高温高压下几种岩石的弹性纵波速度及其动力学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温高压下岩石的弹性性质研究是探索地球内部奥秘的一个重要手段。尽管人们对弹性波速度(纵波速度和横波速度)的实验研究比较多,但实验的压力和温度条件(目前大多低于1.0GPa和900℃)还有待提高。在弹性波动力学特征如波形、振幅、频率及衰减等方面研究薄弱。因此,有必要在更高的温压条件下对弹性波通过壳幔岩石的速度和动力学特征等方面进行深入研究。
     在总结高温高压条件下岩石弹性波速度和动力学特征研究进展的基础上,运用超声波脉冲透射法、透射—反射联用法和频谱振幅比法研究了几种壳幔常见岩石(斜长角闪岩、闪长岩、橄榄岩、辉石岩、蛇纹石化辉石岩和蛇纹岩)的弹性纵波速度和纵波首达波的振幅、总能量、频谱和衰减等动力学特征随压力(0.4~4.0GPa)和温度(室温~1240℃)的变化特征。在1.0GPa压力下、不同温度处获得了多个不同样品的实验产物。利用光学显微镜和电子探针分析了实验产物的矿物成分和结构的变化特征,并据此分析了导致弹性纵波速度和动力学特征变化的原因。实验结果为了解地球内部物质之间的相互作用,为研究岩石圈的精细结构和演化过程和解释低速层的产生、深部震源物质的演化以及地震前兆等各种地质过程提供了新的科学依据。
     在0.4~4.0GPa压力范围内,岩石的纵波速度随压力增加而增大,高压时波速的增大幅度小于低压时波速的增大幅度。这主要是由于低压时纵横比低的孔隙易于闭合,随着压力增加,大量纵横比低的孔隙均已闭合,岩石表现出接近于组成岩石样品的全部矿物自身固有的弹性性质,因此高压时波速增大的幅度减小。当压力升高时,弹性纵波通过橄榄岩和辉石岩的首达波的波峰和波谷的绝对值、能量和品质因子值随之增大。原因是,在压力作用下,岩石的孔隙度降低,岩石内大部分裂纹闭合,并且矿物颗粒边界接触紧密,在裂纹表面和颗粒边界的能量损失减少。随压力升高,弹性纵波通过斜长角闪岩的首达波的波谷绝对值和品质因子值增大,但波峰略趋降低,能量和谱峰值均先增大后转为下降,这可能是由于斜长角闪岩在加压的过程中发生碎裂有关。弹性纵波通过三种岩石的首波的主频“漂移”现象不明显。
     恒定压力下,橄榄岩和辉石岩的纵波速度随温度(室温~约1240℃)的升高呈线性下降;斜长角闪岩和闪长岩在室温至约600或800℃呈线性下降,当温度更高时,波速迅速降低;蛇纹石化辉石岩纵波速度在低温时(室温~500℃)随温度升高呈线性降低,当温度继续升高,波速出现了迅速降低,继而快速增大,后又急剧下降的变化特征。低温时,岩石内部矿物热膨胀导致纵波速度随温度呈线性缓慢下降;高温时,脱水作用、部分熔融以及生成反应边等导致波速随温度升高呈快速非线性降低。在1.0-3.0GPa实验压力范围内,弹性纵波通过橄榄岩、辉石岩和斜长角闪岩的首波的波峰和波谷的绝对值、能量、谱峰值和品质因子值随温度的升高而降低,其中斜长角闪岩在高温时(>1100℃)纵波首波的波峰和波谷很低,几乎
    
    趋于零,品质因子值在约900℃时大幅度降低。这主要归因于高温下晶体内的缺陷增多和由
    于颗粒边界空位较多、晶格滑动或颗粒边界位错导致的颗粒边界阻尼效应以及流体自身的非
    弹性。弹性纵波通过橄榄岩、辉石岩和斜长角闪岩的首波的主频随温度升高呈先增大后减小
    的变化趋势。
     将弹性波速度和弹性波动力学高温高压实验结果与地球物理探测资料联合起来进行反
    演,则能够建立更为合理的岩石圈结构。闪长岩、斜长角闪岩和蛇纹石化辉石岩的脱水和部
    分熔融可用于解释地壳和上地慢上部的低速层或低速高衰减层。含水矿物脱出的水发生逸散
    可能是高速层形成的原因。高温高压实验中岩石脱水和熔融对弹性波速度和动力学性质的影
    响与地震中监测到的波速异常和动力学特征变化类似,因此岩石弹性波性质的高温高压实验
    结果为地震孕育(特别是化学过程直接或间接致震)和地震预报的研究提供了参考依据和实
    验基础。
The study on the elastic property of rocks at high pressures and high temperatures (HPT) plays an important role in researching the earth interior. Though there has been much progress in the measurement of elastic wave velocity, the experimental pressures and temperatures are still not high enough(<1.0GPa, <900℃). The knowledge about the elastic wave dynamic characteristics such as waveform, amplitude, frequency and attenuation (Qp, quality value) is very limited. Therefore, the elastic wave velocity and dynamics on crustal and mantle rocks at much higher PT should be further studied.
