元素Re对单晶镍基合金TCP相形态及蠕变行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对镍基合金进行优化成分设计,并对合金中TCP相的析出倾向进行预测和验证,考察了有/无元素Re镍基合金中TCP相在高温有/无应力时效期间的析出特征及演化规律,研究了元素Re对TCP相形态及合金持久寿命的影响规律。通过测定不同合金在不同条件下的X-ray衍射谱线,计算出不同合金中γ′、γ两相的晶格常数及错配度,研究了元素Re及温度对合金中γ′、γ两相晶格错配度的影响规律;通过对不同镍基单晶合金进行蠕变性能测试及组织形貌观察,研究了不同合金的蠕变行为及影响因素,得出主要结论如下:
     采用Md法和Nv法可对镍基合金中TCP相的析出倾向进行预测,并确定出含Re镍基合金中有TCP相析出的临界值分别为:Md > 0.98和Nv > 2.1。通过理论预测及验证,元素Re、Mo、W可强烈促进镍基合金中TCP相的析出,确定出析出的TCP相为μ相;在1040℃和1100℃长期时效期间,6%W合金和4.5%Re合金中析出的μ相在{111}晶面沿<110>晶向呈片状生长,其中在{100}晶面μ相呈现相互平行或垂直排列的针状形貌,而在{111}晶面呈现的针状μ相互成60°角排列。在1040℃长期时效期间,无Re的6%W合金中析出的μ相尺寸较短,随时效时间延长不发生球化;而4.5%Re合金在1100℃长期时效期间,随时效时间延长,析出的μ相发生粗化呈现凹凸不平特征,并逐渐转变成球状形态,其中,在片状μ相不同区域的化学位差促使溶质元素向相邻γ′相中扩散,是导致μ相不断溶解及发生球化的主要原因。由于析出μ相可消耗合金中的难溶元素,降低基体的合金化程度和蠕变抗力,因此,可明显降低合金的持久寿命;在施加应力的蠕变期间,析出的针状μ相易于产生应力集中,可加速裂纹的萌生和扩展,是较大幅度降低合金持久寿命的主要原因;而在近球状μ相区域不易产生应力集中,是使合金持久寿命降低幅度减小的主要原因。
     铸态单晶合金的枝晶干和枝晶间区域,γ′相具有不同的尺寸和形态,并存在明显的元素偏析,元素Re、W、Cr、Mo为枝晶干偏析元素,元素Al、Ta、Co为枝晶间偏析元素,随固溶温度提高,元素在枝晶干/枝晶间的偏析程度减少,并致使合金的持久寿命提高。铸态合金中γ、γ′两相有较大的晶格常数及错配度;经高温固溶及完全热处理后,立方γ′相以共格方式嵌镶在γ基体中,合金中γ′、γ两相的晶格常数及错配度略有减小;经有/无应力的长期时效后,使合金中γ′相粗化,并在两相之间出现界面位错,使合金中γ′、γ两相的晶格常数及错配度的绝对值增加。随元素Re含量提高,单晶合金中γ、γ′两相的晶格常数增加,晶格错配度的绝对值减小,致使蠕变期间合金中γ′相的筏形化速率降低,并较大幅度提高合金的高温持久性能;随温度提高,合金中γ、γ′两相的晶格常数及错配度的绝对值增加。
     元素Re可明显提高合金的蠕变抗力和持久寿命,与2%Re合金相比,4.2%Re合金具有较好的蠕变抗力和较长的蠕变寿命;在试验的温度和施加应力范围内,测算出两合金的表观蠕变激活能分别为Q1 = 461.5kJ/mol、Q2 = 497.9 kJ/mol。在高温低应力的蠕变初始阶段,单晶合金的变形机制是(1/2)<110>位错在基体通道的八面体滑移系中以交滑移方式运动,在稳态蠕变期间合金的变形机制是位错通过攀移越过筏状γ′相,而在蠕变后期,合金的变形机制是<110>超位错剪切进入筏状γ′相。在中温高应力蠕变期间,合金的变形机制是(1/2)<110>位错在基体通道中运动,并有<110>超位错切入γ′相内,其切入γ′相位错可发生分解,形成不全位错+层错的位错组态,阻碍位错的滑移是使合金具有较好蠕变抗力的主要原因。
In this dissertation, the precipitation trend of TCP phase are predicted and verified by means of the alloys compositions design of using the Md and Nv methods, and the morphology features and evolution regularity of TCP phase precipitated during high temperature aging of the Re containing/free single crystal nickel-based superalloys are detected, and in the further the influences of the element Re on the TCP phase configuration and stress rupture properties of the alloys are investigated. The lattice parameters and misfits of theγ′,γphases in the different superalloys are calculated by means of measuring X-ray spectrums, and investigating the effecting regularity of the element Re and temperatures on the misfits ofγ′,γphases. And the creep behaviors and effect factors of the different superalloys are investigated by measuring creep properties and microstructure observation.
