含氮类配体和焦磷酸根桥连配体单、双核金属配合物的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过合理的选择过渡金属离子和含N类配体,建构的配位聚合物受到广泛的关注,由于其价键形式和空间结构在化学键理论发展中,及其与物理化学、有机化学、生物化学、固体化学、材料化学和环境化学的相互渗透中,而且还将进一步拓展其在电子、光学、磁化学、催化以及生物模拟等诸多领域的广阔应用前景,使配位化学己成为众多学科的交叉点和实际应用研究的热点。又由于1,10-邻菲啰啉和2,2’-联吡啶具有含氮的芳香体系,容易形成π-π堆积作用,也可能形成分子间以及分子内氢键,可以组装出许多具有新颖结构和特殊功能的超分子配位聚合物,所以在非线性光学材料、磁性材料、超导体材料及催化等诸多领域都显示出诱人的应用前景,同时焦磷酸根离子作为多齿配体形成的多核聚合物也可以作为多种功能材料的模板剂。焦磷酸盐在激光器基质、制陶业、电气、磁性、接触反应都有较广阔的应用前景。因此,含有焦磷酸根离子配合物的合成与结构研究正日益引起科研工作者们的广泛关注。基于上述原因我们利用Mo、Cu、Mn和Ni为金属中心合成了5种不同的新颖的配位聚合物结构(1)[Cu2(phen)2(H2O)2] P2O7·8H2O(2)[Mo(Phen)O2F2](3)[Mn(Phen)3]·[(PO4)(H2O)]3(4)[Cu(Phen)2(H2O)2]·[(ClO4)(H2O)] (5)[Ni2(Phen)6]·(ClO4)4,并且使用SHELXTL程序解析结构,从而确定了5种配合物的结构。
It is widely concerned through a rational choice of transitional metal ions and ligands containing N atoms of coordination polymers, which is constructed. Coordination chemistry has become the intersection of many disciplines and practical application of research focus, because of its valence bond form and spatial structure in the chemical bonding theory, development, and its relationship with the physical chemistry, organic chemistry, biochemistry, solid-state chemistry, materials chemistry and environmental chemistry of the mutual penetration, it will also further expand its use in electronic, optical, magnetic chemistry, catalysis and biological simulation broad application prospects in many fields. What’s more, it is by eitherπ-πstacking interactions or intermolecular and intramolecular hydrogen bond casued by 1,10 - phenanthroline and 2,2'- bipyridine nitrogen-containing aromatic system, many supramolecular coordination polymers with new structures and special functions can be assembled. So, non-linear optical materials, magnetic materials, superconducting materials and catalysis and many other fields have shown an attractive prospect. At the meantime, pyrophosphate ion as a polydentate ligand multi-core polymer formed as a multi-functional materials can be acted as a template agent. It has a bright application prospect for pyrophosphate in the laser matrix, ceramics, electrical, magnetic, contact responses. Therefore, synthesis and structure of containing pyrophosphate– bridged ligands are increasingly drawn the attentions of the scientific research workers. For these reasons, we use Mo, Cu, Mn and Ni as the metal center to synthesize five kinds of different novel coordination polymer structure ( 1) [Cu2 (phen) 2 (H2O) 2] P2O7 ? 8H2O (2) [Mo (Phen) O2F2] (3) [Mn (Phen) 3] ? [(PO4) (H2O)] 3 (4) [Cu (Phen) 2 (H2O) 2] ? [(ClO4) (H2O)] (5) [Ni2 (Phen) 6] ? (ClO4) 4. And by the use of SHELXTL programs analytic structure, we can determine the five kinds of complex structures.
引文
[1]Chui S S Y, Lo S M F, Charmant J P H, et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283: 1148.
    [2]Tong M L, Chen X M, Ye B H, et al. Self-assembled three-dimensional coordi- nation polymers with unusual ligand unsupported Ag-Ag bonds: Syntheses, structures, and luminescent properties[J]. Angew Chem Int Ed, 1999, 38:2237.
    [3]Su W P, Hong M C, Cao K, Luminescent property of a supermolecular silver(I)-thiolate complex based on secondary Ag-S interactions and hydrogen bonds[J]. Chinese Journal of Chemistry, 19 (9): 817-821.