    The development of the study on the elastic wave velocity and dynamics at HPT is reviewed. The compressional wave velocity(Vp) and dynamic characteristics including amplitude, energy, frequency and attenuation in some crust and mantle rocks(amphibolite, diorite, dunite, pyroxenite, serpentinized pyroxenite and serpentinite) are studied by means of the ultrasonic pulse transmission method, the ultrasonic pulse and echo-impulse method, and the spectral ratio method at the pressure from 0.4GPa to 4.0GPa up to 1240℃ in the laboratory. Some experimental products of different samples are obtained at the constant pressure of 1.0GPa and different key temperatures. The changes of the mineral and chemical contents and the fabric in the product interior are carefully observed under an optical microscope and with an electron microprobe analyzer. The reason of changes of the elastic P-wave velocity and dynamics is discussed in detail by combination of their experimental results and the p roduct i nterior c hanges. Thee
     xperimental r esults p rovide n ot o nly strong theory basis for understanding the interaction of the earth deep materials and studying the structure and evolution of the lithosphere, but also scientific evidence for researching the formation of low velocity zones, the evolution of the rocks in earthquake source regions, and earthquake precursors.
    Vp in samples increases with the pressure increasing, and shows a greater rising rate at the low pressure about 0.4-2.0GPa than that at about 2.0-4.0GPa. At the lower pressures, the pores with low aspect ratio in rocks are easy to close, and almost all of them would close with the pressure increasing. As a result, the samples show the internal inherent elasticity of the whole constituent minerals themselves and the increasing rate of Vp turns lower at the higher pressures. As the pressure rises, the absolute values of the wave crest and trough, energy and quality value of the first arriving P-waveform passing through the dunite and the pyroxenite increase, because the energy loss between the surfaces of cracks and the mineral boundaries is reduced due to the porosity decreasing and the mineral boundaries contact more tightly at higher pressures. Though the absolute value of the wave trough and QP of the first arriving P-waveform passing through the amphibolite increase, the wave crest appreciably decreases a
    nd the energy and the amplitude maximum first increase then decrease, which is possibly due to the amphibolite crashing during the loading. The main frequency (fm) drift of the first arriving P-waveform passing through the dunite,
    
    
    
    pyroxenite and amphibolite is not evident.
    At the constant pressure, the Vp in different rocks varies differently as the temperature increasing: the Vp of the dunite and the pyroxenite decreases linearly with the temperature increasing up to about 1240℃; the Vp of the amphibolite and the diorite decreases linearly from room temperature to 600℃ or 800℃, then rapidly drops at higher temperatures; the Vp in the serpentinized pyroxenite shows a linear decrease from room temperature to about 500℃, then an abrupt decrease, a rapid lift and again a remarkable drop as the temperature increasing. Commonly, the thermal expansion of rocks and minerals results in the linear reduction of Vp in rocks at lower temperatures, while at higher temperatures the dehydration, partial-melting, and reaction rims give rise to a sharp drop of the Vp. However, the Vp incre
引文
巴特M著,郑治真等译.地球物理学中的谱分析.北京:地震出版社,1978.
    白利平.高温高压下辉长岩、斜长岩纵波速度和电学性质实验研究.中国地震局分析预报中心硕士学位论文,2001.
    白利平,杜建国,刘巍,等.高温高压下辉长岩纵波速度和电导率实验研究.中国科学,2002,32(11):959~968.
    陈达力.页岩泥化程度的声谱分析.长江科学院报,1994,13:46~49.
    陈颙.地壳岩石的力学性能—理论基础与实验方法.北京:地震出版社,1988.
    陈颙和黄庭芳.岩石物理学.北京:北京大学出版社,2001.
    邓晋福.岩石相平衡与岩石成因.武汉:地质学院出版社,1986.
    杜建国,刘连柱和康春丽.地震活动中地壳深部流体的作用研究进展.地球科学进展,1997,12(5):416~421.
    冯德益.地震波速异常.北京:地震出版社,1981.
    冯德益,顾瑾平,陈化然,等.海城7.3级地震前地震波动力学特征量的异常变化.东北地震研究,1995,11(4):1~11.
    冯德益,陈化然,郭瑞芝,等.青藏高原北缘地区地震波动力学特征量变化与强震关系的研究.内陆地震,1997,11(1):1~8.
    高山,赵志丹,骆庭川,等.东秦岭河南伊川—湖北宜昌地学断面地壳岩石组成、化学成分及形成机制.岩石学报,1995,11(2):213~226.