     Results show that the precipitated trend of TCP phase in the nickel-based superalloys can be predicted by using Md and Nv method of the alloys design, and the critical values of TCP phase precipitated in the Re containing single crystal nickel-based superalloys are defined as Md > 0.98 and Nv > 2.1. The trend of TCP phase precipitated in the single crystal nickel-based superalloys increases with the amount of the elements W、Re、Mo addition, and TCP phase precipitated in the Re containing/free superalloy is identified as theμp?hase. During long term aging at 1040℃and 1100℃, theμphase precipitated in the 6%W alloy and 4.5%Re alloy is grown along the <110> orientation on {111} planes in the form of the strip-like structure. Thereinto, theμphase on {100} planes displays the strip-like configuration arranged at the parallel or upright each other, and theμphase on {111} planes displays the strip-like configuration arranged at the angle of 60°each other. The element Re has an obvious influence on the morphology ofμphase in alloys.
     During long term aging at 1040℃, theμphase precipitated in 6%W alloy is shorter in size, no spheroidized feature of the TCP phase is detected. But theμphase precipitated in 4.5%Re alloy during aging at 1100℃is longer in size, and theμphase is regularly coarsened, as the aging time prolongs, for displaying the accidented feature up to transformed into the sphere-like morphology. The difference of the chemical potential at the different regions of the slice-likeμphase promotes the solute elements diffusing to the adjacentγ′phase, which is thought to be a main reason of resulting in theμphase dissolved and transformed into the sphere-like morphology. The refractory elements in the alloys are consumed due to the precipitation ofμphase, therefore the stress rupture lifetimes of the alloys are obviously decreased. The stress concentration is easily generated in the regions near the strip-likeμphase to accelerate the initiation and propagation of the cracks during creep, which is thought to be the main reason of the creep lifetime deterioration, to a great extent, of 6%W alloy. But the stress concentration is not easily generated in the regions near the sphere-likeμphase, which is thought to be a main reason of depressing creep lifetime of 4.5% Re alloy to a smaller extent.
     The different size and morphology ofγ′phase are displayed in the interdendritic and dendritic areas, which are related to the segregation of the alloying elements in the areas. Thereinto, the elements W, Cr, Mo and Re are richer in the dendritic area, and the elements Co, Ta, Al are richer in the interdendritic area. And the segregation extents of the elements in the areas decrease with the enhancing temperature of the solution treatment, which may obviously improve the stress rupture lifetimes of the alloys.
     Theγ′,γphases in as-cast single crystal nickel-based superalloy have a bigger lattice parameters and misfit. After high temperature solution and fully heat treated, the lattice parameters and misfits ofγ′,γphases in the alloys is slightly diminished due to the cubicγ′phase embedded coherently in theγmatrix. After long time age under the applied stress/unstress, theγ′phase in alloy is coarsened and the dislocation networks are appeared on the interfaces ofγ,γ′phases, which increases the lattice parameters and misfit ofγ、γ′phases. The lattice parameters increase with the Re content, but the absolute value of the misfit decreases, which decreases the rafting rate ofγ′phase and enhances the creep resistance of the alloys at high temperature. But the lattice parameters and absolute value of misfit increase with temperature.
