若尔盖自然保护区高原林蛙(Rana kukunoris)扩散模型与景观连接分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
揭示水体中繁殖的两栖动物在异质性景观中的空间扩散特点,探讨景观面积丧失和破碎化对于两栖动物的影响,为两栖动物的保护提供理论依据。本文以四川西北部若尔盖湿地自然保护区的高原林蛙(Rana kukunoris)为研究对象,通过运用地理信息系统及建立景观模型等方法,在分析若尔盖湿地自然保护区范围内现有景观格局的基础上,建立了高原林蛙的景观扩散模型,并模拟了“沼泽→草甸”的湿地逆演化过程下高原林蛙的空间分布与景观连接的变化特点。主要结果是:
     1.若尔盖湿地自然保护区呈典型的沼泽—草甸式斑块—基质景观格局。草甸面积占整个景观面积的79.42%,景观蔓延度指数(CONTAG)为79.00远离最小值0而更趋向于最大值100,面积和景观蔓延度指数表明草甸是整个景观中面积占绝对优势且景观连接好的类型,构成了景观的基质,对景观的动态格局演变起主导作用。沼泽面积仅占整个景观面积的18.08%,但却是整个景观中斑块数目最多的单元,占所有斑块数的82.9%。因此沼泽斑块与草甸基质之间的动态结构对高原林蛙的扩散起着决定性的作用。
     2.空间扩散模型表明,其它类型的景观不但扩展了高原林蛙的活动范围,而且也为高原林蛙在不同沼泽斑块间的连接提供了通道。高原林蛙的空间扩散区域使得彼此间成斑块化隔离状分布的沼泽形成了潜在景观功能连接,促进了不同斑块间物种的交流。小型沼泽作为垫脚石(stepping-stone),使得整个景观中的相隔距离较远的大型斑块联结为一个功能整体,促进了高原林蛙在整个景观中的相互动态联系。
     3.模拟“沼泽→草甸”的湿地逆演化过程表明,大量小型沼泽湿地的消失将会对在沼泽中繁殖并扩散到其它景观类型中去的高原林蛙造成潜在影响。逆演化过程不仅使沼泽斑块的分布范围,沼泽源斑块的面积和空间扩散面积减少,而且对景观连接也有很大影响。小型沼泽的消失,将使得景观斑块的功能连接变小,使得依靠小型沼泽作为跳板的动物在沼泽斑块之间的移动将变得更加困难。
     本文是对生境丧失与破碎化影响下两栖动物的行为反应的一种尝试。影响模型的因素很多,包括动物对各种类型景观的偏好程度,地理数据的精度,及模型的可靠程度都是制约模型准确度的因素。
The spatial diffusion of water—breeding amphibian through heterogeneouslandscape and the effects of landscape losing and fragmentation to amphibian werethe core theory of the landscape ecology of amphibian. Geographical informationsystem (GIS) and landscape model were used to model the diffused area of Ranakukunoris in Zoige Wetland Natural Reserve. Model was also used to analysis thespatial distribution variation of R. kukunoris and the change of landscape connectivitywhen simulated the retrogressive succession of landscape. The main result are below:
     1. There was peatland—meadow pattern which was typical patch—matrixlandscape pattem in Zoige Natural Reserve. The meadow area occupied 79.42% ofthe entire landscape area, contagion index (CONTAG) was 79.00 which was far awaythe minimum value (0) but tend to the maximum value (100). Both of these showedthat meadow was the largest part and the most continue units. It was shown thatmeadow was matrix of the landscape, which evolved the leading role to the landscapedynamic pattem. Though their area only occupies 18.08% of entire landscape area,peatlands were according to 82.9% of the total patches. Dynamic of the patternbetween peatlands and meadows decided the spatial diffusion of R. kukunoris.