    [4]Fujita M, Oguro D, Miyazawa M, Self assembly of ten molecules into nanometer -sized organic host frameworks[J]. Nature, 1995, 378 (6556): 469-471.
    [5]Li H, EddaouMdi M, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal- organic framework[J]. Nature, 1999, 402 (6759): 276-279.
    [6]Kondo M, Yoshitomi T, Seki K, et al. Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn)[J]. Angew Chem Int Ed Engl, 1997, 36 (16): 1725-1727.
    [7]Gardner G B, Venkaraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network[J]. Nature, 1995, 374 (6525): 792-795.
    [8]Nathalíe Laronze, Jér ome Marrot, Gilbert Hervé. Synthesis, molecular structure and chemical properties of a new tungstosilicate with an open Wells-Dawson structure,α-[Si2W18O66]16-[J]. Chem Commun, 2003, 9 (18): 2360-2361.
    [9]Müller A. Beckmann E., B?gge H. et al. Inorganic chemistry goes protein size: A Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking[J]. Angew Chem Int Ed, 2002, 41 (7): 1162-1167.
    [10]Prior T J, Bradshaw D, Teat S J, et al. Designed layer assembly: A three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheets[J]. Chem Commun, 2003, 9 (4): 500-501.
    [11]王硕.邻菲哆琳铜、锰、钴配合物及其抗癌抗肿瘤活性[D]:[硕士学位论文].北京:首都师范大学化学系, 2008.
    [12]隋锡娜.含氮双齿配体铁、锰、铜配合物的合成、结构和性能研究[D]: [硕士学位论文].北京:首都师范大学化学系, 2008.
    [13]白秀丽.无机-有机杂化型配位化合物的合成、结构及表征[D]: [硕士学位论文].长春:东北师范大学化学学院, 2006.
    [14]Fujita M. Metal-directed self-assembly of two-and three-dimensional synthetic receptors[J]. Chem Soc Rev, 1998, 27 (6): 417-425.
    [15]Jones C J. Transition metals as structural components in the construction of molecular containers[J]. Chem Soc Rev, 1998, 27 (4): 289-299.
    [16]Olenyuk B, Fechtenk?tter A, Stang P J, et al. Molecular architecture of cyclic nanostructures:use ofco-ordination chemistry in the building of supermolecules with predefined geometric shapes[J]. J Chem Soc, Dalton Trans, 1998, (11): 1707-1728.
    [17]Blake A J, Champness N R, Hubberstey P, et al. Inorganic crystal engineering using self-assembly of tailored building-blocks[J]. Coord Chem Rev, 1999, 183 (1): 117-138.
    [18]MacGillivray L R, Atwood J L, Structural Classification and General Principles for the Design of Spherical Molecular Hosts[J]. Angew Chem Int Ed Engl, 1999, 38 (8): 1018-1033.
    [19]Zaworotko M J, Crystal engineering of diamondoid networks[J]. Chem Soc Rev, 1994, 24:283-285.
    [20]Burrows A D, Mingos D M P, White A J P, et al. Crystal engineering of metal complexes based on charge-augmented double hydrogen-bond interactions between thiosemicarbazides and carboxylates[J]. Chem Commun, 1996 (1): 97-99.
    [21]Desiraju G R, Designer crystals: intermolecular interactions, network structures and supramolecular synthons[J]. Chem Commun, 1997 (16): 1475-1482.
    [22]Ishow E, Gourdon A, Launay J P, et al. Observation of supramolecularπ–πdimerization of a dinuclear ruthenium complex by HNMR and ESMS[J]. Chem Commun, 1998, (17): 1909-1910.
    [23]Acock N W, Barker P R, Haider J M, et al. Red and blue luminescent metallo-Supramol Ecular coordination polymers assembled throughπ–πinteractions[J]. J Chem Soc, Dalton Trans, 2000, (9): 1447-1461.
    [24]Liu C, Luo F, Liao W P, et al. pH-dependent syntheses and structures of two copper(II)/phenanthroline/p- sulfonatocalix[4] arene supramolecular compounds with 1D water-filled channels[J]. Crystal Growth&Design, 2007, 11 (7): 2282-228.