     Comparing to 2%Re alloy, 4.2% Re alloy displays the better creep resistance and longer creep lifetime, which indicates that the creep resistance and stress rupture lifetimes of the alloys may be obviously improved by addition the element Re. In the ranges of the applied temperatures and stresses, the activation energies of the alloys during steady state creep are calculated to be Q1 = 461.5kJ/mol and Q2 = 497.9kJ/mol, respectively. During the initial stage of high temperature and low stress creep, the deformation mechanism of the single crystal superalloys is that the (1/2)<110> dislocations activated in the octahedral slip system of the matrix channel in the form of cross-slipping. And the deformation mechanism of the alloy during steady state creep is the dislocations climbing over the raftγ′phase, while the deformation mechanism of the alloy during the later stage of creep is the <110> super-dislocations shearing into the raftedγ′phase, thereinto, the dislocation which shears into theγ′phase may be decomposed to form the configuration of the partial dislocation and stacking fault, which can hinder the cross-slipping of dislocations to improve the creep resistance of the alloy.
引文
[1]师昌绪,陆达,荣科.中国高温合金40年.北京:中国科技出版社, 1996, 33(1): 1-8.
    [2]谢锡善.我国高温材料的应用与发展.机械工程材料,2004, 28(1): 2-11.
    [3]田素贵.单晶镍基合金组织演化与蠕变行为及微观特征的研究: (博士学位论文).沈阳:东北大学, 1998.
    [4]孔祥鑫.第四代战斗机及其动力装置.航空科学技术, 1994, 5: 21-23.
    [5]胡壮麒,管恒荣.紧紧抓住发动机叶片材料的主攻方向.材料导报, 1995, 3: 89-91.
    [6]何明辉,李海燕,聂景旭. DD6单晶合金的高温蠕变损伤研究.燃气涡轮试验与研究, 2002, 1: 24-28.
    [7] Francis I, VerSnyder M, Shank E. The development of columnar grain and single crystal high temperature materials through directional solidification. Mater.Sci.Eng., 1970, 6: 213-247.
    [8] VerSnyder F L, Guard R W. Directional grain structures for high temperature strength. Scripta Metall Mater., 1960, 52: 485-493.
    [9] Gell M, Dupta D N, Sheffler K D. High temperature super conductors with Tc over 30K. Journal of Metals, 1987, 7: 11-15.
    [10]任英磊.一种镍基单晶高温合金的组织演化及高温力学性能: (博士学位论文).沈阳:中国科学院金属研究所, 2002.
    [11]陈金国.军用航空发动机的发展趋势.航空科学技术, 1994, (5): 9-13.
    [12] Jumonji K, Ueta S, Miyahara A, et al. Rapid work hardening caused by cube cross slip in Ni3A1 single crystals. Phil. Mag., 1996, 73: 345-364.
    [13] Svoboda J, Lukaasi P. Creep deformation modeling of superalloy single crystals. Acta Mater., 2000, 48: 2519-2528.
    [14] Claudia S, Monika F K. Phase compositions and lattice misfit in CMSX-11 partition coefficients in single crystal nickel-based superalloy, Scripta Mater., 2001, 44: 731-736.
    [15] Thomas, Allison. Manufacturing property and turbine engineering performance of CMSX-4 airfoils, Materials for Advanced Power Engineering, 1994, 14: 1075-1080.
    [16]东华.第三代单晶高温合金.航空制造工程, 1995, 12: 9-12.
    [17] Walston W R. Nickel-based superalloy and article with high temperature strength and improved stability. USA, 5270123, 1993.
    [18] Naik S D, Nangia U K. Phase stable single crystal materials. USA, 4935072, 1990.
    [19] Auslin C M. Nickel-based single crystal superalloy and method of making. USA, 5151249, 1992.
    [20] Didier A, Cyril V, Yves D, et al. A 4th generation single-crystal superalloy of future aeronautical turbine blades and vanes. Superalloys 2000. Metal Park : TMS, 2000: 829-837.
    [21] Carroll L J, Feng Q. Mansfield Elemental partitioning in Ru-containing nickel-based single crystal superalloys. Mater. Sci. Eng. A, 2007, 457: 292-299.
    [22] Byung S R, Nam S W. Fatigue-induced precipitates at grain boundary of Nb-A286 alloy in high temperature low cycle fatigue. Mater. Sci. Eng. A, 2000, 29: 54-59.
    [23] Luo Z P, Wu Z T, Miller D J, et al. The dislocation microstructure of a nickel-based single crystal superalloy after tensile fracture. Mater. Sci. Eng. A, 2003, 8: 358-368.
    [24] Marchionni M, Goldschmidt D, Maldni M. High temperature mechanical properties of CMSX4 + yttrium single-crystal nickel-based superalloy. Superalloys 1992. Metal Park: TMS, 1992: 775-778.