     2. The model indicated that the other types of landscape not only expandeddiffusion of R. kukunoris, but also have provided the potential channels for frog'sconnections among different peatlands. The spatial diffusion zone of R. kukunorisforced isolated patch peatlands to be potential landscape functional connectivity. Thesmall peatlands, as stepping-stone, made the large peatlands connect as a functionalone and promoted the integrated and dynamic connectivity of R. kukunoris in the whole landscape.
     3. The simulation of "peatlands→meadows" retrogressive succession processindicated that the decrease of small peatlands will have potential effect to R.kukunoris because they must bred in peatlands and diffuse to other type of thelandscape. Retrogressive succession process not only made the decrease ofdistribution of peatlands, patches number of peatlands and diffused area of R.kukunoris, but also reduced the connectivity among source patches. As stepping-stone,the disappearance of small peatlands will made the migration of R. kukunoris amongpatches more difficult.
     The model was an experiment of the amphibian behavior reaction to habitatlosing and fragmentation. There were many factors that could influence the accuracyof model, such as the preference of animals to each type of landscape, thegeographical data precision, reliable degree of model.
引文
1. Alford,R.A.,Richards,S,J. Global amphibian declines: a problem in applied ecology. Annual Review of Ecology and Systematics, 1999,30:133-165
    2. Adriaensen, F., J.P. Chardon, G. De Blust, E. Swinnen, S. Villalba, H. Gulinck, E. Matthysen. The application of 'least-cost' modelling as a functional landscape model. Landscape and Urban Planning 2003 64:233-247.
    3. Baillie, J.E.M., Hilton-Taylor, C, Stuart, S.N. IUCN Red List of Threatened Species. A Global Species Assessment. IUCN Gland, Switzerland and Cambridge, UK.2004
    4. Beebee, T.J.C., Griffiths, R.A., The amphibian decline crisis: a watershed for conservation biology? . Biological Conservation, 2005,125: 271-285
    5. Bowne, D.R., Bowers, M.A. Interpatch movements in spatially structured populations: a literature review. Landscape Ecology, 2004,19 (1): 1-20
    6. Brooker, L. Brooker.M, and Cale.P. Animal dispersal in fragmented habitat: measuring habitat connectivity, corridor use, and dispersal mortality. Conservation Ecology 1999,[online] 3(1): 4. Available from the Internet. URL: http://www.consecol.org/vol3/iss1/art4/
    7. Buskirk, J. V. Local and landscape influence on amphibian occurrence and abundance. Ecology, 2004, 86 (7): 1936-1947.
    8. Carr, L.W., Fahrig, L. Effect of road traffic on two amphibian Species of different vagility. Conservation Biology, 2001,15(4):1071-1078.
    9. Chardon, J. P. Frank, A. Erik M. Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecology, 2003,18: 561-573.
    10. Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus . Biological Conservation,2006,158: 1071-1078
    11. Cushman,S.A.,McGarigal, K. Hierarchical, multi-scale decomposition of species-environment relationships. Landscape Ecology, 2003,17: 637-646
    12. Fahrig, L. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, evolution and Systematics, 2003, 34: 487-515
    13. Fahrig, L., Pedlar, J.H., Pope, S.E., Taylor, P.D., Wegner, J.F. Effect of road traffic on amphibian density. Biological Conservation, 1995, 73: 177-182.