    高山,金振民,Kem H,等.大别山超高压榴辉岩高温高压下地震波速和密度的初步研究—对造山带地壳深部组成和莫霍面性质的启示.科学通报,1997,42(8):862~865.
    高平,郭才华,刘若新,等.华北地壳岩石物理性质与低速高导层.现今地球动力学研究及其应用,北京:地震出版社,1994,344~357.
    郭才华和宋瑞卿.高温高压下岩石纵波速度的测量.第一届高温高压岩石力学学术讨论会论文集,北京:学术期刊出版社,1988,61~66.
    郭自强.固体中的波.北京:地震出版社,1982.
    顾芷娟,郭才华,李彪,等.壳内低速高导层成因初步探讨.中国科学(D辑),1995,25(1):108~112.
    黄晓葛.华南地壳岩石弹性和变形性质高温高压实验研究.中国科学院地质与地球物理研究所博士学位论文,2001.
    金淑燕.上地幔的岩石组构和各向异性.地质科技情报,1993,12(3):32~38.
    金淑燕.斜长石组构与下地壳各向异性.地质科技情报,2000,19(3):1~5.
    金振民,金淑燕和李隽波.地球动力学和地震学的桥梁—变形岩石组构与波速各向异性关系.地球科学进展,1990,5:39~42.
    金振民和白武明.动态部分熔融作用及其地球物理意义.地质科技情报,1993,12(1):93~100.
    金振民,Ji S和金淑燕.橄榄石晶格优选方位和上地幔地震波速各向异性.地球物理学报,1994,37(4):469~477.
    李长文,余春昊,张银海,等.岩石声波主频漂移现象及其应用探讨.测井技术,1999,23:253~257.
    李宁,谭廷栋和李厚义.纵波首波速度、幅度及频率勘探天然气的实验研究与应用效果分析.地球物理测井,1990,14(1)
    林传勇,张友南,史兰斌,等。下地壳麻粒岩包体波速测定及其地质意义.地质学报,2001,75(2):277~285.
    刘斌,葛宁洁,H.Kem,et al..不同温压条件下蛇纹岩和角闪岩中波速和衰减的各向异性.地球物理学报,1998,41(3):371~381.
    刘福来,沈其韩,耿元生,等.变质反应与脱水熔融成因关系的实验研究.中国科学(D辑),1997,27(6):481~487.
    刘庆生,高山,侯渭,等.河南登封—鲁山地区地表出露剖面岩石高压条件下地震波速特征
    
    的实验研究.地球科学,1994,19(1):109~112.
    刘巍,杜建国和白利平.超临界流体在地震孕育中的作用.地震地质,2000,22(4):439~444.
    刘祖沅,胡毓良和陈颙.单轴压缩下干燥和饱水岩石中超声P波的衰减.地球物理学报,1984,27(4):349~359.
    刘祝萍,吴小薇和楚泽涵.岩石声学参数的实验测量及研究.地球物理学报,1994,37(5):659~666.
    马麦宁.青藏地壳岩石弹性波速和流变性质实验研究.中国科学院地质与地球物理研究所博士学位论文,2002.
    乔军志.水泥浆凝结硬化时内部结构与超声频谱的变化.湖南大学学报(自然科学版),1999,26:80~83.
    孙君秀,谢亦汉和张友南.华北太古宙长英质岩石的地震波速度及其在地壳中的位置.地震学报,2000,22:622~631.
    宋茂双,谢鸿森,张月明,等.高温高压下碱性橄榄玄武岩的P波速度及其影响因素.科学通报,1996,41(18):1692~1694.
    施行觉和曹文宝.岩石Q值的测量及随压力的变化规律.地球物理学进展,1993,8(4):192~198.
    Tonn R.计算Q值七种方法的比较.国外油气勘探,3(6):87~97.
    伍向阳,邹勇,陈祖安,等.砂岩和大理岩纵波速度及Q值实验研究.地球物理学进展,1993,8(4):186~191.
    吴宗絮,邓晋福,赵海玲,等.华北大陆地壳.上地幔岩石学结构与演化.岩石矿物学杂志,1994,13:106~115.
    席道瑛,刘斌,程经毅,等.干燥和饱和岩石的衰减与频散特性.1997,19(1):19~22
    谢鸿森,张月明,徐惠刚,等.高温高压下测量岩石矿物波速的新方法及其意义.中国科学(B辑),1993,23:861~864.
    谢鸿森.地球深部物质科学导论.北京:科学出版社,1997.
    谢鸿森,周文戈,赵志丹,等.高温高压条件下岩石弹性波速测量.地学前缘,1998,5(4):329~337.
    谢鸿森,周文戈,李玉文,等.高温高压下蛇纹石脱水的弹性特征及其意义.地球物理学报,2000,43(6):806~811.
