草酸氧化酶基因(OxO)转化大豆成熟胚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是我国非常重要的油料作物之一,是豆科植物中最富含有营养又易于消化的食物。大豆菌核病对大豆的生长危害严重,菌核病在大豆的整个生育期都可以发病,并造成叶腐、苗枯、荚腐等症状。每次发病轻则减产20%-30%,严重时减产可达到50%-90%,甚至导致绝产。在农业生产上,人们主要采取化学防治、轮作等方式防治菌核病。但实际防治效果并不明显。因此,培育出高品质的大豆品种是十分必要的。然而,传统育种所需时间过长,对后代的表现预见性较差。因此随着基因工程技术的发展,转基因育种逐渐成为现阶段获得优良作物品种的重要方法。
     众多研究表明,菌核病致病与核盘菌分泌的草酸毒素有着十分重要的关系。而草酸氧化酶(oxalate oxidase, OxO, E.C.1.2.3.4)则是最主要的草酸降解酶之一。草酸氧化酶主要存在于少数的禾谷类的植物中,因它能够使草酸降解为H202和C02,所以可以降解掉草酸的毒性,从而延缓病原真菌的侵染。因此我们可以将草酸氧化酶基因OxO转化进入大豆植株中,以期大豆植株获得对菌核病的抗性。
     本研究以大豆成熟胚为主要研究对象,利用根癌农杆菌介导OxO基因遗传转化大豆成熟胚胚尖,并通过组织化学染色和PCR技术,初步鉴定目的基因已整合到目标材料中。在研究过程中,首先,我们建立了一种适合大豆成熟胚胚尖的再生体系,其次,我们系统分析了农杆菌浸染时间、共培养时间、恢复培养时间等因素对大豆遗传转化的影响,进而成功建立了一种适合大豆成熟胚胚尖遗传转化的体系。具体研究内容包括以下3个部分:
     1.建立了一种适合于大豆成熟胚胚尖的再生体系
     选取成熟光滑、表面无病斑的大豆种子→70%酒精消毒浸泡50s-1min→2%NaClO溶液浸泡大豆种子,期间不定期的摇晃20min→无菌水清洗4-5次→无菌水浸泡24h→剥取胚尖,将其接种于预培养基中培养2d→将外植体转接于含有3mg/L6-BA和0.05mg/L IBA的不定芽诱导培养基中→待不定芽生长至2-3cm时,将不定芽切下转接于含0.3mg/L IBA的生根培养基中→待不定根生长茁壮时,炼苗移栽。
     2.建立了一种适合于大豆成熟胚胚尖外植体的遗传转化体系
     大豆种子消毒后浸泡过夜→剥取胚尖,预培养基中培养2d→农杆菌LBA4404/3303.OxO活化、培养→用OD600=0.6一0.8ABS的浸染液浸染胚尖外植体20h,共培养基中暗培养5d→清洗两次外植体,恢复培养7d→筛选培养30d,每隔10d更换一次培养基→将经过筛选存活下来的抗性芽诱导生根→待不定根长至茁壮的时候,便可将其炼苗,移栽于营养土中。
     3.转基因大豆苗的组织化学检测与鉴定
     取经过筛选存活下来的大豆苗的新鲜叶片,分别进行GUS组织化学染色,gfd荧光显微观察及PCR检测。结果显示:有6株转化苗的叶片被染成了蓝色,且可以观察到绿色荧光,PCR也扩增出了与阳性对照相同的条带。结果表明外源基因OxO已成功整合至大豆基因组中。
Soybean, which is one of the most important oil crops in China and around the world, is a food of the most rich in nutrition and easy to digest in the all of Leguminous plants, and also is the most abundant and cheapest source of protein. Sclerotinia is a seriously harmful disease for soybean. It can harm soybean during the whole growth period of soybean, and cause a series of symptoms, such as leaves rot, seedling blight, pod rot. Sclerotinia can cause the reduction of soybean. And the reduction of soybean can reach20%to30%, and50%to90%when Sclerotinia is seriously for soybean, and even more have no harvests. For agricultural production, people take measures such as chemical control, cropping system to prevent Sclerotinia. But it is not obvious for the effect of prevention. So it is necessary for us to cultivate new soybean varieties of high-quality. However, the traditional breeding methods is time-consuming and uncertainty of the phenotype of offspring. With the development of the technology of genetic engineering, transgenic breeding has become an important method for the present stage to obtain excellent crop varieties.
