基于Verilog-A HDL高层次行为模型的大功率DC/DC开关电源芯片的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中央处理器(CPU)是现代电子系统的心脏,而直流电源则是CPU的心脏。随着集成电路设计水平的不断提高和半导体工艺的不断发展,现代CPU集成的功能越来越繁多,内部结构越来越复杂,同时其消耗的功率越来越大,对电源的要求也越来越苛刻,这使得CPU专用的直流电源转换芯片结构和功能也更加复杂。因此,研究基于CPU应用的大功率DC/DC电源转换电路是具有重要意义的工作。本文对大功率Buck型同步整流DC/DC开关转换电路进行了系统的理论及试验研究。
     本文提出了“中点会合”式的大规模模拟集成电路的设计方法和流程,采用Verilog-AMS语言建立模拟集成电路单元的高层次行为模型,运用“自顶向下”的方法完成对大规模模拟集成电路系统的设计以及功能模块的划分;针对划分好的模拟电路单元,运用“自底向上”的设计方法实现晶体管级电路的设计。新的设计方法能有效加快大规模模拟集成电路设计进度以及系统验证的完备性。
     本文在系统分析Intel公司的VRM9.0直流电源转换器设计标准和直流开关转换电路的工作原理基础上,深入研究模拟电路单元的性能参数,并利用模拟电路高层次描述语言Verilog-A,建立了模拟开关、全差分运算放大器、带隙基准电压源、模数转换器、电压检测、电平转移等模拟单元的高层次行为模型,对建立的各个模拟单元的功能进行了仿真验证。利用这些模拟单元的高层次模型构建了包括DC/DC开关转换控制电路和MOSFET驱动电路在内的完整的大功率Buck型同步整流DC/DC开关转换电路系统,并在行为级对设计的系统进行了仿真验证,通过行为级的系统设计,对整个系统进行了功能划分,从而得到了各个功能模块的电学特性参数,这些结果可以指导进一步的晶体管级电路设计。
     在建立的各个功能模块行为模型的基础上,对各个单元进行了晶体管级的电路设计。基于对模拟单元电路工作原理的分析,本文采用一级温度补偿和电阻二次分压技术设计的高性能CMOS带隙电压基准源电路,其输出电压为0.20-1.25V,大大扩展了原有带隙电压基准源的输出电压范围,并保证较低的温度系数;利用误差比较器的延迟时间来改善RC振荡器的精度,实现了同种工艺条件下RC振荡器周期精度的大幅度提高,在振荡频率为300KHz时,周期精度可以提高30%;采用温度计译码的结构,实现了5位高精度的DAC转换器电路,其输出电压从1.10V~1.85V变化,步长为25mV,输出电压误差为±1%,微分非线性误差小于0.25LSB,积分非线性误差约为0.5LSB。根据VRM9.0直流电源转换器设计标准,完成了电源电压检测,输出电压监控,以及过流过压保护电路的设计。
     本文提出了同时利用平均电流值均流和输出阻抗调整均流两种方法来实现两相Buck转换器输出电流的平均化,同时对输出电流和输出电压检测,采用电流反馈和电压反馈双环控制的方法,既提高Buck型开关转换电路的瞬态响应速度,又提高了输出电压和电流的精度。在对输出电流进行采样的过程中,利用输出电流大,而同步整流MOSFET导通电阻小的特点,省略了常用的电流检测电阻,而直接将同步整流管的导通电阻作为电流检测电阻,有效提高了开关转换器的转换效率。利用移位寄存器设计了“打嗝”模式的过流保护,有效地防止了在上电过程中由于电源电压的波动造成的误操作。在分析大功率Buck型同步整流DC/DC开关转换电路系统工作原理的基础上,确定了外围电路的参数,利用厂家提供的Spice模型参数对整个晶体管级的电路用Star-Sim(?)仿真器进行了验证。
     基于SinoMOS的0.8μm DPDM CMOS工艺和0.8μm高压(40V)DPDMBiCMOS工艺,分别完成了两相Buck型同步整流DC/DC开关转换控制电路和双通道MOSFET驱动电路的物理版图设计,完成了流片验证。根据两颗芯片的封装形式,设计了PCB测试版,并完成了两相Buck型同步整流DC/DC开关转换电路系统的测试,在设定输出电压为1.85V,负载电阻为47mΩ时,系统两路并联Buck转换器实现了电流共享,每路平均输出电流约为20A,系统输出电流约为40A,测试结果证明了设计的正确性。
Central processing unit (CPU) is the heart of modern electronic systems, and then DC power is the heart of CPU. With IC design upgrading and semiconductor processes continuing development, more and more function are integuated in the modern CPU, the internal structure of CPU gets more complex, its power consumption is also growing huge, and then the requirement for power growing more and more rigorous, which makes the chip structure and function of DC power conversion for CPU more complex. Therefore, the research of application based on DC/DC power conversion circuits for CPU is significant. The system theory and testing research about the high-power, two-phases, Buck DC/DC synchronous- rectified switch-converter circuits are done.