    谢鸿森,周文戈,刘永刚,等.高压下岩石弹性波速度几种测量方法的比较实验研究.中国科学(D辑),2002,32(2):121~127.
    杨思乾,刘艳华和李京龙.摩擦焊接头残余应力及组织对超声频谱的影响.无损检测,2000,22:203~205.
    杨晓松,金振民,Huenges E,等.高喜马拉雅黑云斜长片麻岩脱水熔融实验:对青藏高原地壳深熔的启示.科学通报,2001,46(3):246~250.
    岳兰秀.高温高压下榴辉岩和斜长角闪岩的弹性波速度和衰减的研究.中国科学院地球化学所硕士学位论文,2001.
    赵鸿儒,孙进忠,唐文榜,等.全波震相分析.北京:地震出版社,1991
    赵志丹,高山,骆庭川,等.秦岭和华北地区地壳低速层的成因探讨—岩石高温高压波速实验证据.地球物理学报,1996,39(5):642~652.
    赵志丹.中国大别山、华北和青藏高原岩石弹性波速:对岩石圈组成和壳—幔循环和启示.中国科学院化学研究所博士后研究报告,1998.
    赵志丹,谢鸿森,周文戈,等.大别山地区岩石高温高压弹性波速及其对岩石圈组成和壳—幔循环的限制.自然科学进展,2001,11(1):52~57.
    张友南和李彪.山西裂谷带地壳岩石波速的研究.地球物理学进展,1993,8(4):214~224.
    张友南和马瑾.深部地壳镁铁质岩石波速的研究.地球物理学报,1997,40(2):221~230.
    周文戈,谢鸿森,赵志丹,等.哀牢山变质带元江—墨江剖面岩石的纵波速度特征及其地质意义.地球物理学报(增刊),1998,41:48~54.
    周文戈.高温高压下岩石弹性波速度测量及地质应用.中国科学院地球化学研究所博士后研究报告,1998.
    
    
    周文戈,谢鸿森,李玉文,等.福建塔庄粗面玄武岩高温高压条件下纵波速度异常原因初探.地质科技情报,1998,17(4):19~24.
    周文戈,谢鸿森,赵志丹,等.晶体大小分布对高压下岩石纵波速度影响的初步研究.高压物理学报,1998,12(3):207~211.
    周文戈,谢鸿森,赵志丹,等.粗面玄武岩的纵波速度与相变.科学通报,1999,44(4):424~427.
    周文戈,谢鸿森,郭捷,等.黑云二长片麻岩—榴辉岩相变的纵波速度.自然科学进展,2000,10(8):716~721.
    周文戈,谢鸿森,赵志丹,等.高压下测量岩石纵波速度的反射—透射法.地质科技情报,2001,20(3):1~5.
    郑治真.波谱分析基础.北京:地震出版社,1978.
    朱传镇,石汝斌,罗胜利,等.新疆西克尔地区微震波谱的初步研究.地球物理学报,1975,18(4).
    朱兆言和崔德鹏.闾城-海城-东沟剖面深地震波动力学特征初探.东北地震研究,1995,11(3):62~70
    Anderson D L. Temperature and pressure derivatives of elastic constant with application to the mantle. J. Geophys. Res., 1988, 93: 4688~4700.
    Anderson D L. Theory of the earth. Blackwell Scientific Publications, 1989.
    Barruol G and Kern H. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea zone-experimental and calculationed data. Phys. Earth Planet. Inter., 1996, 95: 175~194.
    Bergman M I. Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature, 1997, 389: 60~63.
    Birch F.The velocity of compressional waves in rocks to 10kbar: part 1. J. Geophys. Res., 1960, 65: 1083~1102.
    Birch F.The velocity of compressional waves in rocks to 10kbar: part 2. J. Geophys. Res., 1961, 66: 2199~2224.
    Born W T. Attenuation constant of earth materials. Geophysics, 1941, 6: 132~148.
    Bridgman P W. Polymorphic transitions and geological phenomena. Amer. J, Sci., 1945, 243: 90~97.
    Christensen N I. Compressional wave velocities in metamorphic rocks at pressure to 10kbar. J. Geophys. Res., 1965, 70(24): 6147~6164.
    Christensen N I. Shear-wave velocities in metamorphic rocks at pressures to 10kbar. J. Geophys. Res., 1966, 71:3549~3556.
    Christensen N I. Compressional wave velocities in possible mantle rocks to pressures of 30kbar. J. Geophys. Res., 1974, 79(24): 407~412.
    Christensen N I and Fountain D M. Constitution of the lower continental crust based on experimental studies of seismic velocity in granulite. Geol. Soc. Am. Bull., 1975, 79: 407~412.
    Christensen N I. Compressional wave velocities in rocks at high temperature and pressure, critical thermal gradients, and crustal low-velocity zones. J. Geophys. Res., 1979, 64(B12): 6849~6857.