    14. Ferreras, P., Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biological Conversation 100: 125-136.
    15. Findlay, C.S., and Houlahan, J. Anthropogenic correlates of species richness in southeastern Ontario wetlands. Conservation Biology, 1997, 11: 1000-1009
    16. Forman,R.T.T.,Gorden, M. Landscape ecology. New York: Wiley. 1986
    17. Funk, W.C., Blouin, M.C., Cron, P.S., Stephen, Maxell, B.A., Pilliod, D.S., Amish, S., Allendorf, F.W. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology, 2005, 14: 483-496
    18. Funk, W.C., Greene, A.E., Corn, P.S., Allendorf, F. W. High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biology letters, 2005,1:13-16
    19. Grand, J., Cushman, S.A. A multiple-scale analysis of species-habitat relationships: breeding birds in a pitch pine-scrub oak (Pinus rigida-Quercus ilicifolia) community. Biological Conservation, 2003,112 (3):307—317
    20. Gray, M. J., L. M. Smith, and R. I. Leyva. Influence of agricultural landscape structure on a Southern High Plains amphibian assemblage. Landscape Ecology, 2004,19:719-729
    21. Guerry, A.D., Hunter Jr., M.L. Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conservation Biology, 2002,16: 745-754
    22. Hazell, D. Frog ecology in modified Australian landscapes: a review. Wildlife Research, 2003,30 (3): 193-205
    23. Hecnar, S.J., M'Closkey, R.T. Regional dynamics and the status of amphibians. Ecology, 1996, 77: 2091-2097
    24. Hecnar, S.J., M'Closkey, R.T. Spatial scale and determination of species status of the green frog. Conservation Biology, 1997,11: 670-682
    25. Houlahan, J.E., Findlay, C.S. The effects of adjacent land use on wetland amphibian species richness and community composition. Canadian Journal of Fisheries and Aquatic Sciences, 2003,60: 1078-1094
    26. Houlahan, J.E., Findlay, C.S., Schmidt, B.R., Meyer, A.H., Kuzmin, S.L. Quantitative evidence for global amphibian population declines . Nature, 2000, 404: 752-755
    27. Joly, P., Morand .C, Cohas. A. Habitat fragmentation and amphibian conservation: building a tool for assessing landscape matrix connectivity. C. R. Biologies, 2003, 326:132-139
    28. Knutson, M.G., Sauer, J.R., Olsen, D.A., Mossman, M.J., Hemesath, L.M., Lannoo, M.J. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA . Conservation Biology, 1999,13: 1437-1446
    29. Kolozsvary M.B, Swihart RK. Habitat fragmentation and the distribution of amphibians: patch and landscape correlates in farmland. Canadian Journal of Zoology, 1999,77:1288-99
    30. Lehtinen, R.M., Galatowitsch, S.M., Tester, J.R. Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands, 1999, 19 (1): 1-12
    31. Manel, S., Schwartz, M.K., Luikart, G., Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution, 2003,18 (4): 189-197
    32. Marsh, D.M., Pearman, P.B. Effects of habitat fragmentation on the abundance of two species of leptodactylid frogs in an Andean montane forest. Conservation Biology, 1997,11:1323-1328
    33. Marsh, D.M., Trenham, P.C. Metapopulation dynamics and amphibian conservation. Conservation Biology, 2001,15: 40-49
    34. McGarigal, K., Cushman, S.A. Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecological Applications, 2002,12 (2), 335-345.
    35. McGarigal, K., Cushman. S. A., Neel. M. C, and Ene. E, 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: www.umass.edu/landeco/research/fragstats/fragstats.html
    36. Morrison M.L,Marcot B.G, Mannan R. W. Wildlife habitat relationships: conceptsand applications. 2006, Island Press.
    37. Reed, J. M. Critical thresholds associated with habitat loss for two vernal pool-breeding amphibians. Ecological Applications, 2004, 14 (5): 1547-1553.
    38. Paton, W.C.P. and Williams, B.C. Using the Phenology of Pond-Breeding Amphibians to Develop Conservation Strategies. Conservation Biology, 2002, 16(1): 194-204.
    39. Pope, S.E., Fahrig, L., Merriam, H.G. Landscape complementation and metapopulation effects on leopard frog populations. Ecology, 2000, 81: 2498-2508
    40. Ray,N., Lehmann. A, Joly. P. Modeling spatial distribution of amphibian population: a GIS approach based on habitat matrix permeability. Biodiversity and Conservation, 2002,11: 2143-2165
    41. Reh, W., Seitz, A. The influence of land use on the genetic structure of populations of the common frog (Rana temporaria). Biological Conservation, 1990,54:239-249
    42. Rothermel, B.B. Migratory success of juveniles: a potential constraint on connectivity for pond-breeding amphibians. Ecological Applications, 2004,14 (5): 1535-1546
    43. Rothermel, B.B., Semlitsch, R.D. An experimental investigation of landscape resistance of forest versus old-field habitats to emigrating juvenile amphibians. Conservation Biology, 2002, 16: 1324-1332.