     The methods and procedures of large-scale analog IC design --"Meet-in-middle" is proposed in this dissertation. Using the Verilog-AMS hardware description language, the high level behavior model of an analog IC module can be set up. Then with the "Top-down" approach, the functional module division and large-scale analog IC system design can be implemented. With the "Down-top" approach, the transistor-level circuits of the analog module divided can be achieved. The new design method can effectively accelerate the progress of large-scale analog integrated circuit design and the complete certification of the system simulation.
     On the base of the VRM9.0 DC power converters design standards and the analysis on DC switching conversion circuit principles, the performance and work principles of analog IC modules is studied in depth. Using the high level hardware description language—Verilog-A, the behavior models of analog switch, differential operation amplifier, band-gap voltage reference, digital-to-analog converter, voltage detection and level shift circuit are built, and then these models are simulated for function certification. Based these behavior models, the system design of a high-power, two-phases, Buck DC/DC synchronous- rectified switch-converter is implemented. By the simulation of the system design certification, the functional modules of the system are divided, and the parameters concerned of these modules are obtained. This results can guide further transistor-level circuit design.
     On the base of the models of these various functional modules, the a transistor-level circuits of those are designed. By analyzing the operation principles of these modules, a novel high performance CMOS band-gap voltage reference with wide voltage output using the techniques for temperature compensation and resistive subdivision is proposed in the thesis. The output of the band-gap voltage reference ranges from 0.20V to 1.25V and temperature coefficient is very low. A novel high accuracy RC oscillator is proposed in the thesis. By using the error-amp to improve the period delay, the period accuracy of this oscillator can be improved by 30% in the same process. Using thermometer decoding structure, a 5-bit high-precision DAC converters circuit is achieved. The output voltage changes from 1.10V-1.85V with 25mV of step-length, and the output error is about±1%, less than 0.25LSB differential nonlinear error, nonlinear error about 0.5LSB. According VRM9.0 DC power converters design standards, the power voltage detection circuit, the output voltage control circuit, and the over current and over voltage protection circuits are designed.
     The current of the two parallel Buck converters can be shared excellently by using the auto average output current method as well as the output voltage droop method. Detecting the output current and output voltage at the same time, the current feedback and the voltage feedback control the loop at same time, by which, the transient response rate of the switch-conversion is improved and the accuracy of output current and voltage is enhanced. In sampling the output current, since the large output current and the small conduct-resistance of the synchronous rectified MOSFET, the sense resistance is replaced by the conduct-resistance of the synchronous rectified MOSFET to improve the conversion efficiency. By using the "hiccup" mode over current protection, the misoperation is effectively prevented due the supply voltage fluctuation. On the base of the analysis of operation principles of high-power and synchronous rectified DC/DC switch-converter, the external element parameters are identified. The entire transistor-level circuit is simulated with the Spice model parameters provided by manufacturer and in the Star-Sim~(?) certification tools.
     The physical layout design of the two-phase Buck synchronous rectified DC/DC controller and the dual channel MOSFET driver are implemented respectively in SinoMOS 0.8μm DPDM CMOS process and SinoMOS 0.8μm DPDM High-voltage (40V) BiCMOS process. The PCB test board is designed according to the package of the two chips, and the electrical parameters test of the whole system is completed. At the setting of 1.85V output voltage and load resister 47mΩ, the currents of the parallel Buck converters are shared each other. The average output current of one channel is about 20A, the whole output current of the system is about 40A. The test results proved the correction of the circuits design.