    [25]Kepert C J, Ptior T J, Rosseinsky M J. A versatile family of interconvertible microporous chiral molecular frameworks: The first example of ligand control of network chirality[J]. J Am Chem Soc, 2000, 122 (21): 5158-5168.
    [26]徐筱杰.超分子建筑-从分子到材料[M],科学技术文献出版社,2000: 1-30.
    [27]沈昊宇,孙柏旺,廖代正等.一个含铜(Ⅱ)四氮大环阳离子和锰(Ⅱ)一维链阴离子化合物{[Cu(trans[14]diene)SCN]2Mn(SCN)4(4,4'-bipy)·4H2O}n的合成和结构[J].化学通报, 1998, 10: 14-16.
    [28]Lin W, Evans O R, Xiong R G, et al. Supramolecular engineering of chiral and acentric 2D network. Synthesis, structures, and second-order nonlinear optical properties of bis(nicotinato)zinc and bis{3-[2-(4-pyridyl) ethenyl]benzoato} cadmium [13][J]. J Am Chem Soc, 1998, 120 (50): 13272-13281.
    [29]Miller J S, Epstein A J, Organic and organometallic molecular magnetic materials - Designer magnets[J]. Angew Chem Int Ed Engl, 1994, 33 (4): 385-388.
    [30]Amabilino D B, Stoddart J E, Interlocked and intertwined structures and superstructures[J]. Chem Rev. 1995, 95 (8):2725-2729.
    [31]Murry C B, Kagan C R, Bawendi M G, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices[J]. Scienee, 1995, 270 (5240): 1335-1338.
    [32]Bawendi M G, Wilson W L, Rothberg L, et al. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters[J]. Phys Rev Chem, 1990, 65 (13): 1623-1626.
    [33]Du G D, Espenson J H. Kinetics of the reaction of chromium(VI) with tris(1,10 -phenanthroline) iron(II) ions in acidic solutions. Anion and medium effects: Perchlorate versus triflate[J]. Inorg chem, 2006, 45 (3): 1053-1058.
    [34]Schilt A A. Analytical Applieations of l,10–Phenanthroline and Related Com- pounds[M]. oxford: Pergamonon 1969.
    [35]Gladiali S, Chelucci G, Deloguetal G, et al. Optieally Active Phenanthroline Asymmetric Catalysis.Enantiosele Transfer Hydrolgenation of AeetoPhenore by rhodium/aIkyl Phenanthroline Catalysts[J]. J Organomet Chem, 1993, 370:285-294.
    [36]Schmitel M, Ammon H, Wohrle C. Tris-(1,10-Phenanthroline) Iron(Ⅱ) Complexe -broad Variation of the Potential by 4,7-substitution at the Phenanthroline Ligands[J]. J Chem Ber, 1995, 128:845-850.
    [37]Bawendi M G, Steigerwald M L, Brus L E, The Quantum Mechanies of Larger Semi- conductor Clusters(“Quantumdots”)[J]. Annual Rev Phys Chem, 1990, 41: 477-496.
    [38]Bawendi M G, Wilson W L, Rothberg L. Electronic Structure and Photo-exeited -carrier Dynamics in Nanometer-size Cd-Se Clusters[J]. Phys Rev Lett, 1990, 65 (13): 1623-1626.
    [39]Murry C B, Kagan C R, Bawendi M G. Self-organization of Cd-Se Nanocrystallitesinto Three-Dimensional Quantum Dot Superlattiees[J]. Scienee, 1995, 270 (5240): 1335-1338.
    [40]Rossetti R, Hill R, Gibson J M, et al. Exeited Electronic Statesand Optical Spectra of ZnS and CdS Crystallites in the≌15 to 50 A Size Range: Evolution From Molecular to Bulk Semiconducting Properties[J]. J Chem Phys, 1985, 82 (1): 552-559.
    [41]Mann S. Molecular Recognition in Biomineralization[J]. Nature, 1988, 332: 119-124.
    [42]张红梅.邻菲啰啉及衍生物配合物水热合成及结构表征[D]:[硕士学位论文].山西:山西大学化学系, 2006.