     Many researches indicate that there is an important relationship between Sclerotinia and oxalic acid which Sclerotinia scleroterum secrete. Oxalate oxidase (oxalate oxidase, OxO, E.C.1.2.3.4) is one of the most primary oxalic acid degradation enzyme. Oxalate oxidase mainly exists in the few cereal plants. It can degrade oxalic acid into H2O2and CO2to weaken the toxicity of oxalic acid, so that delay infection of pathogenic fungi. So we use oxalate oxidase gene (OxO) to transfect soybean plants, in order to get soybean plants which have high resistance to Sclerotinia.
     In this study, we use OxO gene to transfect embryonic tips of mature soybeans mediated by Agrobacterium tumefaciens. First, we established a regeneration system for embryonic tips of soybean. Second, we discussed the influence factors of genetic transformation of soybean which are the time of transformation mediated by Agrobacterium tumefaciens, the time of co-culture and recovery-culture and so on. As a result, we established a transformation system that adapts embryonic tips of soybean. The main results were as follows:
     1. Establishment of regeneration system for embryonic tips of soybean
     Selected mature soybean seeds which are smooth and no lesion on surface→washed the soybean seeds with70%ethanol for50s-1min→soaked seeds in2%NaCIO for20min, we need shake irregularly→washed seeds with sterile water4~5times→soaked in sterile water for24h→stripped embryo tip as explants, and cultured on pre-incubation medium for2days→cultured the explants on shoot induction medium which contains3mg/L6-BA and0.05mg/L IBA→when the shoots were about2-3cm, cut the shoots and transferred them to rooting medium which contains0.3mg/L IBA→when the roots of shoots were strong, transferred them to nutritive soil.
     2. Establishment of Agrobacterium-mediated transformation system for embryonic tips of soybean
     Sterilized soybean seeds and soaked in sterile water for the whole night→stripped embryo tip as explants, and cultured on pre-incubation medium for2days→activated and cultured A. tumefaciens LBA4404/3304-OxO→infected embryo tips with infection solution whose OD600=0.6-0.8ABS for20h, then co-culture for5days in the darkness→washed explants2times, and transferred them to recovery-culture medium for7days→transferred explants to selection-culture medium for30days, and changed another fresh selection-culture medium for10days→selected the survival shoots to rooting medium→when the roots of shoots were strong, transferred them to nutritive soil.
     3. Histochemical detection and identification of transgenic soybean plants
     Cut fresh leaves of soybean plants which were survival from the selection-culture medium, to detection with GUS staining, observation of gfp fluorescence and PCR amplification. The results showed, there were6strains which were dyed blue, and can observe green fluorescence. And PCR amplification also showed that there were same band with positive control. All the results show that the foreign gene OxO has been successfully integrated into the soybean genome.