引文
[1.1]陆鸣,现代功率电子器件与专用集成控制器,上海交通大学出版社,2003.
    [1.2]Robert Yung.Evaluation of a Commercial Microprocessor Sun Microsystems Laboratories,a division of Sun Microsystems,Inc.Printed in U.S.A.P5-10
    [1.3]缪昱,模拟IC技术进展与动向,电子产品世界(模拟IC专刊),2005,12
    [1.4]叶以正,肖立伊,李滨.用VHDL-AMS进行概念设计.计算机辅助设计与图形学学报.2000,12(11):830-834
    [1.5]J.Alvin Connelly and Pyung Choi,"Macromodeling with Spice,"Prentice Hall,1992.
    [1.6]K.R.Laker and W.M.C.Sansen,Design of analog integrated circuits and systems,McGraw-Hill,1994.
    [1.7]中国半导体行业协会.国际半导体技术发展路线图(2002年修订版).2003
    [1.8]2002-2003年中国集成电路设计业市场研究年度报告.www.ccidnet.com
    [1.9]2002-2003年中国CPU及芯片组市场研究年度报告.www.ccidnet.com
    [1.10]胡伟武,张民选.高性能通用微处理器研发现状及发展策略.中国计算机学会通讯.2005.
    [1.11]Edward chang.Multi-Phase PWM Controller for CPU Core Power Supply.TDA21302data sheet..Infineon Technologies AG
    [1.12]Intersil Corporation.Microprocessor CORE Voltage Regulator Two-Phase Buck PWM Controller.ISL6560 data sheet.2004
    [1.13]Texas Instrument Corporation.20-A Low-Voltage Programmable Integrated Switching Regulator.PT7615 data sheet.2001.
    [1.14]J.P.Morin.A Practical Approach to Top/Down Analog Circuit Design.Proceedings of the 22~(nd)European Solid-State Circuits Conference 1996,Neuchatel,Switzerland,September 1996:49-52
    [1.15]Lawrence T.Pillage,Ronald A.Rohrer,Chandramouli Visweswariah.Electronic Circuit and System Simulation Methods.McGraw-Hill Inc.New York,USA,1995:1-140
    [1.16]Ogan Ocali,Mehmet A.Tan,Abdullah Atalar.A New Method for Nonlinear Circuit Simulation in Time Domain:NOWE.IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems.1996,15(3):368-374
    [1.17]Alper Demir,Edward Liu,Alberto L.Sangiovanni-Vincentelli,Iasson Vassiliou.Behavioral Simulation Techniques for Phase/Delay-Locked Systems.Proceedings of IEEE 1994 Custom Integrated Circuits Conference.San Diego,CA,USA,May 1994:453-456
    [1.18]M Zwolinski,C Garagate,T J Kazmierski.Mixed-Signal Simulation Using the ALFA Simulation Backplane.Proceedings of IEE Colloquium Computer and Control Division.1994:5/1-5/6.
    [1.19]C K Chuang,C G Harrison.Analogue Behavioral Modeling and Simulation Using VHDL And SABER-MAST.Proceedings of IEE Colloquium Computer And Control Division.1994:1/1-1/5.
    [2.1]Robert Yung.Evaluation of a Commercial Microprocessor Sun Microsystems Laboratories,a division of Sun Microsystems,Inc.Printed in U.S.A.2002,P5-10
    [2.2]林波涛,丘水生.DC/DC开关功率变换器分析方法的述评,电路与系统学报,Vol.3,No.3,1998.pp.31-34
    [2.3]刘健.开关电容DC/DC变换器研究.西安理工大学博士学位论文,1997年5月
    [2.4]张占松,蔡宣三.开关电源的原理与设计(修订版),电子工业出版社,2004
    [2.5]B.Razavi.Design of Analog CMOS Integrated Circuits.McGraw-Hill,New York,2000,
    [2.6]R.D.Middlebrook and' Slobodan Cuk.Modeling and Analysis Methods for DC-to-DC Switching Converters,IEEE International Semiconductor Power Converter Conference,March 28-31,1977,Lake Buena Visa.