    [25]郑运荣,张德堂.高温合金与钢的彩色金相研究.北京:国防工业出版社, 1999, 10.
    [26] Pearson D D, Kear B H, Lemkey F D, et al. Factors controlling the creep behaviour of a nickel-based superalloy. Proceedings of 1st International Conference. Swansea, 1981: 213-233.
    [27] Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel-based superalloy single crystals. Acta Mater., 1991, 40: 1-30.
    [28] Feng Q, Nandy T K, Pollock T M. The Re (Ru)-richδ-phase in Ru-containing superalloys. Mater. Sci. Eng. A, 2004, 373: 239-249.
    [29] Gabrisch H, Mukherji D, Wahi R P, et al. Deformation induced dislocation networks at theγ/γ′interfaces in the single crystal superalloy. Phil. Mag. A, 1996, 74: 229-233.
    [30] Acharya M V, Fuchs G E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal nickel-based superalloys. Mater. Sci. Eng. A, 2004, 381: 143-153.
    [31] Tian S G, Zhou H H, Zhang J H, et al. Directional coarsening of theγ′phase for a single crystal nickel-based superalloy. Mater. Sci. Tech., 2000, 16: 451-458.
    [32]师昌绪.材料大词典.北京:化学工业出版社, 1994: 595-596.
    [33] Murakami H, Honma T. Distribution of platinum group metals in nickel-based single crystal superalloys. Superalloys 2000. Metal Park: TMS, 2000: 747-754.
    [34] Karunaratne M, Cox D C. Modelling of the microsegregation in CMSX-4 superalloy and its homogenization during heat treatment. Superalloys 2000. Metal Park: TMS, 2000: 263-268.
    [35]陈荣章.单晶高温合金发展现状.材料工程, 1995, (8): 3-12.
    [36] Green K A, Pollock T M, Harada H. Development of a new alloy for directional solidification of large industrial gas turbine blades. Superalloys 2004. Metal Park: TMS, 2004: 26-34.
    [37] Walston W S, Durst K, G?ken M. Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-based superalloys. Mater. Sci. Eng. A, 2004, 88: 312-316.
    [38] Giamei A F, Anton D L. Rhenium additions to a nickel-based superalloy: effect on microstructure. Metall. Trans. A, 1985, 16: 1997-2004.
    [39] Blavette D, Caron P, Khan T. An atom-probe study of some fine-scale microstructure features in nickel-based single crystal superalloys. Superalloys 1988. Metal Park: TMS, 1988: 305-314.
    [40] Caron P, Khan T. Creep deformation mechanisms in nickel-based single crystal superalloys. Superalloys 1988. Metal Park: TMS, 1988: 683-692.
    [41] Kevin E Y, Ronald D N, David N S.Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni-Cr-Al superalloy. Acta Mater., 2007, 55: 1145-1157.
    [42] Tin S, Yeh A C. Atomic partitioning of ruthenium in nickel-based superalloys. Superalloys 2000. Metal Park: TMS, 2000: 735-745.
    [43] Chong L Fu, Roger R. On the diffusion of alloying elements in the nickel-based superalloys, Superalloys 2004. Metal Park: TMS, 2004: 867-875.
    [44] Caron P. Highγ′solvus new generation nickel-base superalloys for single crystal turbine blade applications. Superalloys 2000. Metal Park: TMS, 2000: 737-748.
    [45] Sato A, Harada H, Yokokawa T, et al. The effects of ruthenium on the phase stability of 4th generation nickel-based single crystal superalloys. Scripta Mater., 2006, 54: 1679-1684.
    [46] Foster S M,Nielasen T A, Nagy P. Enhance rupture properties in advanced single crystal alloys. Superalloys 1988. Metal Park: TMS, 1988: 245-256.
    [47] Kobayashi T, Sato M. Development of a third generation DS superalloy. Superalloys 2000. Metal Park: TMS, 2000: 323-335.
    [48] Murakami H, Saito Y, Harada H. Determination of atomistic structure of nickel-based single crystal superalloys using Monte Carlo simulations and atom-probe microanalyses. Superalloys 1996. Metal Park: TMS, 1996: 249-264.
    [49] Nabarro F R N. Rafting in superalloys. Metall Mater Trans A, 1996, 27: 513-524.