    44. Schippers, P., Verboom,J., Knaapen, J. P, Apeldoorn R. C. van. Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS-based random walk model. ECOGRAPHY.1996,19: 97-106.
    45. Semlitsch , R.D., Bodie, J.R. Are small, isolated wetlands expendable? Conservation Biology, 1998,12(5): 1129-1133.
    46. Smith, M. A. and Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 2005,28: 110-128.
    47. Sjogren-Gulve,P., Distribution and extinction patterns within a northern metapopulation of the pool frog, Rana lessonae. Ecology, 1994, 75: 1357-1367
    48. Snodgrass, J.W., Komoroski, M.J., Bryan Jr., A.L., Burger, J. Relationships among isolated wetland size, hydroperiod, and amphibian species richness: implications for wetland regulations. Conservation Biology, 2000, 14:414-419
    49. Squire,T., Newman, R.A. Fine-Scale population structure in the wood frog(Rana sylvatica) in a northern woodland. Herpetologica, 2002, 58(1): 119-130
    50. Swihart,R.K., Gehring,T. M., Kolozsvaryand,M. beth, Nupp,T.E. Responses of 'resistant' vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Diversity and Distributions ,2003, 9:1-18
    51. Taylor P.D., Fahrig L., Henein K. and Merriam G. Connectivity is a vital element of landscape structure. Oikos, 1993, 68: 571-573.
    52. Theobald, D. 2005. A note on creating robust resistance surfaces for computing functional landscape connectivity. Ecology and Society 10(2): r1. [online] URL: a) http://www.ecologyandsociety.org/vol10/iss2/respl/
    53. Trenham, P. C., Shaffer H. B. Amphibian upland habitat use and its consequences for population viability. Ecological Applications, 2005, 15 (4): 1158-1168
    54. Trzcinski MK, Fahrig L, Merfiam G. Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. Ecological Applications,1999, 9:586-93
    55. Turner, M.G. Landscape ecology: the effect of pattem on process. Annual Reviews of Ecology and Systematics, 1989, 20:171-197
    56. Vallan, D. Influence of forest fragmentation on amphibian diversity in the nature reserve of Amohitantely, highland Madagascar. Biological Conservation, 2000, 96:31-43.
    57. Verbeylen, G., Luc De Bruyn,L.D, Frank Adriaensen, F., Matthysen, E. Does matrix resistance influence Red squirrel (Seiurus vulgaris L. 1758) distribution in an urban landscape? Landscape Ecology 2003,18: 791-805.
    58. Walker, R. and Craighead, L. Analyzing Wildlife Movement Corridors in Montana Using GIS URL: http://gis2.esd.com/library/userconf/proc97/proc97/to150/pap116/p116.htm
    59.柴岫,朗惠卿,金树仁,祖文辰,马学慧,张则有,若尔盖高原的沼泽.北京:科学出版社,1965.1—58.
    60.陈文波,肖笃宁,李秀珍.景观指数分类、应用及构建研究.应用生态学报,2002,(1):13 121-125.
    61.戴建洪.若尔盖湿地国家级自然保护区无尾两栖类生境选择及生境评价(硕士论文).2005.
    62.戴建洪 戴强 张明 张晋东 李成 刘兵 刘志君 王跃招.若尔盖湿地国家级自然保护区3种无尾两栖类夏秋季生境选择.动物学研究,2005,26(2):263-271.