    [2.7]R.P.Severns.Morden DC/DC switch mode power converter circuits.New York:Van Notrand Reinhold,1985
    [2.8]VORPERIAN V Simplified Analysis of PWM Converters Using the Model of tine PWM Switch.IEEE Trans.On AES,1990,26(3):190-505
    [2.9]V.Vorperian and R.Tymerski,Generation,Classification and Analysis of Switched-mode DC/DC Converters by the Use of Converter Cells.In IEEE Int'l Telecommunications Energy Conf.,1986,181-195
    [2.10]Chen F,Cai X S.Design of Feedback Control Laws for Switching Regulators Based on the Bilinear Signal ModeI[J].IEEE Trans on Power Electrons,1990:5(2):236-240
    [2.11]蔡宣三,邢岩.PWM开关变换器大信号等效电路统一模型.清华大学学报,1990,30(1):1-10
    [2.12]胡广莉.开关DC/DC变换器分析方法的发展.华南师范大学学报.1996(3):67-72
    [2.13]D.J.Shortt and F.C.Lee.An Improved Switching Converter Model Using Discrete and Average Technique.IEEE Trans.on IE,Vol.IE-30,No.1,pp.10-29.Feb,1983
    [2.14]A.Capel,J.Jalade,J.C.Marpinard,M.Valentin.Large Signal Dynamtic Stability Analysis of Synchronized Current Controled Modulators.Application to Sine-wave High Power Inverters.IEEE PESC Rec 1982,pp.101-109.
    [2.15]Walter J.Hirshberg,"Current Sharing of Paralleled Power Supplies," PESC Proceedings,October 1985
    [2.16]Kenneth T,Small,"Single Wire Current Share Paralleling," U.S.Patent No.4,717-833
    [2.17]Mark Jordan,"Load Share IC Simplifies Parallel Power Supply Design," PCIM Proceedings,September 1991.
    [2.18]James C.Daly,Denis P.Galipeau.Analog BiCMOS Design:Practices and Pitfalls.ISBN:0-8493-02470-1 CRC Press,1999,327-360
    [2.19]Alan Hastings.The Art of Analog Layout.Prentice-Hill,2004,400-405.
    [2.20]J.Jalade,J.C.Marpinard,M.Valentin.DC/AC High Power Cell Structure Improves Sine Performance.IEEE Trans.Aerosp.Electron.Syst,1981,Vol.AES-17,pp.373-379
    [3.1]Vishwashanth R.Kasulasrinivas,Harold W.Carter.Modeling and Simulating Semiconductor Devices using VHDL-AMS.2000 IEEE/ACM International Workshop on Behavioral Modeling and Simulation(BMAS 2000).Orlando,Florida.Oct.2000:22-27.
    [3.2]OVI Verilog-A Language Reference Manual,Version 1.9
    [3.3]Ira Miller,Thierry Cassagnes.Verilog-AMS Eases Mixed Mode Signal Simulation.Nanotech 2001.2001.Boston.
    [3.4]Ira Miller and Thierry Casagnes,"Verilog-A and Verilog-AMS Provides A New Dimension in Modeling and Simulation",Proceedings of the 2000 Third IEEE International Caracas Conference on,2000,Page(s):C49/1-C49/6.