引文
[1]赵丽,许艳丽,李春杰.大豆菌核病的识别与综合防治[J].大豆通报.2006,(3):15-16
    [2]杨勇.大豆菌核病的发生与防治[J].现代农业科技.2010,(7):187
    [3]孙明明,韩英鹏,陈浩等.大豆菌核病鉴定方法比较及分析[J].大豆科学.2007,26(5):728-731
    [4]李玉芳,官春云.油菜菌核病菌侵染的组织病理学、致病及抗病机制的研究[J].作物研究.2005,(5):327~331
    [5]黄绪堂.向日葵菌核病菌的生长发育和侵染循环[J].黑龙江农业科学.2001,(4):1-4
    [6]黄绪堂.向日葵菌核病菌的生长发育和侵染循环[J].黑龙江农业科学.2001,(4):1-4
    [7]吴纯仁,刘后利.油菜菌核病的致病机制Ⅲ.罹病组织内草酸毒素积累和分布的初步分析[J].植物病理学报.1991,21(2):135~140
    [8]张建忠,邵兴华,肖红艳.油菜菌核病的发生与防治研究进展[J].南方农业学报.2012,43(4):467-471
    [9]朱小惠,陈小龙.油菜菌核病的致病机理和生物防治[J].浙江农业科学.2010,(5):1035-1039
    [10]李玉芳.油菜菌核病致病过程中酶活性以及草酸含量变化的研究[D].[硕士学位论文].湖南:湖南农业大学.2007
    [11]张志元,张翼,罗永兰等.油菜抗菌核病的部分生理生化机制[J]中国油料作物学报.2007,29(2):83-88
    [12]Kotsira V P, Clonis Y. Oxalate oxidase from barley roots:purification to homogenity and study of some molecular, catalytic, and binding properties [J].Arch Biochem. Biophys, 1997,340:239-249
    [13]秦虎强,高小宁,左叶信等.不同药剂和农业措施对油菜菌核病的防治研究[J].西北农业学报.2011,20(4):173~178
    [14]Zhou F, Zhang Z, Gregersen P L,et al. Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus[J]. Plant Physiol,1998, 117:33~41.
    [15]Requena L S, Bornemann. Barley(Hordeum vulgare)oxalate oxidase is a manganese-containing enzyme[J]. Biochem J,1999,343:185~190
    [16]Woo E J, Dunwell J M. Barley oxalate oxidase is a hexameric protein related to seed storage proteins:evidence from X-ray crystallography[J]. FEBS Lett,1998,437:87~90
    [17]Schweizer P, Christoffel A, Dubler R. Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance[J]. The Plant Journal, 1999,20(5),541~552
    [18]Dumas B, Freyssinet G, Pallett K E. Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings [J]. Plant Physiology, 1995,107(4):1091~1096
    [19]Berna A, Bernier F. Regulation by biotic and abiotic stress of a wheat germin encoding oxalate oxidase, a H2O2-producing enzyme[J]. Plant Mol Biol,1999,39(3):539-549
    [20]Mahmut C, Andrew C, Cuming. Spacial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination[J]. The plant Journal,1998,15(2):165~ 171
    [21]景岚,康振生.植物病原真菌致病毒素草酸的研究进展[J].西北植物学报,2003,23(12):2223-2228
    [22]Leon J, Lawton M A, Raskin I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco[J]. Plant Physiol,1995,108:1673~1678
    [23]Alvarez M E, Penndll R I, Meijer P J. Reactive oxygen intermediates mediate a systemic signal networks in the establishment of plant immunity[J].Cell,1998,92:773~784.
    [24]黄俊斌,周发松,Hans Thordal-Christensen等.草酸氧化酶基因在受白粉菌侵染大麦叶片中的诱导表达[J].华中农业大学学报.1998,17(4):324-330
    [25]张建军,赖宇雄,刘娥娥等.草酸氧化酶在水稻胚芽鞘衰老中的作用[J].植物生理学通讯.2010,46(10):1040-1044
    [26]Bernier F, Berna A. Germins and germin-like proteins:Plant do-all proteins. But what do they do exactly [J]. Plant Physiol Biochem,2001,39:545~554
    [27]Wojtaszek P. Oxidative burst:an early plant response to pathogen infection[J]. Biochem J,1997,322:681~692.
    [28]Hurkman W J, Tao H P, Tanaka CK. Germin like polypeptides increase in barley roots during saltstress[J]. Plant Physiol,1991,(97):366.
    [29]Federico Maria L, Skadsen Ronald W. Spatial and temporal diver gence of expression in duplicatio barley Germin like protein encoding genes[J]. Genetics,2006,174:179~190.
    [30]冯洁,Fakano Makoto水稻抗稻瘟病防御系统中草酸氧化酶的鉴定[J].农业生物技术学报,2004,12(3):312~315.