    63.戴强,戴建洪,张晋东,杨勇,张明,李成,刘志君,顾海军,王跃招.若尔盖湿地国家级自然保护区三种无尾两栖类陆地核心生境.2005,25(9):2256—2262.
    64.何池全,赵魁义.若尔盖高原湿地生物多样性保护及其可持续利用,自然资源学报,1999,14(3):238—244.
    65.侯众,李元华,方平.若尔盖高寒沼泽与草甸中脊椎动物分布规律浅析.草业科学,2003,4(3):18—20.
    66.李纪宏,刘雪华.基于最小费用距离模型的自然保护区功能分区.自然资源学报,2006,21(2):217—224.
    67.李晓文,胡远满,肖笃宁.景观生态学与生物多样性保护.生态学报,1999,19(3):399-407.
    68.刘昊,石红艳.若尔盖草地中国林蛙越冬习性调查.四川动物,2000,19(2):68-69
    69.刘厚田.湿地的定义和类型划分.生态学杂志,1995,14(4):73—77.
    70.屈延华,雷富民,尹祚华.雪雀属鸟类栖息地在中国的分布,动物学报2002 48(4):471-479.
    71.涂军,石承苍.若尔盖高原生态脆弱地区草地沙化遥感监测研究.西南农业学报,1998(2):94-98.
    72.田应兵.若尔盖高原湿地不同生境下植被类型及其分布规律.长江大学学报,2005,2(2):1-5.
    73.田应兵,熊明标.若尔盖湿地国家级自然保护区水质评价.湖北农学院学报,2004,24(3):161-165
    74.田应兵,熊明标,宋光煜.若尔盖高原湿地土壤的恢复演替及其水分与养分变化.生态学杂志,2005,24(1):21—25.
    75.田应兵,熊明标,宋光煜.若尔盖高原湿地生态恢复过程中土壤有机质的变化研究.湿地科学,2004,2(2):88—93.
    76.王乾,包维楷,晏兆莉.KUMPULA Timo,COL PAERT Alfred,MANDERSCHEID Angela.若尔盖西部草甸的基本类型、特点及近几十年来的 变化.应用与环境生物学报,2002,8(2):133-141
    77.邬建国,2000.Metapopulation(复合种群)究竟是什么?植物生态学报24(1) 123-126.
    78.邬建国.景观生态学——格局,过程,尺度与等级.北京:高等教育出版社,2000.
    79.邬建国.景观生态学——概念与理论.生态学杂志,2000,19(1):42~52.
    80.王长科,王跃思,张安定,吕宪国.若尔盖高原湿地资源及其保护对策,水土保持通报2001 21(5):20-22
    81.谢锋,叶昌媛,费梁,江建平,松井正文.中国西北地区中国林蛙各居群的分类学研究(两栖纲:蛙科).动物分类学报,2000,25(2):228—235.
    82.晏兆莉.若尔盖高原湿地的生态系统健康评价(博士论文).2003.
    83.杨国靖,肖笃宁.森林景观格局分析及破碎化评价——以祁连山西水自然保护区为例.生态学杂志.2003,22(5):56—61
    84.杨永兴.若尔盖高原生态环境恶化与沼泽退化及其形成机制.山地学报,1999,17(4):318—323.
    85.张晋东.若尔盖湿地3种两栖类种间竞争及畜牧业对其食性的影响(硕士论文).2006
    86.张晋东 戴建洪 戴强 张明 熊晔 李成 刘志君 王跃招.若尔盖湿地3种无尾两栖类不同发育阶段的生态位宽度.应用与环境生物学报.
    87.张荣祖.中国动物地理.北京:科学出版社,1999,411—423.
    88.张爽,刘雪华,靳强,李纪宏,金学林,魏辅文.秦岭中段南坡景观格局与大熊猫栖息地的关系.生态学报,2004,24(9):1950-1957.
    89.赵魁义,何池全.人类活动对若尔盖高原沼泽的影响与对策.地理科学2000,20(5):444—449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700