    [3.5]N.U.Andersson and J.J.Wikner.A Strategy of hnplementing Dynamic Element Matching in Current-Steering DACs.Proc.IEEE 2000 Southwest Symposium on Mixed-Signal Design.SSMSD'00.San Diego,USA.Feb.2000:51-56
    [3.6]《中国集成电路大全》编委会.中国集成电路大全 专用集成电路和集成系统自动化设计方法.国防工业出版社,1997:179-11
    [3.7]T.Murayama,Y.Gendai.A Top-Down Mixed-Signal Design Methodology Using a Mixed-Signal Simulator and Analog HDL.Proceedings of European Design Automation Conference with EURO-VHDL'96 and Exhibition.Geneva,Switzerland,Sept.1996:16-20
    [3.8]N.Freij,P.Becque,T.Reeder.Behavioral-Level Software Mixed Analog/Digital Systems Explorations.Electronic Design Automation & Test Conference And Exhibition Conference Proceedings.Paris,France,1995:468-474
    [3.9]Jim Holmes,Felicia James,lan Getreu.Mixed-Signal Modeling For ICs.Integrated System Design Magazine.1997(6):436-439
    [3.10]J.Barby.Mixed-Mode Modeling for Top-Down Circuit Design and Verification.Microelectronics Journal.1992(3):215-222
    [3.11]Resve A.Saleh.Multilevel and Mixed-Domain Simulation of Analog Circuits and systems. IEEE Trans.on CAD of Integrated Circuits and Systems.1996,15(1):68-82
    [3.12]Richard Beale,Rakesh Chadha,Chin-Fu Chen,Alan Prosser,Khong-Meng Tham.Design Methodology and Simulation Tools for Mixed Analog-Digital Integrated Circuits.IEEE International Symposium on Circuits and Systems.New Orleans,USA,1990:1351-1355
    [3.13]刘帘曦,杨银堂,朱樟明.基于Verilog-A行为描述模型的PLL系统设计.电子器件.2004.26(2):298-301.
    [3.14]K.Kubdert,Modeling and Simulation of Jitter in Phase-Locked Loops,Karuizawa Workshop,April,1997.Japan.
    [3.15]M.Thamsirianunt and T.A.Kwasniewski,CMOS VCOs for PLL frequency synthesis in GHz digital mobile radio communications,IEEE J.Solid-State Circuits,vol32,[10].1997.pp.1511-1542.
    [3.16]Liu Lianxi,Yang Yintang,Zhu Zhanglning.Design of PLL System Based Verilog-AMS Behavior Model.The 2005 International workshop on VLSI Design and Video Technology proceedings,Suzhou,
    [4.1]Intel Corporation.VRM9.0 DC/DC Converter Design Guidelines.April 2002.
    [4.2]A.Marques,J.Bastos,A.Van den Bosch.A 12b Accuracy 300MSample/s Update Rate CMOS DAC.IEEE ISSCC'98,San Fransisco,CA,USA,1998:216-217
    [4.3]Alex R.Bugeja,Bang-Sup Song.A 14-b,100MS/s CMOS DAC Designed for Spectral Performance.IEEE Journal of Solid-state Circuits,1999,34(12):1719-1732
    [4.4]Toshio Murayama,Yuji Gendai.A Top-Down Mixed-Signal Design Methodology Using a Mixed-Signal Simulator and Analog HDL.Proceedings of European Design Automation Conference with EURO-VHDL'96 and Exhibition.Geneva,Switzerland,Sept.1996:59-64
    [4.5]John Hyde,Todd Humes,Chris Diorio.A 300-MS/s 14-bit Digital-to-Analog Converter in Logic CMOS[J].IEEE Journal of Solid-State Circuits.May 2003.Vol.38[5]:734-739
    [4.6]D.Groeneveld et al.A Self-calibration technique for monolithic high-resolution D/A converters IEEE J.Solid-State Circuits,1999,34[10]1517-1522
    [4.7]A.Bugeja et al..A 14-b 100-MS/s CMOS DAC designed for spectral performance.IEEE J.Solid-State Circuits,1999,34[10]:1719-1732.
    [4.8]Alex,Bugeja et al.A self trimming 14-b 100-MS/s CMOS DAC.IEEE J.Solid-State Circuits,2000,35[12]:1841-1852
    [4.9]K.Lin,C,H.Bult.A 10b 250Msample/s CMOS DAC in 1mm2[C].Proc.of the 1998 IEEE Solid-State Circuits Conf.(ISSCC98).San Fransisco,CA,USA.1998.214-215.
    [4.10]Sumanen L,Waltari M,Halonen K.A 10-bit high-speed low-power CMOS D/A converter in 0.2mm2[C].IEEE ICECS 1998.1998.1:15-18
    [4.11]B.J.Tesch,P.M.Pratt,K.Bacrania,M.Sanchez.14-b 125 MSPS Digotal-to-Analog Converter and Bandgap Voltage Reference in 0.5um CMOS,Proc.of the IEEE 1999ISCAA'99,Orlando,FL,U.S.A.,June 1998,452-455.