    [43]Abbate F, Orioli P, Bruni B, et al. Crystal Structure and Solution Chemistry of the Cytotoxic Complex,1,2-dichloro(o-Phenanthroline) Gold(Ⅲ) Chloridep[J]. Inorg Chim Aeta , 2000, 311 (1): 1-5.
    [44]Dong Y, Narla R K, Sudbeck E, et al. Synthesis,X-ray Structure,and Antileukemic Activity of Oxovanadium(IV) Complexes[J]. J Inorg Biochem, 2000, 78 (4): 321-330.
    [45]Zhou K J, Zhang C G, Xu D I, et al. Crystal Structure of cis-Dichlorobis- (1,10-Phenanthroline) Manganese(Ⅱ)[J]. Chinese Journal of Structural Chemistry, 1997, 16 (1): 20-23.
    [46]McCann S, MeCann M, Casey R M T, et al. Syntheses and X- ray Crystal Structures of cis-[Mn(bipy)2C12]·2H2O·Et0H and cis-[Mn(phen)2C12](bipy=2,2'-bipyridine; phen = 1,10-phenanthrolin); Catalysts for the Disproportionation of Hydrogen Peroxide[J]. Inorg Chim Aeta, 1998, 279 (1): 24-29.
    [47]Onishi K, Sewa S, Asaka K, et al. Morphology of Electrodes and Bending Response of the Polymer Electrolyte Actuator[J]. Electrochimica Acta, 2000, 46 (5): 737-743.
    [48]Kulkarni P, Padhye S, Sinn E, The First Well Characterized Fe(phen)C13 Complex: Structure of Aquomono (l,10-phenanthroline)iron(Ⅲ)Trichlotide:[Fe(Phen)C13 (H2O)][J]. Polydedron, 1998, 17 (16): 2623-2626.
    [49]Zhang Q L, Liu J G, Liu J, et al. DNA-binding and Photocleavage Studies of Cobalt(Ⅲ) Mixed-polypyridyl Complexes Containing 2-(2-chloro-5-nitrophenyl) imidazo[4,5-?][l,10] phenanthroline[J]. J Inorg Biochem, 2001, 85 (4): 291-296.
    [50]Chao H, Ye B H, Li H, et al. Synthesis, Electrochemical and Spectroscopic Properties of Ruthenium(Ⅱ) Complexes Containing 1,3-bis([1,10] phenanthroline -[5,6-d]imidazol-2-yl)benzene[J]. Polrhedron, 2000, 19 (16): 1975-1983.
    [51]Juris A, Balzani M, Barigelleti E, et al. Ru(Ⅱ) Polypyridine complexes:photophysies, photochemistry, eletrochemistry, and chemiluminescence[J]. Coord Chem Rev, 1988, 84 (C): 272-277.
    [52]Zhou Y S, Zhang L J, Fun H K, et al. (1,10-phen)2Mo3O9: a new one-dimensional organic/inorganic hybrid material consisting of two {MoO4N2} octahedra and one {MoO4} tetrahedron alternately[J]. Inorganic Chemistry Communications, 2000, 3 (3): 114–116.
    [53]Muir K J, McQuillan G P, William T A.Tricarbonyl-1,10-phenanthroline-(tripheny lphosphine)molybdenum(0)[J]. Acta Cryst, 2007, E63, m2492.
    [54]Eva Hevia, Julio Perez, Lucìa Riera, et al. Insertion of Unsaturated Organic Electrophiles into Molybdenum_Alkoxide and Rhenium_Alkoxide Bonds of Neutral, Stable Carbonyl Complexes[J]. Chem Eur J. 2002, 8 (19): 4510-4521.
    [55]Park J H, Dorrestein P C, Zhai H, et al. Biosynthesis of the Thiazole Moiety of Thiamin Pyrophosphate (Vitamin B1)[J]. Biochemistry, 2003, 42 (42) : 12430-12438.
    [56]Doyle R P, Nieuwenhuyzen M, Kruger P E. Polynuclear complexes with bridging pyrophosphate ligands: synthesis and characterization of {[(bipy)Cu(H2O)(μ-P2O7)Na2(H2O)6]·4H2O}, {[(bipy)Zn-(H2O)(μ-P2O7)Zn(bipy)]2·14H2O} and {[(bipy) (VO)2]2(μ-P2O7)]·5H2O}[J]. Dalton Trans, 2005, (23): 3745-3750.