    Christensen N I and Szymanski D L. Seismic properties and origin of reflectivity from a classic Paleozoic sedimentary sequence, Valley and Ridge province, southern Appalachians. Geol. Soc. Am. Bull., 1991, 103: 277~289.
    Christensen N I and Mooney N D. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res., 1995, 100(B7): 9761~9788.
    Christensen N I. Pisson's ratio and crustal seismology. J. Geophys. Res., 1996, 101:3139~3456.
    Chroston P N and Evans C J. Seismic velocities of granulites from the Seiland petrographic province, Norway: implications for Scandinavian lower continental crustal. J. Geophys., 1983, 52: 14~21.
    Clark V A, Tittmann B R, and Spencer T W. Effect of volatiles on attenuation(Q~(-1)) and velocity in sedimentary rocks. J. Geophys. Res., 1980, 35: 5190~5198.
    Coghlan R and Giletti B J. Oxygen transport along high-angle feldspar-feldspar grain boundaries.
    
    Eos Trans. AGU, 1987, 68:417.
    Condit R H, Weed H C, and Piwinskii A J. A technique for observing oxygen diffusion along grain boundary regions in synthetic forsterite, in Point Defects in Minerals, Geophys. Monogr. Ser., 31, edited by Shock R N, 97~105, AGU, Washington, D C, 1985.
    Darwin C G. The theory of x-ray reflexion. Phil. Mag. 1914, 27:315-333 & 675~691.
    Drummond B J. Seismic constraints on the chemical compositional of the ernst of the Pilbara craton, northwest Australia. Revista Brasileisra de Geociencias, 1982, 13:113~120.
    Duan Yongkang, Xu Zhaoyong, and Han Ming. The Q-value of P waves of 9 different types of rocks from western Yunnan province, China. 地震研究, 1991, 14(2): 1791~1797.
    Drnry M and John D F G. Mantle rheology: insights from laboratory studies of deformation and phase transition,The Earth's mantle: composition, structure, and evolution(edited by Ian Jackon). Cambridge University Press, 1998, 556~558.
    Fitting D W and Adler L. Ultrasonic S pectral Analysis for Nondestmctive E valuation. Plenum Press, New York, 1993.
    Fountain D M. The Ivrea-Verbaro and Strona-Ceneri zones, northern Italy: a cross-section of the continental crust-new evidence from seismic velocity of rock samples. Tectonophysics, 1976, 33(1-2): 145~165.
    Fountain D M and C hristensen N I. C omposition o f t he continental c rnst and upper mantle: A review. In: L C Pakiser and W D Mooney, Geophysical framework of the continental United States: Boulder, Colorado Geological Society of American Memoir, 1989, 172: 711~742.
    Fountain D M, Salisbury M H, and Percival J. Seismic structure of the continental crnst base on velocity measurements from the Kapuskasing Uplift. J. Geophys. Res., 1990, 95(B2): 1167~1186.
    Fountain D M, Boundy T M, Austrheim H, et al. Eclogite-facies shear zones-deep crnstal reflectors? Tectonophysics, 1994, 232: 411~424.
    Gao S, Kern H, Liu Y S, et al.. Measured and calculated seismic velocities and densities for granulites from zenolith occurrences and adjacent exposed lower crustal sections: A comparative study from the North China craton. J. Geophy. Res., 2000, 105(B8): 18965~18976.
    Gebrande H, Kern H, and Rummel E Elasticity and Inelasticity, in Landolt-Bornstein numerical data and functional relationships in Science and Technology, New Series; Group V. Geophysics and Space Research, Vol. 1, Physical properties of rocks, Subvolume b, 1~233,edited by Hellwege K H, Springer-Verlag, Berlin-Heidelberg, New York, 1982.
    Green H W Ⅱ and Buenley P C. The failure mechanism for deep-focus earthquakes. Rheology and Tectonics, 1990, 54: 133~141.
    Green H W Ⅱ, Young T E, Walker D, et al. Anticrack-associated faulting at very high pressure in natural olovine. Nature, 1990, 348: 720~722.
    Griggs D T. High-pressure phenomena with application to geophysics. In: Ridenour L Ned. Modem Physics for the Engineer. New York: McGraw-Hill, 1954, 272~305.
    Griggs D T and Handin J H. Observations on fracture and hypothesis of earthquake, Mem. Geol. Soc. Amer., 1960, 79: 347~373.
    Gueguen Y and Mercier J M. High attenuation and the low velocity zone. Phys. Earth Planet. Inter., 1973, 7:39~46.
    Ito K and Tatsumi Y. Measurement of elastic velocities in granulite and amphibolite having identical H_2O free bulk compositions up to 850~C at 1GPa. Ear. Plan. Sci. Lett., 1995, 133: 255~264.