    [50] Murakumo T, Kobayashi T. Design ultra-high strength alloys. NIMS, Tsububa, 2001: 18-25.
    [51] Wollmer S, Mack T, Glatzel U. Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy. Mater. Sci. Eng. A, 2001, 320: 792-795.
    [52] Erickson G L. The development and application of CMSX-10. Superalloys 1996. Metal Park: TMS, 1996: 35-47.
    [53] Liua Z K, Chang Y A. Evaluation of the thermodynamic properties of the Re-Ta and Re-W systems. Journal of Alloys and Compounds, 2000, 299: 153-162.
    [54] Blavette D, Caron P. Khan T. Microstructure study on a single crystal superalloys. Scripta Metall, 1986, 20: 1395-1402.
    [55] Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution of rhenium in a nickel-based superalloy. Mater. Sci. Eng. A, 1998, 250: 88-95.
    [56] Thomas L, Monika F. Shear mechanism of theγ′phase in single crystal superalloys and their relation to creep. Metall. Trans. A, 1992, 23: 99-105.
    [57] Rusing J, Wanderka N, et al. Rhenium distribution in the matrix and near the particle-matrix interface in a model Ni-Al-Ta-Re superalloy. Scripta Mater., 2002, 46: 235-243.
    [58] Murakami H, Warren P J, Harada H. Microstructure and property of a nickel-based superalloy. Proceedings 3rd International Charles Parsons Turbine Conference, London, 1995: 343-349.
    [59] Wanderka N, Glatzel U. Chemical composition measurements of a nickel-based superalloy by atom probe field ion microscopy. Mater. Sci. Eng. A, 1995, 203: 69-75.
    [60] Harada H, Yamagata T. Computer analysis on microstructure and property of nickel-based single crystal superalloys. Proceedings of 5th International Conference. Swansea, 1993: 255-261.
    [61] Hino T, Kobayashi T. Development of a new single crystal superalloy for industry gas turbines. Superalloys 2000. Metal Park: TMS, 2000: 729-733.
    [62] Zhang J X, Murakumo T. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scripta Mater., 2003: 287-296.
    [63] Yeh A C, Rae C M F, Tin S. High temperature creep of Ru-bearing nickel-based single crystal superalloys. Superalloys 2004. Metal Park:TMS, 2004: 677-684.
    [64] Liu C T, Sun X F, Guan H R, et al. Effect of rhenium addition to a nickel-based single crystal superalloy on isothermal oxidation of the aluminide coating, Surface & Coatings Technology, 2005, 194: 111-118.
    [65] Socrate S, Parks D. Numerical determination of the elastic driving force for directional coarsening in nickel-based superalloys. Acta Metall. Mater., 1993, 41: 2185-2196.
    [66] Li J, Wahi R P. Investigation ofγ/γ′lattice mismatch in the polycrystalline nickel-based superalloy IN738LC: Influence of heat treatment and creep deformation. Acta Metall. Mater., 1995,43: 507-517.
    [67] Claudia S, Monika F. Phase composition and lattice misfit in CMSX-11B partition coefficient in single crystal nickel-based superalloys. Scripta Mater., 2001,44:731-736.
    [68]李唐,孟凡来,杜洪强,等.元素铼对一种镍基合金晶格常数及γ/γ′错配度的影响.动力与能源用高温结构材料(第十一届中国高温合金年会).上海, 2007: 478-481.
    [69] Link T, Epishin A, Bruckner U. Increase of misfit during creep of superalloys and it’s correlation with deformation. Acta Mater., 2000, 48: 1981-1994.
    [70] Scheunemann G, Müller L, Feller M. Misfit dislocations in two phase superalloys with high volume fraction of the ordered phase. Phil. Mag. A, 1993, 68: 193-208.
    [71] Mukherji D, Gilles R, Barbier B, et al. Lattice misfit measurement in Inconel 706 containing coherentγ′andγ′′precipitates. Scripta Mater., 2003, 48: 333-339.
    [72] Hopgood A A, Martin J W. Study of crystallographic creep parameters of nickel-based single crystal. Mater. Sci. Eng. A, 1986, 82: 27-36.
    [73] Carofalo F. Fundamentals of creep and creep rupture in metals. New York: The MacMillan Co., 1965.
    [74] Fleischer R L. Substitutional solution hardening. Acta Metall., 1963, 11: 203-211.