    [57]Marino N, Mastropietro T F, Armentano D, et al. Spin canting in an unprecedented three-dimensional pyrophosphate- and 2,2'-bipyrimidine-bridged cobalt(Ⅱ) framework[J]. Dalton Trans, 2008, (38): 5152–5154.
    [58]Ikotun O F, Ouellette W, Lloret F, et al. Synthesis, Structural, Thermal and Magnetic Characterization of a Pyrophosphato-Bridged Cobalt(II) Complex, Eur J Inorg Chem, 2008, (33): 2691–2697.
    [59]Ikotun O F, Armatus G N, Julve M, et al. Synthesis and Structural and Magnetic Characterization of {[(phen)2Ni]2(μ-P2O7)}·27H2O and {[(phen)2Mn]2(μ-P2O7)}·13H2O: Rare Examples of Coordination Complexes with the Pyrophosphate Ligand, Inorg Chem, 2007, 46 (16):6668-6674.
    [1]IKOTUN O F, ARMATUS N G, JULVE M, et al. Synthesis and Structural and Magnetic Characterization of {[(phen)2Ni]2(μ-P2O7)}?27H2O and {[(phen)2Mn]2(μ-P2O7)}?13 H2O: Rare Examples of Coordination Complexes with the Pyrophosphate Ligand [J]. Inorg Chem, 2007, 46(16): 6668–6674.
    [2]王文举,高广刚,许林.链状铜配合物[Cu(bipy)2Cl]2Cl2?nH2O (bipy = 2,2′-联吡啶)水热合成[J].东北师大学报:自然科学版, 2005, 37 (2): 137-140.
    [3]王丽君,石莉萍,刘纯.一维铜配位聚合物合成与磁性研究[J].东北师大学报:自然科学版, 2006, 38 (3): 930-932.
    [4]SHELDRICK G M, SHELXTL, A System for Structure Solution and Refinement,ver- sion5.0, Bruker-AXS,Madision, WI,1998.
    [5]Kruger P E, Doyle R P, Julve M, et al. Inorg Chem, 2001, 40: 1726-1727.
    [1]胡西学,N(氮)配-O(氧)配有机-过渡金属聚合物合成、结构和性能研究[D]:[硕士学位论文].长春:吉林大学化学学院,2004.
    [2]Collison D, Garner C D, Joule J A. Chem Soc Rev,1996,25: 25–32.
    [3]Villata L S, Féliz M R, Capparelli A L. Photochemical and catalytic properties of dimeric species of molybdenum(V)[J]. Coord Chem Rev, 2000, 196: 65–84.
    [4]Butcher R J, Penfold B R, Slim E. Crystal Structure of Dioxodibromo-2,2'-bipyri dylrnolybdenum(vi)Mo(O)2(C10N2H8)Br2[J]. J Chem Soc Dalton Trans, 1979, 1764– 1769.
    [5]Bingham A L, Drake J E, Hursthouse M B, et al. Synthesis, spectroscopic character- rization and structural studies of bromodioxodimethylsulfoxide(N,N-dialkyldi- thiocarbamates and O-alkyl dithiocarbonate)molybdenum(VI) complexes: Crystal structures of MoO2Br2(OSMe2)2 and MoO2Br2(C12H8N2) CH2Cl2[J]. Polyhedron, 2006, 25: 3238–3244.
    [6]Viossat B, Rodier N.Structure du dichlorodioxo(o-phénanthroline)molybdène (Ⅵ)[J]. Acta Cryst, 1979, B35: 2715–2718.
    [7]Zhou Y S, Zhang L J, Fun H K, et al. (1,10-phen)2Mo3O9: a new one-dimensional organic/inorganic hybrid material consisting of two {MoO4N2} octahedra and one {MoO4} tetrahedron alternately[J]. Inorg Chem Commun, 2000,3, 114–116.
    [8]Sameski J E, Brzezinski L J, Anderson B, et al. A Study of High-Valent Manganese in Aqueous H3P04: Disproportionation of [MnⅢMnⅣ(μ-O)2(bpy)4]3+[J]. Inorg Chem, 1993, 32: 3265-3269.
