中电磁波的反射.电波科学学报, 2005 20: 531~534.
    [97]陈永东,鄢扬.波在周期磁化均匀等离子体中的反射.四川理工学院学报, 2007 20: 105~107.
    [98] Rae S, Burnett K. Reflectivity of steep-gradient plasmas in intense subpicosecond laser-pulses. Rhys. Rev. A., 1991 44: 3835~3839.
    [99] Kelly K, Scharer J, et al. Microwave reflections from a vacuum ultraviolet laser produced plasma sheet. J. Appl. Phys., 1999 83: 63~68.
    [100]李宗谦,佘京兆,高葆新.微波工程基础.北京:清华大学出版社. 2004.
    [101]叶云裳.航天器天线(上)――理论与设计.北京:中国科学技术出版社. 2007.
    [102]戴晴,黄纪军,莫锦军.现代微波与天线测量技术.北京:电子工业出版社. 2008.
    [103] Raymond J.Luebbers. A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma. IEEE trans.on antenna and prop., 1991 39: 29~34.
    [104] Lijun Xu and Naichang Yuan, FDTD Formulations for Scattering From 3-D Anisotropic Magnetized Plasma Objects. IEEE trans.on antenna and prop., 2006 5: 335~338.
    [105] Yoonjae Lee and Suman Ganguly. Analysis of a Plasma-column antenna using FDTD method.Microwave and optical technology letters, 2005 46: 252~259.
    [106]徐利军,莫锦军,袁乃昌.磁化等离子体覆盖二维导体目标FDTD分析.电波科学学报, 2006 21: 925~928.
    [107]刘少斌,顾长青,周建江,袁乃昌.磁化等离子体光子晶体的FDTD分析.物理学报, 2006 33: 1283~1288.
    [108]闻映红.天线与电波传播理论.北京:北京交通大学出版社. 2007.
    [109]张强,曹伟.机载超宽带天线罩物理光学分析方法.电子与信息学报, 2006 28: 100~102.
    [110]莫锦军,刘少斌,等.等离子体隐身机理研究.现代雷达, 2002 24: 9~12.
    [111]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社. 2005.
    [112]高建平,张芝贤.电波传播(电磁理论基础微波技术天线基础).西安:西北工业大学出版社. 2002.
    [113]张祖稷,金林,束咸荣.雷达天线技术.北京:电子工业出版社. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700