    [75] Harris K, Erickson G L, Schwer R E. Directionally Solidified and Single Crystal Superalloys, ASM international Metals Handbook, 1991, 1: 995-1006.
    [76] Jumoni S U, Miyahara A, Kato M, et al. Structure/property interaction in a long range order strengthened superalloy. Phil. Mag., 1994, 70(2): 435-442.
    [77] Thomas M C. Allison Manufacturing, Property and Turbine Engineering Performance of CMSX-4 Airfoils. Conf. on Materials for Advanced Power Engineerings, Netherlands, 1994: 1075-1082.
    [78] Lagneborg R, Bergman B K. The stress/creep rate behaviour of precipitation-hardened alloys. Trans. ASM., 1976, 10: 20-28.
    [79] Muller L, Glatzel U, Feller-Kniepmeier M. Modelling thermal misfit stresses in nickel-based superalloy containing high volume fraction ofγ′phase. Acta Metall. Mater., 1992, 40: 1321-1327.
    [80] Lall C, Chin S, Pope D P. The orientation and temperature dependence of the yield stress of Ni3(Al, Nb) single crystals. Metall. Mater. Trans. A, 1979, 10: 1323-1331.
    [81]崔传勇,郭建亭,齐义辉,等.定向凝固NiAl-28Cr-5.8Mo-0.2Hf合金的高温拉伸蠕变行为.金属学报, 2002, 38(4): 342-346.
    [82] Foreman A J, Makin M J. Dislocation movement through random arrays of obstacle. Metall. Trans.,1972, 3: 911-924.
    [83] Pearson D D, Kear B H, Lemkey F D L Factors controlling the creep behaviour of a nickel-based superalloy. Proceedings of 1st International Conference. Swansea, 1981: 213-233.
    [84] Mukherjee A K, Bird J E, Dorn J E. Experimental correlation for high-temperature creep. Trans. ASM., 1969, 62: 155-161.
    [85] Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel-based superalloy single crystals. Acta Metall. Mater., 1991, 40: 1-30.
    [86] Mukherjee A K, Bird J E, Dorn J E, et al. The stress/creep rate behaviour of precipitation-hardened alloys. Trans. ASM., 1969, 62: 155-163.
    [87] Gabrisch H, Mukherji D, Wahi R P. Deformation induced dislocation networks at theγ/γ′interfaces in the single crystal superalloy. Phil. Mag. A,1996, 74: 229-233.
    [88] Ahlquist C N, Nix W D. The measurement of internal stresses during creep of Al-Mg alloys. Acta Metal., 1971, 19: 373-377.
    [89] Yakubtsov I A, Ariapour A, Perovic D D, et al. Effect of nitrogen stacking fault energy of FCC iron based alloys. Acta Mater., 1999, 47: 1271-1279
    [90]胡壮麒,刘丽荣,金涛,等.单晶镍基高温合金的发展.航空发动机, 2005, 31(3): 1-7.
    [91] Murphy H J, Sims C T,Beltran A M. Phacomp revised. J. Metals., 1968 ,11: 46-53.
    [92] Barrows R G, Newkirk J B. A modified system for predictingσformation. Metall. Trans, 1972, 3: 2889-2893.
    [93] Morinaga M, Yukawa N, Ezaki H. Solid solubilities in transition-metal-based f.c.c alloys. Phil.Mag. A,.1985, 51: 223-246.
    [94] Moringa M, Yukawa N, Ezaki H. Solid solubilities in transition-metal-based f.c.c alloys. Phil. Mag. A, 1985, 51: 247-252.
    [95] Morozova G I. Balanced alloying of nickel superalloys.Metal, 1993, 1:38-41.
    [96]陈志强,韩雅芳,钟振纲,等.多元高温合金固溶极限预测.航空材料学报, 1988, 18(3): 8-15.
    [97]陈志强,韩雅芳,钟振纲,等.一种新的镍基高温合金相稳定性预测方法.航空材料学报, 1988, (18): 4-9.
    [98]傅恒志.铸钢和铸造高温合金及其熔炼.陕西:西北工业大学出版社, 1985: 174.
    [99] Caron P, Henderson P J, Khan T, McLean M. On the effects of heat treatments on the creep behaviour of a single crystal superalloy. Scripta Metall., 20, 1986: 875-891.