    [31]刘胜毅,Fitt BDL,刘仁虎等.油菜防卫素和草酸氧化酶基因的克隆与诱导表达水平研究[J].中国油料作物学报,2004(03):43-49
    [32]刘勇,柯绍英.双低油菜农杆菌介导法导入草酸氧化酶基因研究[J].西南农业学报.2007,20(6):1176-1179
    [33]何晓兰,刘桂华,吴敬音等.农杆菌介导草酸氧化酶基因转入油菜[J].江苏农业科学.2008,(6):73-75
    [34]沙日娜.农杆菌介导草酸氧化酶(OXO)基因转化向日葵的研究[D].[硕士学位论文].内蒙古:内蒙古农业大学.2007
    [35]景岚,康振生,孙燕飞等.草酸氧化酶基因转化烟草的研究[J].西北植物学报.2004,24(10):1845~1849
    [36]D Malcolm Living stone, Jaime L Hampton, Patrick M Phipps, et al. Enhancing resistance to sclerotinia minorin peanut by expressing a barley oxalate oxidase gene[J]. Plant Physiology,2005,137:1354~1362
    [37]Hu X, Bidney D L, Yalpani N, et al. Overexpression of a gene encoding hydrogen peroxidegenerating oxalate oxidase evokes defense responses in sunflower[J]. Plant Physiol,2003,133:170~181.
    [38]李璠.中国主要栽培植物的起源和传播(中)[J].世界农业,1981,(2):54~56
    [39]王国勋.大豆品种生态研究——Ⅲ.大豆品种蛋白质、脂肪含量的地理纬度生态分布[J].中国油料,1979,(1):46-50
    [40]江涛,姜荣春,王军.从大豆产业开放及其产业格局演变看粮食安全[J].国际贸易,2012,(2):45-49,53
    [41]国家统计局.中国统计年鉴-2012[M].北京:中国统计出版社,2012.13-15
    [42]海关信息网.2011年我国进口大豆检测报告[EB].2012.http://wenku.baidu.com/view/f3b0362f4b73f242336c5fdl.html
    [43]孔祥智,丁玉.我国农产品进出口贸易的特点及趋势:1998-2011[J].经济与管理评论农业经济研究,2013,(1):103~112
    [44]杨光圣,员海燕.作物育种原理[M].北京:科学出版社,2009.61
    [45]韩东伟.影响大豆杂交成活率因素分析[J].黑龙江农业科学.2010,(9):107-108
    [46]曹海潮,谢甫绨,张惠君.大豆远缘杂交F2代农艺性状的遗传规律研究[J].大豆科学.2008,27(4):576~580
    [47]张丽亚,张磊,黄志平等.高抗倒伏大豆新品种合豆3号的选育及栽培技术[J].大豆通报,2005,(2):19
    [48]王连铮,王岚,赵荣娟.高油大豆新品种中黄20(中作983)的选育和提高大豆含油量的育种研究[J].中国油料作物学报.2003,25(4):35-43
    [49]倪德祥,俞俏,S王鲁彤.农杆菌转化植物细胞的机理及其基因工程[J].浙江农村技术师专学报.1993,(1):31~36
    [50]李美玉,李锐,于敏.根癌农杆菌介导的金发草遗传转化条件的优化[J].中国生物工程杂志.2013,33(1):41-46
    [51]孙传波,郭嘉,陶蕊.农杆菌介导玉米遗传转化体系的研究[J].中国农学通报.2012,28(36):71-75
    [52]张正国,张丽莉,卢翠华等.农杆菌介导BADH耐盐基因转化马铃薯的研究[J].作物杂志.2012,(3):28~31
    [53]乔利仙,于新玲,隋炯明.农杆菌介导的花生遗传转化体系的优化[J].核农学报.2012,26(9):1244-1248
    [54]张洁,商蕾,郑永文等.大豆胚尖遗传转化体系优化及抗逆基因GmPK转化研究[J].植物遗传资源学报.2012,13(2):271-277
    [55]李丹丹,张洁,刘娜.农杆菌介导的大豆子叶节非组织培养遗传转化体系优化[J].植物遗 传资源学报.2012,13(5):789-797