    [4.12]朱樟明,杨银堂,柴常春等.一种应用于通信设备的5V,14位高速数/模转换器设计.西安电子科技火学学报.2004,31(3):30-34
    [4.13]R.J.van de Plassche.Integrated Analog-to-Digital and Digital-to-Analog Converters.2002
    [4.14]D.A.Johns and K.Martin.Analog Integrated Circuit Design.John Wiley & Sons,New York,USA,1997
    [4.15]L.Dai,R.Harjani.CMOS Switched-Op-Amp-Based Sample-and-Hold Circuit.IEEE Journal of Solid-State Circuits.2000.Vol.35[1]:109-113
    [4.16]Anne Van den Bosch.Marc A.F.gorremans.A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter.IEEE Journal of Solid-state Circuits.2001.36(3):315-324
    [4.17]Liu Lianxi,Yang Yintang,Zhu Zhangming.A High Accuracy Bandgap Reference with Chopped Modulator to Compensate MOSFET Mismatch.18th International Conference on VLSI Design proceedings,India.2005:357-358.
    [4.18]朱樟明,杨银堂,刘帘曦等.一种高性能CMOS带隙电压基准源设计.半导体学报.2004年4月
    [4.19]Andrea Boni,Op-Amps and Startup Circuits for CMOS Bandgap References With Near 1-V Supply,IEEE Journal of Solid-State Circuits,2002,37(10):1339-1342
    [4.20]Ka Nang Leung,Philip K.T.Mok.A Sub-1-V 15-ppm/℃ CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device.IEEE Journal of Solid-State Circuits.2002.37(4):526-530
    [4.21]D.C.Stone,et.al.," Analog CMOS Building Blocks for Custom and Semicustom Applications",IEEE Journal Sold-state Circuits,Vol.SC-19,no.1,February 1984,pp.55-61.
    [4.22]H.K.Ji,J.J.Kim,"Active Clamp Forward Converter with MOSFET Synchronous Rectification",pp.895-900,APEC'94.
    [4.23]蔡宣三.PWM开关稳乐电源反馈控制律的火信号设计.清华大学学报,1991,31(1):45-52
    [4.24]Herzel F,Behazavi."A study of oscillator jitter due to supply and substrate noise.".IEEE,Trans Circ and Systems-Ⅱ:Analog and Digital Signal Processing.1996.46(1):56-62.
    [4.25]F.Guinjoan,J.Calvente.A.Poveda,L.Martinez.et al,Large Signal Modeling and Simulation of Switching DC-DC Converters.IEEE trans.On Power Electronics,Vol.12,No.3,1997,pp.485-494
    [5.1]朱樟明,杨银堂,刘帘曦.一种高性能CMOS带隙电压基准源设计.半导体学报.2004.Vol.25(5):542-546.
    [5.2]Zhu Zhangming,Liu Lianxi,Yang Yintang.A High Speed Self-biased CMOS Amplifier IP Core.The 2005 International workshop on VLSI Design and Video Technology proceedings,Suzhou.2005
    [5.3]Klaas Bult,Aaron Buchwald.An Embedded 240-mW 10-b 50MS/s CMOS ADC in lmm2.IEEE J.of Solid-State Circuits.1997.32[12]:1887-1895
    [5.4]Michael P.Flynn,and Ben Sheahan.A 400-Msample/s,6-b CMOS Folding and Interpolating ADC.IEEE J.Solid-State Circuits.1998.33[12]:1932-1938
    [5.5]刘帘曦,杨银堂,朱樟明.基于MOSFET失配分析的低压高精度CMOS带隙基准源.西安电子科技大学学报.2005.Vol.32(3)
    [5.6]刘帘曦,杨银堂,朱樟明.一种基于斩波调制的低压高精度CMOS带隙基准源.电路与系统学报.2005.Vol.10(6):64-67.