    [100] Khan T, Caron P. Effect of processing conditions and heat treatment on mechanical properties of single crystal superalloy CMSX-22. Mater. Sci. Tech., 1986, 5: 486-492.
    [101] Komend J, Henderson P J. Growth of pores during the creep of a single crystal nickel-based superalloy. Scripta Mater., 1997, 37: 1821-1826.
    [102] Yu J J, Sun X F, Jin T. Effect of Re on deformation and slip systems of a nickel-based single crystal superalloy. Mater. Sci. Eng. A, 2007, 458: 39-43.
    [103] Ojo O A, Chaturvedi M C. On the role of liquatedγ′precipitates in weld heat affected zone microfissuring of a nickel-based superalloy. Mater. Sci. Eng. A, 2005, 403: 77-86.
    [104] Appa R G, Srinivas M, Sarma D S. Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718. Mater. Sci. Eng. A, 2006, 418: 282-291.
    [105] Zhang J S, Hu Z Q, Murata Y, et al. Design and development of hot corrosion-resistant nickel-based single crystal superalloys by the d-electron alloy design theory:Part I.characterization of the phase stability. Metall. Trans. A, 1993(2A): 2451-2464.
    [106] Pauling L. The nature of the interatomic forces in metals. Phys. Rev., 1938, (54): 899-901.
    [107]徐祖耀.材料科学导论.上海:上海科学技术出版社, 1986: 86-87.
    [108]胡赓祥.金属学.上海:上海科学技术出版社, 1980: 11-12.
    [109]周尧和,胡壮麒,介万奇.凝固技术.北京:机械工业出版社, 1998: 67-69.
    [110]李庆春.铸件形成理论基础.北京:机械工业出版社, 1982: 118-130.
    [111] Minkoff I. Solidification and Cast Structure. John Wiley & Sons. 1986: 141-160.
    [112]王华明,唐亚俊,张静华,等. DD8单晶合金定向粗化有限元分析.航空材料学报, 1991, 1(4): 12-19.
    [113] Kobayashi T, Harada H, Zhan J X. Influence of heat treatment on microstructure and mechanical properties of a 1st generation single crystal superalloy. Journal of the Japan Institute of Metals, 2006, 7: 47-50.
    [114] Rüsing J, Wanderka N. Rhenium distribution in the matrix and near the particle matrix interface in a model Ni-Al-Ta-Re superalloy. Scripta Mater., 2002, 46: 235-242.
    [115] Kearsey, R M, Beddoes, J C. Jaansalu, K M; et al. The effects of Re, W and Ru on microsegregation behaviour in single crystal superalloy systems. Superalloys 2004, Proceedings of the 10th International Symposium on Superalloys, United States, 2004: 801-810.
    [116]李嘉荣,唐定中,刘世忠,等.铼对单晶合金持久寿命的影响.材料科学与技术, 1999, 15(1): 53-57.
    [117] Foster S M, Nielasen T A, Nagy P. Enhanced rupture properties in advanced single crystal superalloys. Superalloys 1988. Metal Park: TMS, 1988: 245-254.
    [118] Monajati H, Jahazi M, Bahrami R. The influence of heat treatment conditions onγ′characteristics in Udimet 720. Mater. Sci. Eng. A, 2004, 373: 286-293.
    [119] Mackay R A, Nathal M V, Pearson D D. Influence of molybdenum on the creep properties of nickel-based superalloy single crystals. Metall. Trans., A, 1990, 21: 381
    [120] Nystrom J D, Pollock T M, Murphy W H, et al. Discontinuous cellular precipitation in a high-refractory nickel-based superalloy. Metall. Mater. Trans. A, 1997, 28: 2443-2455.
    [121] Yeh A C, Tin S. Effects of Ru and Re additions on the high temperature flow stresses of nickel-based single crystal superalloys. Scripta Mater., 2005, 52: 519-530.
    [122] Rae C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater., 1998, 49: 4113-4125.
    [123] S. Wollmer, T. Mack, U. Glatzel et al. Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy. Materi. Sci. Eng., A, 2001, 319: 792-795.
    [124] Zhu J, Ye H Q. On the microstructure and its diffraction anomaly of theμphase in superalloy. Scripta Metall., 1990, 24: 1861-1866.
    [125] Hopgood A A, Martin J W. The creep behaviour of a nickel-based single crystal superalloy. Mater. Sci. Eng. A, 1986, 82: 27-33.