    Ito K. Effects of H_2O on elastic wave velocities in ultrabasic rocks at 900℃ under 1GPa. Phys. Earth Planet. Inter., 1990, 61(3-4): 260~268.
    Jackson, D D and Anderson D L. Physical mechanisms of seismic wave attenuation. Rev. Geophys. Space Phys., 1970, 8:1~63.
    Jacobson R S and Lewis B T R. The first direct measurement of upper oceanic crustal compressional wave attenuation. J. Geophys. Res., 1990, 95 (B 11): 17417~17429.
    Jin Z, Green H W, and Zhou Y. Melt topology in partially molten peridotite during ductile deformation. Nature, 1994, 372: 164~167.
    Johannes W and Holtz E Petrogenesis and experimental petrology of granitic rocks. Berlin:
    
    Springer-Verlag. 1996.
    Johnston D H, Toks?z M N, and Timur A. Attentuation of seismic waves in dry and saturated rocks: Ⅱ.Mechanisms. Geophysics, 1979, 44 (4): 691~711.
    Johnston D H and Toks?z M N. Ultrasonic P and S wave attenuation in dry and saturated rocks under pressure. J. Geophys. Res., 1980, 85(B2): 925~936.
    Johnston D H and Toks6z M N. Thermal cracking and amplitude dependent attenuation. J. Geophys. Res., 1980, 85(B2): 937~942.
    Karato S. Low Q zone at the base of the mantle: Evidence for lower mantle convection? Phys. Earth Planet. Inter., 1980, 22:155~161.
    Karato S I and Wu P. Rheology of the upper mantle: a synthesis. Science, 1993, 260: 771~778.
    Karato S I, Zhang S Q, and Wenk H R. Superplasticity in earth's lower mantle: evidence from seismic anisotropy and rock physics. Science, 1995, 270: 458~461.
    Katahara K W, Rai C S, Manghnani M H, et al.. An interferometric technique for measuring velocity and attenuation in molten rocks. J. Geophys. Res., 1981, 86:11779~11786.
    Kern H and Richter A. Temperature derivatives of compressional and s hear w ave velocities in crustal and mantle rocks at 6kbar confining pressure. J. Geophys., 1981, 49:47~56.
    Kern H. P-and s-wave velocities in crustal and mantle rocks under the simultaneous action of high confining pressure, and high temperature and the effect of the rock microstructure. High-Pressure Research in Geoscience(Editor W.Schreyer),E.Schreizerbart'sche Verlagsbuchhandlung, Stuttgart, 1982, 15~45.
    Kem H and S chenk V. Elastic w ave velocity in rocks from a 1 ower crustal section i n northem Calabria(Italy). Phys. Earth Planet. Inter. 1985, 40:147~160.
    Kern H and Schenk V. A model of velocity structure beneath Calabria, southem Italy, based on laboratory data. Ear. Plan. Sci. Lett., 1988, 87: 325~337.
    Kern H and Siegesmund S. A test of the relationship between seismic velocity and heat production for crust rocks. Earth Planet. Sci. Lett., 1989, 92 (1): 89~94.
    Kem H and Wenk H R. Fabric-related velocity anisotropy and shear-wave splitting in rocks from the Santa Rosa mylonite zone, Califomia. J. Geophys. Res., 1990, 95(B7): 11212~11223.
    Kern H and Tubia J M. Pressure and temperature dependence of P- and S-wave velocities, seismic anisotropy and density of sheared rocks from the Sierra Alpujata massif(Ronda peridotites, southem Spain). Ear. Planet. Sci. Lett. 1993, 119: 191~205.
    Kern H, Gao S, and Liu Q. Seismic properties and densities of middle and lower crustal rocks exposed along the North China geoscience transect. Ear. Planet. Sci. Lett., 1996, 139(4): 439~455.
    Kern H, L iu B, and Popp T. R elationship between a nisotropy of P- and S-wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J. Geophys. Res.. 1997, 102: 3051~3065.
    Kern H, Gao S, Jin Z, et al. Petrophysical studies on rocks from the Dabie ultrahigh-pressure(UHP) metamorphic belt, Central China: implications for the composition and delamination of the lower crust. Tectonophysics, 1999, 301:191~215
    Kim D O, Katahara K W, Manghnani M H, et al.. Velocity and attenuation anisotropy in deep-sea carbonate sediments. J. Geophys. Res., 1983, 88(B3): 2337~2343.
    Knopoff L. Q. Rev. Geophys. Space Phys., 1964, 8: 247~254.
    Lebedev E B and Kern H. The effect of hydration and dehydration reactions on wave velocities in basalts. Tectonophysics, 1999, 308: 331~340.
    Li B, Gwanmesia G D, and Liebermann R C. Sound velocities of olivine and beta polymorphs of Mg_2SiO_3 at Earth's transition zone pressures. Geophys. Res. Lett., 1996, 23: 2259~2262.