    [5.7]Alex,Bugeja et al.A self trimming 14-b 100-MS/s CMOS DAC.IEEE J.Solid-State Circuits,2000,35[12]:1841-1852
    [5.8]Yunchi Li and Edgar Sanchez-Sinencio.A Wide Input Bandwidth 7-bit 300-Msample/s Folding and Current-Mode Interpolating DAC.IEEE J.Solid-State Circuits.2003.38[8]:1405-1410
    [5.9]朱樟明,杨银堂,柴常春等.一种应用于通信设备的5V,14位高速数/模转换器设计.西安电子科技大学学报.2004年4月.
    [5.10]John Hyde,Todd Humes,Chris Diorio.A 300-MS/s 14-bit Digital-to-Analog Converter in Logic CMOS[J].IEEE Journal of Solid-State Circuits.May 2003.Vol.38[5]:734-739
    [5.11]Phillip E.Allen,Douglas R.Holberg."CMOS Analog Circuit Design" Second Edition,Publishing House of Electronics Industry,2002
    [5.12]Paul R.Gray,Paul J.Hurst,Stephen H.Lewis,Robert G.Meyer,"Analysis and Design of Analog Integrated Circuits" Fourth Edition,John Wiley & Sons Pte.LtdPublish,2001
    [5.13]刘帘曦,杨银堂,朱樟明.一种新型高精度RC振荡器电路设计.电路与系统学报.2005.Vol.10(1):20-23.
    [5.14]B.Razavi.Design of Analog CMOS Integrated Circuits.McGraw-Hill,New York,2000
    [5.15]D.J.Allstot,"A Precision Variable-Supply CMOS Comparator",IEEE Journal Solid-State Circuits,Vol.SC-17,no.6,December 1982,pp.1080-1079
    [5.16]S.Masuda,Y.Kitamura,S.Ohya,and M.Kikuchi,"CMOS Sampled Differential,Push-Pull Cascade Operational Amplifier",Proceedings of the 1984 International Conference on Circuits and Systems, Montreal, Canada, May 1984, pp. 1211-1214.
    [5.17] A.Boni and C. Morandi. A Current Mirroring BiCMOS Comparator for Low-Voltage, Low-Power Applications. Proc. of IEEE ESSCIRC'96 Conference, Neuchatel, Switzerland, September, 1996
    [5.18] Chen F, Cai X S. Design of Feedback Control Laws for Switching Regulators Based on. the Bilinear Signal Model[J].IEEE Trans on Power Electrons, 1990:5(2):236-240
    [5.19] K. Bult and GGeelen, "A Fast-Settling CMOS Op Amp For SC Circuits With 90dB DC Gain," IEEE J. Solid-State Circuits, vol.25, No. 12, pp. 1379-1384, December 1990.
    [5.20] W. Liu, MOSFET Models for SPICE Simulation, Including BSIM3v3 and BSIM4, John Wiley & Sons. Inc., New York, NY, 1st Edition, 2001
    [5.21] M. del Mar Hershenson, S. S. Mohan, S. P. Boyd, and T. H. Lee, "Optimization of Inductor Circuits via Geometric Programming," in Proceedings of the 36th Design Automation Conference, New Orleans, LA, June 1999, pp. 994-998.
    [5.21] Phillips Semiconductor Corporation. PHB83N03LT and PHB95N03LT N-channel TrenchMOS transistor Product specification, 2002.
    [5.22] B. K. Ahuja, "An Improved Frequency Compensation Technique for CMOS Operational Amplifiers," IEEE J. Solid-State Circuits, vol. SC-18, no.6, pp. 629-633, Dec. 1983.
    
    [6.1] Intersil Corporation. Microprocessor CORE Voltage Regulator Two-Phase Buck PWM Controller ISL6560 data sheet. October 22,20047
    
    [6.2] Intersil Corporation. ISL6560/62 Evaluation Board Application Note, April 2002.
    [6.3] Intersil Corporation. Microprocessor CORE Voltage Regulator Two-Phase Buck PWMController HIP6310 data sheet. October 22,2004
    [6.4] ntersil Corporation. Dual Channel Synchronous-Rectified Buck MOSFET Driver HIP6602 data sheet. October 22,2004
    [6.5] Infineon Technologies AG. Muti-Phase PWM Controller for CPU Core Power Supply TDA21302 data sheet. May 2004
    [6.6] Infineon Technologies AG. TDA21102/TDA21106 Application Information. Jan 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700