    [561虞薇,杜鹃,贾光磊等.农杆菌介导的大豆胚尖遗传转化体系中基因型的选择及抑菌条件的优化[J].上海交通大学学报(农业科学版)2012,29(2):24-27
    [57]张福丽,舒文涛,张怡等.大豆整体子叶节再生体系的建立及应用于农杆菌介导遗传转化初探[J].大豆科学.2012,31(6):865~868
    [58]Klein. T. M., Wolf. E. D., Wu. R., Sanford. J. C. High-velocity microprojectiles deliver nucleic acids into living cells [J]. Nature.1987,(327),70-73
    [59]铁双贵,柏松,岳润清等.基因枪介导法获得转BtCry1Ac基因抗虫玉米植株的研究[J].玉米科学.2012,20(5):54~58
    [60]柳金伟,焦娇,张洪宾等.基因枪介导转hpa99基因小麦的获得和检测[J].山东农业科学.2012,44(7):4-7
    [61]何莎.基因枪转化普通小麦品种科农199主要轰击参数的优化[D].[硕士学位论文].陕西:西北农林科技大学,2012
    [62]郭丽羡.基因枪介导抗逆相关基因转化小麦的研究[D].[硕士学位论文].河北:河北农业大学,2012
    [63]卢萍,王宝兰.基因枪法转基因技术的研究综述[J].内蒙古师范大学学报(自然科学汉文版).2006,35(1):106-109
    [64]Zhou, G. Y. et al. Introduction of exogenous DNA into cotton embryos. Methods in Enzymology.1983,101,433,Wu, R., Grossman, L. and Moldave, K. (eds.),Academic press, New York.
    [65]邸宏,梁广东,周羽等.BcWRKY1转录因子基因花粉管通道法转化玉米的初报[J].玉米科学.2012,20(3):34~38
    [66]邸宏,周羽,梁广东等.玉米三种不同花粉管通道法转化BcBCP1基因的初报[J].作物杂志.2012,(2):51~54
    [67]张立,王建锋,王晓杰等.花粉管通道法介导小麦抗病相关基因的转化和抗锈性鉴定[J].麦类作物学报.2013,33(1):29-33
    [68]段绍光.应用花粉管通道法创造小麦新种质[D].沈阳:沈阳农业大学,2002.
    [69]李刚,王强,刘秋云等.利用PEG法建立药用真菌灵芝的转化系统[J].菌物学报.2004,23(2):255-261
    [70]刘铜,侯巨梅,陈捷等.PEG介导的玉米弯孢叶斑病菌遗传转化[J].植物保护.2012,38(6):27-30
    [71]钱雪艳,郭东全,杨向东等.超声波辅助农杆菌介导转化大豆成熟胚的研究[J].安徽农业科学.2012,40(2):658~661
    [72]宋鉴达,林春晶,韦正乙等.利用超声波处理花粉转化法获得玉米转基因新材料[J].玉米科学.2012,20(2):48~51,55
    [73]孙明杰,魏玄,邹丹丹等.大豆子叶节高频愈伤组织诱导及其植株再生[J].大豆科学.2011, 30(4):546~551
    [74]罗秋兰,周失,赵琳等.农杆菌介导的下胚轴法转化大豆研究[J].大豆科学2010,29(6):925~929
    [75]肖文言,王连铮.大豆原生质体经胚胎发生高频率再生植株[J].大豆科学1993,12(3):249~251
    [76]隋德志,王连铮,尹光初.大豆幼胚培养经体细胞胚再生植株[J].科学通报.1987,32(21):1679
    [77]袁鹰,刘德璞,郑培和等.大豆组织培养再生植株研究[J].大豆科学.2001,20(1):9-13
    [78]马丽萍,胡正,张保缺等.一种快速、高效的大豆农杆菌转化技术[J].中国农业科学.2008,41(3):661~668
    [79]姚炳晨,沈艳茹,韩雪等.大豆子叶节和胚尖再生体系的比较及大豆SR1基因的遗传转化[J].大豆科学.2012,31(3):364-367,373
    [80]鲁黎明,安影.不同消毒剂对烟草种子消毒效果及萌发的影响[J].种子.2012,(4):93-95