    [9] Pedro Nú?ez, Carlos Elías,Jesús Fuentes, et al. Synthesis, structure and polarized optical spectroscopy of two new fluoromanganese(III) complexes[J]. J Chem Soc, Dalton Trans, 1997, 4335–4340.
    [10]Perlepes S P, Blackman A G, Huffman J C, et al. Complete Carboxylate Removal from Mn12012(OAc1)6(H20)4.2HOAc·4H20 with Me3SiCI: Synthesis and Characterization of Polymeric [MnC13(bpy)], and an Improved Synthesis of (NEt4)2,MnCI5[J], Inorg Chem, 1991, 30: 1665-1668.
    [11]Dobosz A, Dudarenko N M, Fritsky I O, et al. N-Bonding of the hydroxamic function in nickel(II) and copper(II) complexes with 2-(hydroxyimino) propanohydroxamic acid. J Chem Soc, Dalton Trans, 1999, 743–749.
    [12]Antolini L, Marcotrigiano G,Menabue L, et al. Coordination Behavior of L-Glu- tamic Acid: Spectroscopic and Structural Properties of (L-Glutamato)(imida- zole) copper(II),(L-Glutamato)(2,2’-bipyridine)copper(II), and Aqua (L-gluta mato) (1,lO- phenanthroline) copper(Ⅱ) Trihydrate Complexes. Inorg Chem, 1985, 24: 3621-3626.
    [13]Kirchhoff J R, Mcmillin D R, Robinson W R, et al. Steric Effects and the Behavior of Cu(NN)( PPh3 )2+ Systems in Fluid Solution. Crystal and Molecular Structures of [Cu(dmp) ( PPh3 )2 ]NO3 and [Cu(phen)(PPh3)2]N03·1?EtOH[J]. Inorg Chem, 1985, 24: 3928-3933.
    [14]Solans X, AguilóM, Gleizes A, et al. Coordination Modes of the Squarate Ligand: Syntheses and Crystal Structures of Six Copper(Ⅱ) Squarate Complexes[J]. Inorg Chem, 1990, 29: 775-784.
    [15]Chen B L, Mok K F, Ng S C, et al. Synthesis characterization and crystal stru- ctures of three diverse copper(Ⅱ) complexes with thiophene-2,5-dicar boxylic acid and 1,10-phenanthroline[J]. Polyhedron, 1998, 17 (23-24): 4237-4247.
    [16]CATALAN K J, JACKSON S, ZUBKOWSKI S J. COPPER(Ⅱ) NITRATE COMPOUNDS WITH HETEROCYCLLC LIGANDS: STRUCTURES OF [Cu(NO3)(2,2’-DIPYRIDYL)2][NO3]·H2O AND [Cu(H2O)(1,10-PHENANTHROLINE)2][NO3]2[J]. Polyhedron, 1995, 14 (15-16): 2165 -2171.
    [17]Ye B H, Chen X M, Xue G Q, et al. Mononuclear nickel complexes assembled into two-dimensional networks via hydrogen bonds andπ-πstacking interactions[J]. J Chem Soc, Dalton Trans, 1998, 2827–2831.
    [18]Xian H D, Li H Q, Shi X, et al. Formation of three-dimensional supramolecular water architectures containing 1D water chains via dianion templating[J]. Inorganic Chemistry Communications, 2009, 12: 177–180.
    [19]Ferbinteanu M, Cimpoesu F, Andruh M, et al. Solid-state chemistry of [Ni (AA)3[PdCl4]·nH2O complexes (AA=bipy, phen) and crystal structures of cis -diaqua-bis(phenanthroline)nickel(II) tetrachlorozincate and cis-dichloro - bis(bipyridine)nickel(II)[J]. Polyhedron, 1998, 17 (21): 3671-3679.
    [20] Wel P R, Jia L, Liu C R, et al. A BINUCLEAR NICKEL(Ⅱ) COMPLEX CONTAINING AN OXAMIDO-BRIDGE: SYNTHESIS, PROPERTIES AND X-RAY CRYSTAL STRUCTURE OF [Ni(oxae) Ni(phen)2](ClO4)2·3H2O[J]. Polyhedron, 1995, 14 (3): 441-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700