    Liu Y, Xie H, Guo J, et al.. A new method for experimental determination of compressional velocities in rocks and minerals at high pressure. Chin. Phys. Lett., 2000, 17(12): 924~926.
    Liu L. Phase transformations, earthquakes and the descending lithosphere. Phys. Earth. Planet. Inter., 1983, 32: 226~240.
    Liu L. Phase transformations in serpentine at high pressure and temperature and implications for subducting lithosphere. Phys. Earth Planet. Inter., 1986, 42: 255~262.
    Lebedev E B and Kern H. The effect of hydration and dehydration reactions on wave velocities in basalts. Tectonophysics, 1999, 308:331~340.
    Matsushima S. Compressional wave velocity in olivine nodules at high pressure and temperature.
    
    J. Phys. Earth, 1972, 20:187~195.
    Matsushima S. Compressional and shear wave velocities of igneous rocks and volcanic glasses to 900℃ and 20kbar. Tectonohpysics, 1981, 75: 257~271.
    Matsushima S. The effects of frequence on the elastic wave velocity in rocks at high temperatures under pressure. Tectonophysics, 1986, 124: 239~259.
    Matsushima S. Partial melting of rocks observed by the sound velocity method and the possibility of a quasi-dry low velocity zone in the upper mantle. Phys. Earth. Planet Inter., 1989, 55: 306~312.
    Manghnani M H, Sato H, and Rai C S. Ultrasonic velocity and attenuation measurements on basalt melts to 1500~C: Role of composition and structure in the viscoelastic properties, J. Geophys. Res., 1986, 91(B9):9333~9342.
    Mcdonal F J, Angona F A, Mills R L, et al.. Attenuation of shear and compressional waves in Pierre Shale. Geophysics, 1958, 23:421~439.
    Meade C and Jeanlog R. Deep-focus earthquakes and recycling of water into the earth's mantle. Science, 1991, 252: 68~72.
    Mizutani H and Kanamori H. Variation of elastic velocity and attenuative property near the melting temperature. J. Phys. Earth, 1964, 12(2):43~49.
    Mott N E Slip at grain boundaries and grain growth in metals. Proc. Phys. Soc. London, 1948, 60: 391~394.
    Murase T and Fukuyama H. Shear wave velocity in partially molten peridotite at high pressure. Carnegie Inst. Wash. YB, 1980, 79:307~310.
    Murphy W F. Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass. J. Acoust. Soc. Am., 1982, 71: 1458~1468.
    Nersesov I L, Semenov A N, and Simbireva I G. Space Time distribution of travel time ratios of transverse and longitudinal waves in the Garm Area, in the physical Basis of Foreshockes. Akad. Nauk USSR Publication, 1969.
    Nur A and Booker J R. A ftershocks caused by pore fluid flow? Science, 1 972, 175:8 85~887.
    Orowan E. Mechanism of seismic faulting. Geol Soc Memoir, 1960, 79: 323~345.
    Pakiser LC, Eaton J P, Healy J H, et al.. Earthquake prediction and control. Science,1969, 166 (3912):1467~1474.
    Popp T and Kern H. Thermal dehydration reactions characterized by combined measurements of electrical conductivity and elastic velocities. Ear. Plan. Sci. Lett., 1993, 120(1): 43~57.
    Post R L Jr. High temperature creep of Mt. Burnet dunite. Tectonophysics, 1965.42:75~110.
    Raleigh C B and Paterson M S. Experimental deformation of serpentinite and its tectonic implication. Geophys Res, 1965, 70:3965~3985.
    Richet P and Fiquet G. High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al_2O_3-SiO_2. J. Geophys. Res., 1991, 96:445~456.
    Richer P, Ingrin J, and Mysen B O. Premelting effects in minerals: an experimental study. Earth. Planet. Sci. Lett., 1994, 121(4): 589~600.
    Robert W S, Thomos B S, and Anthomy A C. Supercritical water: A medium of chemistry. Special Report, Chemistry and Engineering News, 1991, 11:26~39.
    Rudnick R L and Fountain D M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys, 1995, 33(3):267~309.
    Rutter M J and Wyllie P J. Melting of vapour-absent tonalite at 10kbar to simulate dehydration-melting in the deep crust. Nature, 1988, 334(14):159~160.
    Sato H and Manghnani M H. Utrasonic measurements of Vp and Qp: relaxation spectrum of complex modulus on basalt melts. Phys. Earth planet. Inter., 1985, 41:18~33.
    Sato H, Sacks I S, Murse T, et al.. Attenuation of compressional wave in peridotite measured as a function of temperature at 200MPa. Pure Appl. Geophys., 1989, 128: 433~447.
    Sato H, Sacks I S, and Murase T. The use of laboratory velocity data for estimating temperature and partial melt fraction in the low-velocity zone: comparison with heat flow and electrical conductivity studies. J. Geophys. Res., 1989, 94(B5): 5689~5704.