    [81]李旭娇,田保明,范兴福等.甘蓝型油菜无菌苗培养方法的优化[J].河南农业科学.2009,(6):35~41
    [82]胡重怡,郑少清,陈兴江等.烟草无菌苗培养前的种子消毒技术研究[J].中国烟草科学.2007,28(2):45-46,51
    [83]许诺,张君,王丕武.6-BA和IBA浓度对不同基因型大豆胚尖诱导丛生芽的影响[J].大豆科学.2012,31(4):678~679,684
    [84]郭秋云,王萍,刘兆普.IBA和6-BA浓度配比对诱导大豆下胚轴不定芽的影响[J].大豆科学.2012,31(5):725~730
    [85]聂王星,於丙军.TDZ和6-BA对大豆子叶节再生体系中丛生芽诱导的效应[J].南京农业大学学报,2012,35(4):130-134
    [86]姚丙晨,沈艳茹,韩雪等.大豆子叶节和胚尖再生体系的比较及大豆SR1基因的遗传转化[J].大豆科学.2012,31(3):364~367,373
    [87]王伟,王罡,季静等.大豆子叶节植株再生体系的优化及转EPSPS基因的研究[J].作物杂志.2012,(3):23-27
    [88]王晓春,S王罡,季静等.农杆菌介导的大豆体细胞胚遗传转化影响因子的研究[J].大豆科学.2005,24(1):22-25
    [89]刘金华.农杆菌介导大豆高效遗传转化系统的研究[D].[硕士学位论文].吉林:吉林农业大学.2002
    [90]高思明,李希臣,刘昭军.大豆农杆菌介导转化系统的优化研究[J].东北农业大学学报.2001,3(4):313~319
    [91]孙丹丹.根癌农杆菌介导ipt基因转化甘蓝型油菜[D].[硕士学位论文].郑州.郑州大学.2011
    [92]周思军,李希臣,刘昭君等.大豆农杆菌介导转化系统的优化研究[J].东北农业大学学报.2001,32(4):313~319
    [93]陈李淼,田星星,单志慧等.利用农杆菌介导法转化大豆子叶节的影响因素研究[J].大豆科学.2012,31(1):17~23
    [94]张洁,商蕾,郑文永等.大豆胚尖遗传转化体系优化及抗逆基因GmPK转化研究[J].植物遗传资源学报.2012,13(2):271-277
    [95]李桂兰,乔亚科,杨少辉等.农杆菌介导大豆子叶节遗传转化的研究[J].作物学报.2005,31(2):170-176
    [96]党尉,卫志明.根癌农杆菌介导的高效大豆遗传转化体系的建立[J].分子细胞生物学报.2007,40(3):185~195
    [97]张洁,商蕾,郑文永等.大豆胚尖遗传转化体系优化及抗逆基因GmPK转化研究[J].植物遗传资源学报.2012,13(2):271-277
    [98]Liu H K,Yang C,Wei Z M. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regen-eration system[J]. Planta,2004,219:1042-1049
    [99]刘昭军.农杆菌介导的大豆遗传转化研究[D].[硕士学位论文].黑龙江:东北农业大学.2001
    [100]党尉,S卫志明.根癌农杆菌介导的高效大豆遗传转化体系的建立[J].分子细胞生物学报.2007,40(3):185~195
    [101]Hai-Kun Liu,Chao Yang,Zhi-Ming Wei. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system[J]. Planta.2004, 219:1042-1049
    [102]钱翔宇,柳毅,顾守进等.PCR检测转基因大豆[J].安徽农业科学.2009,37(29):14032-14034,14115
    [103]杜升伟,刘业丽,姚丙晨等.大豆转化体系的优化和Dof4基因转入大豆的研究[J].大豆科学.2010,29(3):398~402
    [104]党尉,卫志明.根癌农杆菌介导的高效大豆遗传转化体系的建立[J].分子细胞生物学报.2007,40(3):185~195
    [105]钱翔宇,柳毅,顾守进等.PCR检测转基因大豆[J].安徽农业科学.2009,37(29):14032-14034,14115
    [106]李明.bar基因[J].中山大学研究生学刊自然科学版.1999,20(4):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700