    [126] Zhao K, Lou L H, Wen Y, et al. Nucleation and growth ofμphase. J Mater. Sci., 2004, 39: 369-371.
    [127] Ishida M, Lior N. Thoughts about future power generation systems and the role of exergy analysis in their development. Energy Conversion and Management, 2002, 43: 1121-1122.
    [128]万见峰,陈世朴,徐祖耀,等. Fe-30Mn-6Si-xN形状记忆合金层错能的热力学计算.金属学报, 2000, 36(7): 679-683.
    [129] Wanderkan N, Glatzel U. Chemical composition measurements of nickel-based superalloy by atom probe field microscopy. Mater. Sci. Eng. A, 1995, 203: 69-74.
    [130]郝士明.材料热力学.北京:化学工业出版社, 2004: 121-123.
    [131]赵锴,楼琅洪,文怡,等.一种定向凝固镍基高温合金中μ相的析出及其有害作用.第十一届中国高温合金年会,上海, 2007: 418-422.
    [132] Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel-based superalloy single crystals. Acta Metall. Mater., 1992, 40: 1-30.
    [133] Socrate S, Parks D M. Numerical determination of the elastic driving force for directional coarsening in nickel-superalloys. Acta Metall. Mater., 1993, 41: 2185-2196.
    [134] Ecob R C, Ricks R A, Porter A J. The measurement of precipitate/matrix lattice mismatch in nickel-based superalloys. Scripta Metall., 1988, 16: 1085-1097.
    [135] Mukherjee D, Wahi R P. On the measurement of lattice mismatch betweenγandγ′phases in nickel-based superalloys by CBED technique. Scripta Mater., 1996, 35: 117.
    [136]骆宇时,李嘉荣,刘世忠,等. Re对单晶高温合金蠕变过程中γ′相定向粗化的影响.材料工程, 2006, 7 (10): 43-46.
    [137]骆宇时,李嘉荣,刘世忠,等. Re对单晶高温合金持久性能的强化作用.材料工程, 2005, (8): 10-14.
    [138]彭志方,刘攀.一种测算镍基合金γ′相亚点阵元素浓度及点阵常数的方法.金属学报, 2004, 40(6): 1-6.
    [139]刘超,周铁,郑瑞伦.面心立方晶体的膨胀系数和弹性模量.西南师范大学学报(自然科学版), 2005, 5(31): 12-15.
    [140] Hayhurst D R. Creep rupture under multi-axial states of stress. Journal of the Mechanics and Physics of Solids, 1972, 20: 381-390.
    [141] Vincent C N, John K T. On the creep rate stress dependence of particle strengthened alloys. Scripta Metall., 1986, 20: 797-802.
    [142] Mackay R A, Ebert L J. The development ofγ/γ′lamellar structures in a nickel-based superalloy during elevated temperature mechanical testing. Metall. Trans. A, 16(11): 1969-1982.
    [143] Pollock T M, Argon A S. An experimental study of the role of plasticity in the rafting kinetics of a single crystal nickel-based superalloy. Acta Metall. Mater, 1996, 42: 191-199.
    [144] Muller L, Glatzel U, Feller-knipmeier M. Phase composition and lattice in CMSX-11B partition coefficients in single crystal nickel-based superalloys. Scripta Mater., 2001, 44: 731-738.
    [145]侯增寿,卢光熙.金属学原理.上海:上海科技技术出版社, 1995: 56-70.
    [147]彭志方.一种镍基单晶高温合金中γ′沉淀相的定向粗化.金属学报, 1995, 31(12): 531-535.
    [148] Hopgood A A, Martin J W. The creep behaviour of a nickel-based single crystal superalloy. Mater. Sci. Eng. A, 1986, 82: 27-33.
    [149]水丽. SRR99单晶合金蠕变行为的研究: (博士学位论文).沈阳:沈阳工业大学, 2007.
    [150] Sherry A H, Pilkington R. The creep fracture of a single crystal superalloy. Mater. Sci. Eng. A, 1993, 172: 51-61.
    [151]哈宽富.金属力学性质的微观理论.北京:科学出版社, 1983: 520-522.
    [152] Feng D, Wang Y N, Qiu D, Metal Physics. Beijing: Science Press. 1975: 234-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700