    Schmeling H and Jacoby W R. On modelling the lithosphere in mantle convection with nonlinear rheology. J. Geophys., 1981, 50: 89~100.
    Schmeling H. Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part 1: elasticity and anelasticity. Phys. Earth Planet. Inter., 1985, 41:
    
    34~57.
    Semenov A N. Variations of the travel time of transverse and longitudinal waves before violent earthquakes. Izv. Acad. Dci. USSR, Physics of the Solid Earth, 1969, 3:245~258.
    Shewmon P G. Diffusion in Solids. New York: McGraw-Hill, 1963.
    Spetzler H and Anderson D L. The effect of temperature and partial melting on velocity and attenuation in a simple binary system. J. Geophys. Res., 1968, 73:6051~6060.
    Stocker R L and Gordon R B. Velocity and internal friction in partial melts. J. Geophys. Res., 1975, 80: 4828~4836.
    Sung C M and Bums R G. Kinetics of the olivine-spinel transition: implication to deep-focus earthquake genesis. Earth Planet. Sci. Lett., 1976, 32:165~170.
    Tatsumi Y. Migration of fluid phase and genesis of basalt magmas in subduction zones. J. Geophys. Res., 1989, 94: 4697~4707.
    Tittrnann B R, Clark V A, Richardson J M, et al.. Possible mechanism for seismic attenuation in rocks containing small amount of volatiles. J. Geophys. Res., 1980, 85:5199~5208.
    Tittmann B R, Ahlberg L A, and Curnow J M. Attenuation of flexural waves in igneous rocks near seismic frequencies (abstract). Eos Trans. AGU, 1978, 59:1183.
    Toks?z M N, Jackson D H, and Timur A. Attenuation of seismic waves in dry and saturated rocks, I Laboratory measurements. Geophysics, 1979, 44: 681~690.
    Tompkins M J and Christensen N I. Ulreasonic P- and S-wave attenuation in oceanic basalt. Geophys. J. Int., 2001, 145: 172~186.
    Ulmer P and Tromsdorff V. Serpentine stability to mantle depths and subduction-related magmatism. Science, 1995, 268: 858~861.
    Vaisnys J R and Pilbeam C C. Creep-earthquake initiation by phase transformation. J. Geophys. Res., 1976, 81: 985~988.
    Volarovich M P and Bajuk E I. Elastic properties or rocks, in Issledovanie Fiziceskich sv mine ralnogo vescestva zemli pri vysokich temmodinamiceskich parametrach, edited by Volarovic M P, Stiller H, Lebedev T S, 43~49, Izd. Nakova dumkz, Kiev, 1977.
    Walsh J B. Seismic wave attenuation in rock due to friction. J. Geophys. Res., 1966, 71: 2591~2599.
    Walsh J B. attenuation in partially melted material. J. Geophys. Res., 1968, 73: 2209-2216.
    Wei Liu, Jianguo Du, Liping Bai, et al.. Compressional elastic wave velocities of serpentinized olivine-bearing pyroxenite up to 960"C at 1.0GPa. J. Phys.(condensed matter), 2002, 14: 11355~11358.
    Wenzel F, Sandmeier K J, and Walde W. Properties of lower crust from modeling refraction and reflection data. J. Geophys. Res., 1987, 92: 11575~11583.
    Wepfer W W and Christensen N I. Compressional wave attenuation in oceanic basalts. J. Geophys. Res., 1990, 95(Bll): 17431~17439
    Whitcomb J H, Garmany J D, and Anderson D L. Earthquake prediction: Variation o fs eismic velocities before the San Francisco Earthquake. Science, 1973, 180: 632~635.
    Winkler K W, Nur A, and Gladwin M. Friction and seismic attenuation in rocks. Nature, 1979, 227: 528~531.
    Winkler KW, and Nur A. Seismic attenuation: Effects of fluids and frictional sliding. Geophysics, 1982, 47(1): 1~15.
    Winkler K W. Dispersion analysis of velocity and attenuation in Berea sandstone. J. Geophys. Res., 1985, 90: 6793~6800.
    Wolf M B and Wyllie P J. Dehydration-melting of amphibolite at 10kbar: the effects of temperature and time. Contrib. Mineral Petrol, 1994, 115: 369~383.
    Xu J, Zhang Y, Hou W, et al.. Measurements of ultrasonic wave velocities at high temperature and high pressure for window glass, pyrophyllite, and kimberlite up to 1400℃ and 5.5GPa. High Temperature-High Pressure, 1994, 26: 375~384.
    Zamanek J Jr and Rudnick I. Attenuation and dispersion of elastic waves in a cylindrical bar. Journal of Acoustic Society of America, 1961, 33:1283~1288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700